奥数题及答案(合集15篇)
奥数题及答案1
加工零件:(中等难度)
甲、乙、丙3名工人准备在同样效率的3个车床上车出7个零件,加工各零件所需要的'时间分别为4,5,6,6,8,9,9分钟。3人同时开始工作,问最少经过多少分钟可车完全部零件?
加工零件答案:
加工所有的零件供需:4+5+6+6+8+9+9=47分钟,平均到三台车床上加工,平均每台加工时间为分钟。由于加工各零部件需要整数分钟,因此最快需16分钟完成,但是无论怎么分组,都做不到。因此延长1分钟,即17分钟,有(6,9),(6,9),(4,5,8),满足题意。所以,最少经过17分钟可完成全部零件。
奥数题及答案2
一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的'时间是几时几分?
分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40 分钟,14时40分-6小时40分=8时。
解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。
奥数题及答案3
1、难度:一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?
2、难度:
甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?
1、难度:一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?
2、难度:
甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?
因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路 程中把货车单独行驶 小时的`路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分 别求出客车和货车在相遇时各自行驶的路程.相遇时间:
奥数题及答案4
一、按规律填数.
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23,26,30,33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 .
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……20xx-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.
4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果.所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数.
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的.2倍,求这个长方形的面积.
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5.育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
奥数题及答案5
请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的'一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;
(2)请你说明:37和73这两个数当中至少要选出一个;
(3)你能选出55个数满足要求吗?
答案与解析: (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。
(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。
(3),同37的例子,
01和10必选其一,02和20必选其一,……09和90必选其一,选出9个
12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。
奥数题及答案6
五年级的同学,我们马上那个就要进入小学的关键时期了,为大家分享五年级奥数题及答案位置原理,我们一定要把现在的每一步走稳,只有坚持每天做题我们才能在最后关头有所收获,现在开始加油吧!
(位值原理)在5678这个数的前面或后面添写一个2,所得到的两个五位数都能被2整除。现在请找出一个三位数添写在5678的'前面或后面,使所得的两个七位数都能被这个三位数整除。满足题意的三位数有哪几个?
解:分析后得5678这个数一定能被这个三位数整除,先计算出5678的质因数:
即5678的质因数除了1外还有2、17和167,那么符合要求的三位数有167、334。
答:满足题意的三位数有167和334。
奥数题及答案7
如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?
答案与解析:
四位数的千位数字是1,百位数字(设为a)可在0、2、3、4、5、6、7中选择,这时三位数的百位数字是9-a;四位数字的十位数字设为b,可在剩下的6个数字中选择,三位数的`十位数字是9-b。四位数的个位数字c可以在剩下的4个数字中选择,三位数的个位数字是9-c。因此,所说的四位数有7×6×4=168个。
奥数题及答案8
求余数:
求437×319×20xx+2010被7除的余数。
解答:437≡3(mod7),319≡5(mod7),20xx≡1(mod7)
由"同余性质"可知:
437×319×20xx≡3×5×1(mod7)=15(mod7)≡1(mod7)
所以:437×319×20xx+2010≡1+1(mod7)=2(mod7)
即:437×319×20xx+2010被7除的余数是2.这道题主要考察了同余性质。必须注意的`是同余性质只能用在加、减、乘。
奥数题及答案9
1、甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。已知摩托车开始的速度是每小时50千米,中途减为每小时40千米;汽车的.速度是每小时80千米,并在途中停留10分钟。那么,张山骑摩托车在出发分钟后减速。
答案与解析:
汽车行驶了100÷80×60=75(分)
摩托车行驶了75+60+10=145(分)
设摩托车减速前行驶了x分,则减速后行驶了(145-x)分。
5x+580-4x=600
x=20(分)
2、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?
解:甲车到达终点时,乙车距离终点40×1=40千米
甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时
两地距离=40×5=200千米
奥数题及答案10
在100~999中,恰好有两位数字相同的共有多少个?
解答:
100~999共有900个数。有三位数各不相同的`,恰有两位数相同的,三位数全相同的。
三位数各不相同的有:9×9×8=648(个)
三位数全相同的有:9(个)
所以,恰好有两位数字相同的共有:900-648-9=243(个)
这道题主要考察组合与排列里的分类思想。只要对每一种情况分门别类的列好,不遗漏不重复。
奥数题及答案11
在1、2两个数之间,做这样的操作。第一次写上了3,即1、3、2;第二次写上4、5,即1、4、3、5、2;第三次也在相邻两数之间,写上这两个相邻数的和。这样的过程重复了5次。那么这时所有数的和是多少?
解答:
考虑每次操作后所有数的总和。原来是3,第一次是3×3-1-2=6,第二次是6×3-1-2=15。每次写上的数是相邻两数的和,中间所有数都算了两次,只有两边的'1和2算了一次,因此可以认为写上的数是所有数的2倍,然后加上原来这些数,总和就变成了原来的3倍,再减去两边只算了一次的1和2即可。第三次是15×3-1-2=42,第四次是42×3-1-2=123,第五次是123×3-1-2=366。
奥数题及答案12
牛吃草:(中等难度)
一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
牛吃草答案:
这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的'增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为"1个单位".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
奥数题及答案13
雨后,一段马路上有许多小水洼。小明上学路过这里,他每到一处小水洼就脱鞋淌过去;到了没水的地方就又把鞋穿上。请问:
①他脱鞋与穿鞋的`次数之和是奇数,这时他在水中吗?
②若他脱鞋与穿鞋的次数之和是偶数,这时他在水中吗?
答案与解析:小明淌过一处水洼时,必脱鞋一次,又穿鞋一次,脱鞋与穿鞋的次数之和是2次,是偶数;若是小明在水中时,必是只有脱鞋还没有穿鞋,这时他脱鞋与穿鞋次数之和必为奇数。所以①和是奇数,小明在水中。②和是偶数时,小明不在水中。
奥数题及答案14
6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
答案与解析:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候;第6个人接水时,只有他1个人等候。可见,等候的.人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少,因此,应当把接水时间按从少到多顺序排列等候接水,这个最短时间是3×6+4×5+5×4+6×3+7×2+10=100(分)。
奥数题及答案15
分数方程:(中等难度)
若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?
准确值案:
设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.
现在变成:将42分拆成若干个连续整数的'和,一共有多少种分法,每一种分法有多少个加数?
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;
又因为42=14×3,故可将42:13+14+15,一共有3个加数;
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.
【奥数题及答案】相关文章:
奥数题及答案07-02
奥数题及答案[经典]07-02
奥数题及答案(热门)07-04
奥数题及答案【经典15篇】07-05
奥数题及答案15篇[精华]07-03
奥数题及答案范例[15篇]07-06
奥数题及答案15篇[精]07-05
[实用]奥数题及答案15篇07-03
奥数题及答案[汇总15篇]07-04
小升初奥数题06-07