当前位置:壹学网>试题>数学试题>奥数题及答案

奥数题及答案

时间:2024-07-09 09:18:44 数学试题 我要投稿

奥数题及答案范例(15篇)

奥数题及答案1

  巧猜数字

  五位数字中各位数字之和为42,且能被4整除的数有_______个。

  【答案解析】

  五位数字之和为42,则这个五位数中至少有2个9,至多有4个9。

  若有2个9,则另3个数字只能全为8,其中能被4整除的数必须末两位数是4的倍数,因此这样的'五位数只有3个。

  若有3个9,则另两个数字之和为15,只能为8和7,但这种情况下,不能被4整除。

  若有4个9,则另一个数只能为6,因此能被4整除的数只有1个。

  综合上述情况可知,满足条件的五位数共4个。

奥数题及答案2

  1、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

  2、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40km,乙车每小时行45km,两地相距多少km?(交换乘客的`时间略去不计)

  参考答案:

  1、解析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

  答:每支铅笔0.2元。

  2、解析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

  答:两地相距255km。

奥数题及答案3

  1.计算

  计算:11+22+33

  解答:11+22+33

  =33+33

  =66

  小结:按顺序计算即可。

  2.比较大小

  把下面的数按从大到小的顺序排列起来,并用">"连接

  19,91,28,82,37,73,46,64,55

  解答

  91>82>73>64>55>46>37>28>19

  小结:这些数十位都不同,所以十位越大,数也越大

奥数题及答案4

  为了解决农民工子女入学难的问题,某市建立了一套进城农民工子女就学的保障机制,其中一项就是免交"借读费"。据统计,20xx年秋季有4200名农民工子女进入主城区中小学学习,20xx年有所增加,其中小学增加20%,中学增加30%,这样,20xx年秋季增加1080名农民工子女在主城区中小学学习。如果按小学生每年收"借读费"500元,中学生每年每生收"借读费"1000元计算。

  (1)20xx年增加的1080名中小学一共免收多少"借读费"?

  (2)如果小学每40名学生配备2名教师,中学每45名学生配备3名教师,按20xx年秋季入学后农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?

  【答案解析】

  设"20xx年"有x名农民工子女进入"小学"、y名农民工子女进入"中学".

  则有:x+y=5000;20%x+30%y=1160;

  根据以上两个等式联立解方程组,解得x=3400,y=1600.

  所以,20xx年在20xx年的基础上,"新增"小学生3400×20%=680名,且小学生的`"总人数"变为3400+680=4080名;"新增"中学生1600×30%=480名,且中学生的"总人数"变为1600+480=20xx名.可知,

  (1)共免收"借读费"500×680+1000×480=820000元=82万元。

  (2)一共需要配备2×(4080÷40)+3×(20xx÷40)=360名中小学教师。

奥数题及答案5

  一次数学考试后,李*问于昆数学考试得多少分.于昆说:"用我得的分数减去8加上10,再除以7,最后乘以4,得56."小朋友,你知道于昆得多少分吗?

  答案与解析:分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.

  如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?

  把一个数用□来表示,根据题目已知条件可得到这样的等式:

  {[(□-8)+10]÷7}×4=56.

  如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的.,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.

  解:{[(□-8)+10]÷7}×4=56

  [(□-8)+10〕÷7=56÷4

  答:于昆这次数学考试成绩是96分.

  总结:通过以上例题说明,用倒推法解题时要注意:

  ①从结果出发,逐步向前一步一步推理.

  ②在向前推理的过程中,每一步运算都是原来运算的逆运算.

  ③列式时注意运算顺序,正确使用括号.

奥数题及答案6

  有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的'5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱?

  答案:

  每2.5个2分可换1个5分,即每换1个5分,个数就减少1.5个。已知减少了100-79=21个,所以换成的5分的个数=21÷1.5=14个。也就是说,是用5×14=70分钱换成了5分,所以2分币是70÷2=35个。同理,每5个1分可换1个5分,即每换1个5分,个数就减少4个。已知减少了79-63=16个,所以换成的5分的个数=16÷4=4个。也就是说,用5×4=20分换成了5分,所以1分币是20÷1=20个。原有2分及5分硬币共价值:35×2+45×5=295分.

奥数题及答案7

  六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的'收获。

  两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?

  答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80*9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟).

  另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900*2(100+80)=10分钟.

