当前位置:壹学网>试题>数学试题>六年级比的应用题

六年级比的应用题

时间:2024-12-03 01:16:50 数学试题 我要投稿

[实用]六年级比的应用题15篇

六年级比的应用题1

  面对今年的班级,作业批改是个问题,一直来,我喜欢面批,特别是对学困生,我觉得面批他们的作业对他们会有更大的帮助,因为学困生形成的原因总体来说有以下几个。

  首先是接受能力差,他们往往反应慢,比同龄同学慢半拍甚至更多;其次,学习不用心,注意力集中不了,总是分神,如果课堂上趣味性的东西多,他又会“跑出”课堂更加收不拢心;再则,确实由于他对学习提不起精神,就是对读书“感冒”,再怎么弄都是心神疲惫;最后,还有可能是教师本身的素质,不能让学生对学习感兴趣,从而导致学习每况愈下。当然,最后一种的原因对小学生来说,发生的比例不大,毕竟儿童还是单纯的。针对学困生多的现状,我觉得我有必要对每一个学生的作业进行面批,我想,近几年自己的数学教学效果还说得过去的'原因可能要归结在这上面。

  进入六年级了,开学至今已近一个月,分数乘法应用题的教学也已经结束。但这块内容让我上得头疼,心烦。在课堂上,我很明确得按照分数应用题的解答方法:找准标准量——找出关键句——写出对应分率——用对应量=标准量×对应分率来解答。可是学生就是找不准分率,特别是当“求一个数的几分之几是多少”和“求比一个数多或少几分之几的数是多少”同时出现时,他们就弄不明白分率究竟是多少。我也知道分数应用题是个难点,一方面整数过度到分数,受整数的影响,学生适应度不够;其次,分数乘法、分数除法的计算刚开始,学生对把分数计算的结果化成最简的把握还是难点,不易掌握。

  一种似懂非懂的状态从他们的表情上马上可以读出。在高质量的教学任务的要求下,我觉得对知识的强化训练还是必须的,而且一定要到位,所以这块知识点我是在有限的时间里,题量不多,要求以质量为主,我边巡视边指导,然后学生做完我及时面批,这样的反复训练学生有了很大程度的提高。再则大纲也要求,分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。除了引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义上,我也有跨度地做分数乘、除法应用题的对比性练习,因为分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。而在教学时适当地进行对比训练,使学生在对比中求新、求异、求同、求实;这样学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。另外,在对学困生的辅导中,用直观的线段图进行分析,通过多变沟通联系,如补条件,补问题等的形式进行补充,这样也能提高学生解题的熟练程度。分数乘法应用题及分数除法应用题是这学期的难点,“温过而知新”,相信反复地进行有针对性的进行“磨练”,学生还是能进步的。

六年级比的应用题2

  教学目标:

  1、知识与技能:通过复习,能把稍复杂的分数和百分数应用题的有关知识系统化。

  2、数学思考:能牢固掌握分数和百分数应用题的基本数量关系和解题方法。

  3、解决问题:能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。提高学生独立解决实际问题的能力。

  4、情感与态度:培养学生认真审题和学会联系实际的良好学习习惯。

  教具准备:

  电脑课件

  教学过程:

  一、谈话导入,揭示课题。

  二、复习梳理,再现知识。

  1、复习一类应用题。

  (1)复习巩固。

  屏幕出示两条信息,生根据这两条信息自己提出问题,自己解决问题。

  水彩画50幅;蜡笔画80幅。

  (2)合作交流。

  在小组中相互说说解题时是怎样想的。

  (3)讨论梳理。

  比较归纳各题的相同点。

  板书:找出单位”

  2、复习二、三类应用题。

  (1)复习巩固。

  屏幕出示如下信息:

  A、蜡笔画有80幅 B、水彩画有50幅

  35

  C、水彩画比蜡笔画少—

  88

  让学生从以上信息中任选两条,自己提出问题,自己解决问题。

  (2)交流探讨。

  屏幕出示四种情况。(略)

  (3)总结梳理。

  以上各题的解题思路有什么相同的地方?

  弄清以哪个数量作为单位”;再分析数量间的关系;选择适当的方法解答。(后两条板书)

  (4)类推延伸。

  教师点拨:如果把以上几道应用题分率句中的分数改为百分数,你会做吗?这说明什么?

  小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的'单位”,再分析数量间的关系,然后根据实际情况,选择算术或方程来解答。

  三、加强联系,综合应用。

  1、迁移方法,完成练习卷上的第1题练习。

  (1)生独立思考解答,后集体订正。

  (2)师小结。

  2、出示”的第1题。

  (1)生独立思考解答,再指名说说解题思路。

  (2)师点拨:废品率、合格率之间的关系。

  四、巩固练习。

  1、做练习纸上的第2、3、4题。

  2、讲评。

  五、总结归纳。

  1、这节课你有哪些收获?

