奥数题及答案(优秀15篇)
奥数题及答案1
速算与巧算
(4942+4943+4938+4939+4941+4943)÷6
查看答案
完整版下载:奥数专题:计数问题试题及详解.doc
解答:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.
(4942+4943+4938+4939+4941+4943)÷6
=(4940×6+2+3-2-1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运用了除法中的巧算方法)
=4940×6÷6+6÷6
=4940+1
=4941.
计算:(1234+2341+3421+4123)÷(1+2+3+4)的值是多少?
解答:(第五届希望杯2试试题)在1234,2341,3412,4123中,数字1,2,3,4分别在各个数位上出现过一次,(1234+2341+3421+4123)÷(1+2+3+4)=1111这是属于位值原理的.题目,从题目我们观察到数字1,2,3,4分别在各个数位上出现过一次,在接着类题目的时候我们可以把所有的数加起来然后除以各个数字之和。
奥数题及答案2
一个三位数,若它的中间数字恰好是首尾数字的平均值,则称它是“好数”.则好数总共有_______个.
答案与解析:
方法一:当十位为1 时,共有111,210 共2 个;
当十位为2 时,共有:123;222;321;420 共4 个;
当十位为3 时,共有:135;234;333;432;531;630 共6 个;
当十位为4 时,共有:147;246;345;444;543;642;741;840 共8 个;
当十位为5 时,共有:159;258;357;456;555;654;753;852;951 共9 个;
当十位为6 时,共有:369;468;567;666;765;864;963;共7 个;
当十位为7 时,共有:579;678;777;876;975;共5 个;
当十位为8 时,共有:789;888;987 共3 个;
当十位为9 时,共有:999 共1 个;
所以,中间数字恰好是首尾数字的平均值的好数共有:45 个.
方法二:(对应法)根据题意,如果百位和个位数字确定后,十位数字就确定,因此百位和个位数字的'取法个数,就是好数的个数,又因为百位数字和个位数字的奇偶性相同,对于百位有9种选法,百位选定后个位数字有5种选择,因此有9×5=45个好数。
奥数题及答案3
51、1米与1克相比( )
A 无法比较 B 1米大 C 1克大
52、积是16的的算式是( )
A 32÷2 B 4×4 C 8+8
53、下面的单位中,不是重量单位的是( )
A 元 B 千克 C 克
54、一个三位数。三个数字的.和是26,这个数最大是( )
A 899 B 989 C 998
55、8070读作( )
A 八千七十 B 八千七 C 八千零七十
56、口算
5×8 = 24÷6 =
57、1千克梨有8个,1千克苹果比1千克梨的个数多1个,妈妈买了2千克梨和2千克苹果,共有苹果和梨( )个。
58、一只蜗牛向前爬25厘米,又朝后退15厘米,在朝前爬10厘米,结果前进了( )厘米。
59、小明第一天写5个大字,以后每一天都比前一天多写2个大字,6天后小明一共写了( )个大字。
60、一辆公共汽车上有6个空座位。车开到团结站,没有人下车,但上来了9人,空座位还有2个,上车的人中有( )人站着。
奥数题及答案4
一次数学小组到安华小区去做社会调查。数学小组同学问街道主任:“您这个小区有多少人口?”,街道主任风趣地说:“51995 的末四位数字就是我这个小区的人口数!”原来这位主任是一位退休的数学教师。小组同学很快算出了安华小区的人口数。同学们你也算算看。
答案与解析:
从55 开始,积为四位数字。
55=3125 56 的末四位数字为5625 57 的末四位数字为8125 58 的末四位数字为0625 59 的末四位数字为3125……
观察上面的计算结果2,很快发现,从55 开始,5n 的`末四位数字的变化是有规律的,每隔3 个就重复出现:3125、5625、8125、0625、3125、5625、8125、0625、3125、……
1995÷4=498……3所以,51995 的末四位数字是8125,安华小区人口为8125 人。
奥数题及答案5
时间路程问题:
小学四年级奥数竞赛题:甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?