奥数题及答案8

  将15个相同的`悠悠球分装到四个相同的纸盒中,要求每个盒子中至少装一个,且每个盒子装的数量都不相同,问共有_____种装法。

  答案与解析:

  因为2+3+4+5=14,所以最小两个加数只能为1和2;1和3;1和4;2和3四种情况:

  ⑴15=1+2+3+9 (2)15=1+3+4+7 (3)无 (4)15=2+3+4+6

  =1+2+4+8 =1+3+5+6

  =1+2+5+7

  因此15个悠悠球放在不同纸盒里共有3+2+1=6种不同的装法。

奥数题及答案9

  一、按规律填数.

  1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )

  3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( )

  二、等差数列

  1.在等差数列3,12,21,30,39,48,…中912是第几个数?

  2.求1至100内所有不能被5或9整除的整数和

  3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

  4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和

  三、 平均数问题

  1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .

  3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?

  4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23,26,30,33

  A、B、C、D 4个数的平均数是多少?

  5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 .

  四、加减乘除的简便运算

  1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……20xx-1975-1976-……-1999=( ) 3)26×99 =( )

  4)67×12+67×35+67×52+67=( )

  5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

  五、数阵图

  1、△、□、〇分别代表三个不同的数,并且;

  △+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=

  2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

  3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

  4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果.所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数.

  六、和差倍问题

  1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

  2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积.

  3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的.3倍,两个数各是多少?

  4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?

  5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

  6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?

  七、年龄问题

  1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

  2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

  3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

  4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

  八、假设问题

  1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?

  2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?

  3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?

  4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?

  5.育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣

  5分,张小灵最终得分为41分,她做对了多少道题?

奥数题及答案10

  1.求1~20xx连续自然数的全部数字之和。

  2.一个三位数,各位上数字的和为15,百位上的数字比个位上的数字小5;如果把个位和百位数字对调,那么得到的新数比原数的3倍小39。求原来的这个三位数。

  济南小学四年级奥数题答案

  1.分析 不妨先求0~1999的`所有数字之和,再求20xx~20xx的所有数字之和。

   (1+9×3)×(20xx÷2)

  =28×1000

  =28000

  2×10+1+2+…+9

  =20+45

  =65

  28000+65

  =28065

  答 所求数字之和为28065。

  2.解答:可设个位上的数字为a,则根据题意,百位上的数字为a- 5,十位上的数字为 15-a-(a-5)= 20-2a,原数为(a-5)×100 +(20- 2a) ×10+ a=81a-300

  新数为a×100+(20-2a)×10+a-5=81a+195

  因为新数比原数3倍小39,所以

  81a+195=3×(81a-300)-39 162a=900+39+195

  a=7

  所以a-5=2,15-2-7=6,所求的数是267。

奥数题及答案11

  分类枚举,就是依据一定的标准把题目的答案分为几种类型,一一列举出来。分类枚举的方法主要用来解决一些排列组合的问题,列举时要有序分类,保证答案既不遗漏又不重复,其中分类标准的确定是解题的关键,同一题因标准不同可能有不同的分类方法,好的分类方法会使解题过程变得更加简单。学会分类枚举,不仅可以解决本讲的问题,遇到更复杂问题时,我们也可以用列举的方法找出部分答案,然后在已有答案中发现规律,从而进一步寻求解题方案。

  【题目】:

  把10只鸽子关在3个同样的笼子里,使得每个笼子里都有鸽子,可以有多少种不同的放法?

  【解析】:

  这里笼子都是同样的,因此3只笼子是无序的。

  因为10÷3=3……1,根据题中条件,可得鸽子最少的那个笼子里的鸽子不多于3只,不少于1只,我们可以这样分为三类:

  一、鸽子最少的那个笼子里有1只鸽子,共有4种放法:①1只、1只、8只;②1只、2只、7只;③1只、3只、6只;④1只、4只、5只。

  二、鸽子最少的那个笼子里有2只鸽子,共有3种放法:①2只、2只、6只;②2只、3只、5只;③2只、4只、4只。

  三、鸽子最少的那个笼子里有3只鸽子,共有1种放法:①3只、3只、4只。

  所以共有放法:4+3+1=8(只)。

  【题目】:

  有一架天平和三只重量分别为1克,3克,6克的砝码,你知道用这架天平和这些砝码共能称出多少种重量吗?