  2、指导看书P111的例4,并补充完整。

  六、布置作业。

  练习二十二的第1、2、3、4题。

  板书设计

  1、找出单位”;

  2、分析数量间的关系;

  3、 选择适当的方法解答。

  《分数应用题的整理和复习》

  教学设计说明

  复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、梳理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。它是小学数学教学中的重要课型之一,在小学数学教学中占有重要的地位。如何把复习课上得轻松愉快又富有实效呢?

  《数学课程标准》(实验稿)在”中提倡”的学习方式。同样,要上好数学复习课,也应该切实转变复习方式,突出自主性、针对性、系统性,才能全面提高复习效率。现结合六年制小学数学第十二册第四单元《分数应用题的整理和复习》的教学谈谈具体做法。

六年级比的应用题3

  分数、百分数应用题复习是小学数学第十二册总复习中的教学内容。这个教学内容包括了三大类,一是求分率?二是求单位1的几(百)分之几是多少?三是求单位1的量?这三大类的学习,一是让学生弄清每一类的数量关系,以及三类之间的联系与区别,二是让学生运用所学知识解决生活中的一些实际问题,并能让学生体会到百分数在生活的运用是十分的广泛的。

  小学数学新课程标准强调数学与现实生活的联系,而且要求数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,使他们体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。因此,本课第一环节我就设计成:根据班级男生和女生的人数,让学生提出一些与分数、百分数有关的数学问题,进行解答,归纳整理分数基本应用题类型;再让学生把上面解答的应用题的问题作为已知条件,进行变式练习。在上述教学实践中,最基本的题目,让成绩下层的学生能够列式算,达到巩固目的。第二层练习,目的是让中等的同通过对比,达到熟练和融会贯通的作用,而最后的发展变化题练习,是让成优秀学生吃的饱,尽可能让所有的学生都能有所收获

  在分数应用题的教学中,我认为让学生理解一个数乘分数的意义是前提:即求一个数的几分之几用乘法。因此,在教学分数乘法的意义时,一定要引导学生理解并掌握好其意义,同时渗透一些求一个数(或量)的几分之几的数量关系的训练。在这个基础上,教学分数应用题时先找到表示数量关系的句子,确定单位1是关键,再根据分数乘法的意义写出数量关系式,确定解答方法。理解了分数乘法的意义,找准单位1,学生会很准确地找出数量关系,能准确地解答分数乘、除法应用题。因为分数乘法应用题和除法应用题的数量关系相同,只是己知条件和所求问题不同。因此,在数学知识的教学中,不能单纯的教一种知识,要注意知识之间的密切联系,教前要想后,教今天要想明天。能提前渗透的知识一定不要错过渗透机会。

  加强分数乘、除法应用题的对比性练习。分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。因此,在教学时要加强对比,使学生在对比中求新、求异、求同、求实;要灵活多变,使学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。

  注意启发学生从例题中抽象概括数量关系,总结经验规律。让学生把做过的6道分数应用题进行分类,并说说分类的依据,学生在学习小组内充分讨论交流,分析比较了三类应用题的解题方法的基础上,进行归纳总结:单位1是已知的量时,如果是求一个数的.几分之几是多少就用乘法,如果是求一个数是另一个数的几分之几就用除法;当单位1是未知的量时用除法计算或用方程从而使学生形成系统的、完整的、明确的知识网,进一步培养学生解答应用题的能力。

  在注重数学生活化的同时,认识数学教学的本质,发展学生思维不容忽视。生活是一个开放的大环境,加强教学的生活化,有利于学生发散思维的培养。本课中,为加强基本类型分数应用题的复习,课尾,我出示了这样一道题六(2)老师组织44位学生进行秋游,如果每人买一瓶的矿泉水,单价2元,如果整箱买,小箱12瓶可打九折,大箱20瓶可打八折。你们小组合作,设计方案。),利用提供的信息矿泉水请学生设计购买方案。目的是学生感受学了数学就要解决生活中的一些实际问题,体会到数学的运用价值。

六年级比的应用题4

  学材分析

  综合运用知识解答有关应用题

  学情分析

  学生已有一定的基础

  学习目标

  1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。

  2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。

  3、通过运用知识解题,提高解决实际问题的能力。

  导学策略

  导练法、迁移法、例证法

  教学准备

  小黑板、投影

  导学流程设计:导入--探究新知--巩固练习--总结

  教 师预设

  学 生活动

  一、 导入

  谈谈学校的体育达标情况。

  出示;体育达标率为99.7%

  从这个条件,你能知道什么?你还想到了什么?

  一、揭题:分数、百分数应用题

  二、教学新课

  (一)求分率

  1、出示学校体育达标情况:优秀650人,良好400人,合格250人。

  2、根据这些条件,你可以提出哪些不同的有关分数、百分数的问题?