时间路程答案:
解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟
解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟
答:他走后一半路程用了42.5分钟。
奥数题及答案6
1.周长
一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
解答:86+88+90=264厘米
【小结】因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的'个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
2.数论
把25拆成若干个正整数的和,使它们的积最大。
解答:积37×22=8748为最大。
【小结】先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
3.抽屉问题
城市举行小学生数学竞赛,共20道题,有20分基础分,答对一题给3分,不答给1分,答错一题倒扣1分,若有1978人参加竞赛,问至少有人得分相同
【分析】20+3×20=80,20-1×20=0,所以若20道题全答对可得最高分80分,若全答错得最低分0分.由于每一道题都得奇数分或扣奇数分,20个奇数相加减所得结果为偶数,再加上20分基础分仍为偶数,所以每个人所得分值都为偶数.而0到80之间共41个偶数,所以一共有41种分值,即41个抽屉.1978÷41=48……10,所以至少有49人得分相同.
奥数题及答案7
某饮料店规定,用3个空饮料瓶就可以换一瓶饮料。小良买10瓶饮料,他喝完就换,最多能喝多少瓶饮料?
点拨一:全喝完后,用9个空瓶换回3瓶饮料,剩1个空瓶。在喝完后,只有2个空瓶,不够换,可以向主人借1个空瓶。换回1瓶饮料,喝完吧空瓶还给主人。这样正好,既没有空瓶又不欠别人。把喝得饮料加起来10+3+1+1=15(瓶),最多喝15瓶。
解法一:10+3+1+1=15(瓶)
答:他最多能喝15瓶。
点拨二:也可以这样想:假如只买两瓶饮料,喝完后,向店主借1空瓶,换1瓶饮料。喝完后把空瓶还给主人,这样正好。就是这种规定下,只要买2瓶饮料,就可以喝到3瓶饮料。小良买了10瓶饮料,有102=5(个)两瓶,就能喝5个3瓶,3*5=15(瓶)
解法二:102=5(个) 3*5=15(瓶)
答:他最多能喝到15瓶。
奥数题及答案8
【题目】:
小丽、小玲、小平三人进行跑步比赛。赛后小丽说:我不是第2名;小玲说:我不是第1名;小平说:我前面没有人。
小朋友,你知道他们的名次吗?
【解析】:
这题关键是让孩子初步熟悉列表法解题。解决这类问题的方法,是通过对已经条件进行逻辑推理,作出判断,当已知条件比较多,各个条件之间的关系错综复杂时,就需要列出表格,对众多的条件进行梳理,对推理出来的结论在表格中即时记录,以便于运用已经条件和已推出的结论再进行二次、三次......推理,最终找出题目的结论。
第一步:列出表格
第一名
第二名
第三名
小丽
×
×
√
小玲
×
√
×
小平
√
×
×
第二步:根据题目的'条件推理,填表
首先,根据题中三人说的三句话很容易得出小平第一,小丽不是第二,小玲不是第一(这是个多余条件),分别用“×”、“√”表示相应的含义填入表中(红色)。再根据已有的结论,可以推出小平不是第二和第三,小丽不是第一,填好表格(蓝色)。最后,由小平和小丽都不是第二,可以推出小玲是第二;由小平第一,小玲第二,可推出小丽是第三。完成表格(紫色)。
第三步:看统计表,回答问题
所以,这次比赛中小平第一,小玲第二,小丽第三
奥数题及答案9
种树挂牌:(高等难度)
在10米长的一段马路的一侧种树,每隔1米种一棵,两头都种,共种11棵,如果把三块“爱护树木”的小牌任意挂在三棵树上,然后再把每两棵挂牌的树之间的距离是多少米算出来,看一看这三个距离(即多少米),至少有一个数是偶数,对吗?然后把三块小牌再挂在不同的三棵树上,再算算看。
种树挂牌答案:
这三个距离数(即多少米)中,至少有一个数是偶数这话是对的,解答:这三个距离数(即多少米)中,至少有一个数是偶数这话是对的,A树和B树之间的`距离AB=3(米)(奇数)B树和C树之间的距离BC=5(米)(奇数)A树和C树之间的距离AC=3+5=8(米)(偶数)
这是为什么呢?可以这样想:
假如距离AB和距离BC之中有一个为偶数,则自不待言,若AB和BC这两个距离都是奇数,则AB和BC之和必是偶数,因为两个奇数之和是偶数,所以说这三个距离中至少有一个是偶数。
奥数题及答案10
在一次地理考试结束后,有五个同学看了看彼此五个选择题的答案,其中:
同学甲:第三题是A,第二题是C。
同学乙:第四题是D,第二题是E。
同学丙:第一题是D,第五题是B。
同学丁:第四题是B,第三题是E。
同学戊:第二题是A,第五题是C。
结果他们各答对了一个答案。根据这个条件猜猜哪个选项正确?