  【解析】:

  这一题要在孩子学习了三上第三单元,认识了常见的称和质量单位后,再学习比较合适。如果超前完成,需要对孩子介绍一下天平的用法。

  因为1克+3克+6克=10克,所以这架天平最重能称出10克,最轻能称出1克。因此这架天平最多能称出1克到10克之间的10种不同重量的物体,然后我们再对这10类情况进行验证:

  ①天平左边:物体 右边:1克砝码 能称出1克重的物体;

  ②天平左边:物体+1克砝码 右边:3克砝码 能称出2克重的物体;

  ③天平左边:物体 右边:3克砝码 能称出3克重的.物体;

  ④天平左边:物体 右边:3克砝码+1克砝码 能称出4克重的物体;

  ⑤天平左边:物体+1克砝码 右边:6克砝码 能称出5克重的物体;

  ⑥天平左边:物体 右边:6克砝码 能称出6克重的物体;

  ⑦天平左边:物体 右边:6克砝码+1克砝码 能称出7克重的物体;

  ⑧天平左边:物体+1克砝码 右边:6克砝码+3克砝码 能称出8克重的物体;

  ⑨天平左边:物体 右边:6克砝码+3克砝码 能称出9克重的物体;

  ⑩天平左边:物体 右边:6克砝码+3克砝码+1克砝码 能称出10克重的物体。

  在列举的过程中可以让孩子慢慢的领悟规律:有1克和3克的砝码,不仅可以称出1克和3克重的物体,还可以称出重量是1克和3克的和或差的物体,依此类推。

  所以这架天平最多能称出10种不同重量的物体。

  【题目】:

  1997 的数字和是1+9+9+7=26,在小于20xx的四位数中,数字和为26的除了1997外还有几个?

  【解析】:

  小于20xx的四位数都是一千多,千位上都是1。数字和为26,26-1=25,个、十、百三位上的数字和为25。25-9-9=7,因此三个数位上数字最小不能小于7,最大不能大于9。我们根据百位上数字的大小分为三类:

  一、百位上数字是7,有1个:1799;

  二、百位上数字是8,有2个:1889、1898;

  三、百位上数字是9,有3个:1979、1988、1997;(千位和百位上的数字确定后,十位上数字再按从小到大枚举出所有情况。)

  所以符合条件的数共有6个,除了1997外,还有5个。

奥数题及答案12

  一个房间中有100盏灯,用自然数1,2,…,100编号,每盏灯各有一个开关。开始时,所有的灯都不亮。有100个人依次进入房间,第1个人进入房间后,将编号为1的倍数的灯的开关按一下,然后离开;第2个人进入房间后,将编号为2的.倍数的灯的开关按一下,然后离开;如此下去,直到第100个人进入房间,将编号为100的倍数的灯的开关按一下,然后离开。问:第100个人离开房间后,房间里哪些灯还亮着?

  答案与解析:

  对于任何一盏灯,由于它原来不亮,那么,当它的开关被按奇数次时,灯是开着的;当它的开关被按偶数次时,灯是关着的;

  根据题意可知,当第100个人离开房间后,一盏灯的开关被按的次数,恰等于这盏灯的编号的因数的个数;

  要求哪些灯还亮着,就是问哪些灯的编号的因数有奇数个。显然完全平方数有奇数个因数。所以平方数编号的灯是亮着的。所以当第100个人离开房间后,房间里还亮着的灯的编号是:1,4,9,16,25,36,49,64,81,100。

奥数题及答案13

  某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

  答案与解析:

  由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

  乙做3天的工作量=甲2天的工作量

  即:甲乙的`工作效率比是3:2

  甲、乙分别做全部的的工作时间比是2:3

  时间比的差是1份

  实际时间的差是3天

  所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

  方程方法:

  [1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1

  解得x=6

奥数题及答案14

  【试题】甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.

  【答案】

  分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的`时间,因此前一半比后一半时间多走:(80-70)×40米

  解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:

  (0.07+0.08)X=6,

  0.15X=6,

  X=40;

  前一半比后一半时间多走:

  (80-70)×40,

  =10×40,

  =400(米).

  答:前一半比后一半的时间多走400米.

  故答案为:400.

奥数题及答案15

  做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?

  答案与解析:当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的'两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人.

【奥数题及答案】相关文章:

奥数题及答案07-02

奥数题及答案[经典]07-02

奥数题及答案(实用)07-07

奥数题及答案(热门)07-04

奥数题及答案【经典15篇】07-05

奥数题及答案精选15篇07-07

[实用]奥数题及答案15篇07-03

奥数题及答案15篇[精华]07-03

奥数题及答案范例[15篇]07-06

奥数题及答案(合集15篇)07-06