  3、同桌合作,讨论完成。

  4、反馈

  (1)一个数是另一个数的几(百)分之几?

  例如:优秀率?650(650+400+250)=50%

  (2)一个数比另一个数多(少)几(百)分之几?

  例如:优秀比良好人数多几分之几?(650-400)400=5/8

  (二)求单位1或求分率所对应的量

  1、把问题当成条件,根据条件编分数、百分数应用题

  优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。

  2、小组合作完成

  3、反馈,并解答,想想有没有另外方法可以解答。

  ①在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?

  130050%=650(人)(说说你的揭题思路)

  ②在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?

  65050%=1300(人)

  ③在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?

  650(1+5/8)=400(人)(说说你的解题思路)

  ④在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?

  400(1+5/8)=650人

  4、观察这些应用题,找找相同点与不同点

  ①有共同的数量关系单位1分率=分率对应的量

  ②单位1已知或未知

  5、你认为在解这类应用题是要注意什么?

  6、师小结:找准单位1的量,根据已知与未知判断方法。列出题中数量间的相等关系。

  (三)练习

  1、对比练习

  ①学校运动队有30名男队员,女队员比男队员少1/6,女队员比男队员少多少人?301/6=5人

  (说说另外的方法)

  ②学校运动队有25名女队员,女队员比男队员少1/6,女队员比男队员少多少人?

  25(1-1/6)-25=5(人)(说说另外的方法)

  通过练习,你想说什么?(看清单位1,找准关系。)

  2、一题多解

  陈老师看一本200页的故事书,前5天看了1/4,照这样计算,还要几天可以看完?

  你能用几种方法就用几种方法,先独立完成,不能解答时与同桌交流,比比谁的.方法多,谁的方法好?

  师总结:在解答时可以不用具体数量,直接用分率求,也可以用具体数量进行计算。通过比较可以发现用分率求比较简单。

  3、专题研究

  某种股票进期走势如下

  日期13日14日15日16日

  涨跌+5%+5%-5%-5%

  某股民用10000元炒该股,你认为该股民从13日购入到16日为止是亏还是盈,并说明理由。

  (四)课堂总结

  谈谈通过这节课的复习,说说你的想法

六年级比的应用题5

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一:复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的`回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

六年级比的应用题6

  1. 甲、乙两车分别从A,B两地同时相向开出,四小时后两车相遇,然后各自继续行驶三小时,此时甲车距B地10千米,乙车距A地80千米。问甲车到达B地时乙车还要经过多少小时才能到达A地?

  2. 甲、乙两个长方体水池装满了水,两水池的高相等。已知甲池的排水管10分钟可将水排完,乙池的排水管6分钟可将水排完。问同时打开甲、乙两池的排水管,多长时间后甲池的水位高正好是乙池水位高的3倍?

  3. 一辆汽车从甲地开往乙地,平路占全程的3/5,剩下的路程中3/8是上坡路,其余是下坡路。回来时上坡路是千米。甲、乙两地相距多少千米?

  4. 一件工作,甲、乙合作要4小时完成,乙、丙合作要5小时完成。现在先由甲、丙合作2小时后,余下的乙还需6小时完成,乙单独做这件工作要几小时?

  5. 某体育用品商店进了一批篮球,分一极品和二极品。二极品的进价比一极品便宜20%,按优质优价的原则,一极品按20%的利润定价,二极品按15%的利润定价。一极品篮球比二极品篮球每个各贵14元。问一极品篮球的进价是每个多少元?

  6. 某商品按定价出售,每个可获得利润50元。如果按定价的80%出售10件,与按定价每个减价30元出售12件所获得的利润一样多,这种商品每件定价多少元?

  7. 从家里骑摩托车到火车站赶乘火车。如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟。如果打算提前5分钟到,那么摩托车的.速度应是多少?

  8. 有甲、乙两块含铜量不同的合金,甲块重6千克,乙块重4千克。现在从甲、乙两块合金上各切下重量相等的一部分。将甲块上切下的部分与乙块的剩余部分一起熔炼,再将乙块上切下的部分与甲块剩余部分一起熔炼,得到的两块新合金的含铜量相等。问从每一块上切下的部分的重量是多少千克?

  9. 某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个的价钱一样多。这个商品的成本是多少元?

  10. 张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:"如果你肯减价,每减价1元,我就多订购4件。"商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润。问这种商品的成本是多少元?

六年级比的应用题7

  1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具,这个模具的高是多少分米?

  2、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?

  3、甲筐苹果的重量是乙筐的3倍。如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。两筐原来各有苹果多少千克?

  4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。师傅加工了多少个零件?

  5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。问这天购买通票的有多少人?

  6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?