a.第一题是D,第二题是A;
b.第二题是E,第三题是B;
c.第三题是A,第四题是B;
d.第四题是C,第五题是B。
答案与解析:
假设同学甲“第三题是A”的`说法正确,那么第二题的答案就不是C。同时,第二题的答案也不是A,第五题的答案是C,再根据同学丙的答案知道第一题答案是D,然后根据同学乙的答案知道第二题的答案是E,最后根据同学丁的答案知道第四题的答案是B。所以以上四个选项第三个选项正确。
奥数题及答案11
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
2、甲、乙两地的'距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
解答:9.75÷3÷13×15×5=18.75(千米)
2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
解答:(496-64)÷(64+56)=3.6(小时)
奥数题及答案12
请同学们细心观察以下数列,找出规律,然后再作答。
把所有的奇数依次一项,二项,三项,四项循环分为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第100个括号内的各数之和为多少?
考点:数列中的规律;整数的加法和减法.
分析:通过观察可以发现,括号内数字都是奇数,并且是连续的';同时还可以发现,括号内的奇数的个数分别是1、2、3、4、1、2、3、4…循环的,所以每4个括号可以分为一个大组,100个括号则可以分成25个大组.然后推出第100个括号内的各数再相加计算出和即可.
解答:解:每4个括号为一个大组,前100个括号共25个大组,包含25×(1+2+3+4)=250个数,正好是从3开始的250个连续奇数,
因此第100个括号内的最后一个数是2×250+1=501,故第100个括号内的各数之和为501+499+497+495=1992.
故答案为:1992.
点评:括号内数字都是连续奇数,括号内的奇数的个数又是循环的,利用数列中的规律来求出结果.
奥数题及答案13
题目:
在10米长的一段马路的一侧种树,每隔1米种一棵,两头都种,共种11棵,如果把三块“爱护树木”的小牌任意挂在三棵树上,然后再把每两棵挂牌的`树之间的距离是多少米算出来,看一看这三个距离(即多少米),至少有一个数是偶数,对吗?然后把三块小牌再挂在不同的三棵树上,再算算看。
答案:
这三个距离数(即多少米)中,至少有一个数是偶数这话是对的,解答:这三个距离数(即多少米)中,至少有一个数是偶数这话是对的,A树和B树之间的距离AB=3(米)(奇数)B树和C树之间的距离BC=5(米)(奇数)A树和C树之间的距离AC=3+5=8(米)(偶数)
这是为什么呢?可以这样想:
假如距离AB和距离BC之中有一个为偶数,则自不待言,若AB和BC这两个距离都是奇数,则AB和BC之和必是偶数,因为两个奇数之和是偶数,所以说这三个距离中至少有一个是偶数。
奥数题及答案14
【加法中的巧算】
难度:
巧算下面各题
①506-397 ②323-189 ③467+997 ④987-178-222-390
【答案】
解:①式=500+6-400+3(把多减的3再加上)=109
②式=323-200+11(把多减的11再加上)=123+11=134
③式=467+1000-3(把多加的`3再减去)=1464
④式=987-(178+222)-390=987-400-400+10=197
解析:利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
奥数题及答案15
四年级奥数题及答案:简便运算。奥数的学习要通过不断的练习来巩固所学知识、开拓思路。在此,数学网奥数题库栏目为同学们搜集整理了关于四则混合运算的四年级奥数题,同时附上试题解答供同学们参考练习。
简便运算:
考点:运算定律与简便运算.
分析:
(1)先把32分解成4×8,再运用乘法结合律简算
(2)先算除法,再根据减法的`性质简算.
点评:此题是考查四则混合运算,要仔细观察算式的特点,灵活运用一些定律进行简便计算.
【奥数题及答案】相关文章:
奥数题及答案07-02
奥数题及答案[经典]07-02
奥数题及答案(实用)07-07
奥数题及答案(热门)07-04
奥数题及答案【经典15篇】07-05
奥数题及答案精选15篇07-07
[实用]奥数题及答案15篇07-03
奥数题及答案15篇[精华]07-03
奥数题及答案范例[15篇]07-06
奥数题及答案(合集15篇)07-06