  7、一辆汽车,从甲地到乙地。如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达。问甲乙两地的距离及原计划行驶的时间?

  8、小红、小乔买了一本习题集,利用暑假做习题。小红做了364道,小乔做了228道后剩下的.题目正好是小红剩下的2倍,问此书共有多少习题?

  9、父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?

  10、一个植树小组去栽树,如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗。问这个小组有多少人?一共有多少棵树苗?

六年级比的应用题8

  1、一块铁皮面积11平方米,用去平方米,还剩多少平方米?

  2、一种毛线每千克的价格是66.5元,买0.5千克应付多少元?

  3、一桶油重12千克,用去,还剩多少千克?

  4、一辆摩托车小时行驶25千米,平均每小时行驶多少千米?

  5、肖师傅一天共生产250个零件,经检验有225个是一级品。求一级品率。

  6、(1)学校合唱队有96人,舞蹈队有24人。合唱队人数是舞蹈队人数的多少倍?

  (2)学校合唱队有96人,舞蹈队有24人。舞蹈队人数是合唱队人数的几分之几?

  7、(1)丰华农场种玉米120公顷,种小麦的面积是玉米的倍。种小麦多少公顷?

  (2)丰华农场种小麦165公顷,种玉米的'面积是小麦的。种玉米多少公顷?

  (3)丰华农场种小麦165公顷,种小麦的面积是玉米的倍。种玉米多少公顷?

  (4)丰华农场种玉米120公顷,种玉米的面积是小麦的。种小麦多少公顷?

  8、一桶水用去,正好15千克,这桶水多少千克?还剩多少?

六年级比的应用题9

  1、下面的列式哪一个是正确的,请在算式上打勾。

  (1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

  ①2100-240×5÷3 ②(2400-240)÷3 ③(2100-240×5)÷3

  (2)一个装订小组要装订2640本书,3小时装订了240本。照这样计算,剩下的书还需要多少小时能装订完?

  ①(2640-240)÷240 ②2640÷(240÷3) ③(2640-240)÷(240÷3)

  (3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天。照这样计算,再耕13.6公顷棉田,一共要用多少天?

  ①13.6÷(6.8÷4) ②13.6÷(6.8÷4)+4

  ③(13.6+6.8)÷(6.8÷4)

  (4)一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完。实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路?

  ①3.2×15÷0.8 ②3.2×15÷(3.2-0.8) ③3.2×15÷(3.2+0.8)

  (5)某化工厂采用新技术后,每天用原料14吨。这样,原来7天用的原料,现在可以用10天。这个厂现在比过去每天节约多少吨原料?

  ①14×7÷10-14 ②14×10÷7-14

  ③14-14×10÷7 ④14-14×7÷10

  能力素质提高

  1、黄河号货轮从甲港开往乙港,已经航行了85千米,正好航行了甲乙两港航道的5/7。这只货轮离乙港还有多少千米?

  2、铺路队铺一条路,每天铺2.5千米,7天铺好全长的5/8。这条路全长多少千米?

  渗透拓展创新

  1、五年级参加数学竞赛,女生有12人,相当于男生参赛人数的2/3。比赛结果,获奖人数占参赛人数的70%,获奖的有多少人?

  2、李阿姨想买两袋米(每袋35.4元)、14.8元的肉、6.7元的.蔬菜和12.8元的鱼。李阿姨带了100元,够吗?

  智能趣题欣赏

  小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

六年级比的应用题10

  教学目标:

  1、掌握解答应用题的一般步骤,能用综合算式解答一般应用题;

  2、培养分析问题和解答问题的能力。

  学习指导:

  应用题解答的关键步骤,是分析数量关系和线段图比较。线段图比较直观,可以把 一道应用题的条件、问题以及它们之间的内在联系清晰地反映出来。画线段图既是一 个审题过程,同时也是一个分析应用题的数量关系过程,线段图画正确了,应用题的 数量关系也就清楚了。应用题的解题思路也随之而出,问题迎刃而解。学习重点、难点:解答应用题的一般步骤 ;利用线段图帮助学生理解数量关系。

  教学过程:

  一、创设情景,导入新课。

  (网上连接电子信箱出示画面)服装工厂的工人正忙碌地生产着衣服。一个工厂的

  生产必须制订一定的计划,然后按照计划去生产。在生产过程中还需要对计划的完成

  情况进行计算了解。下面让我们一起来帮这个工厂的计划生产完成情况计算一下:(出

  示简单的`应用题)

  1、根据线段图口头列式。

  (1)服装厂计划做一批衣服,平均每天做75套,5天做多少套?

  ?套

  每天做75套

  (2)服装厂计划做660套衣服,已经做了375套,剩下的要3天完成,平均每天做多少套?

  计划做660套

  已经做了375套 平均每天做?套

  二、主动探究,学习新知。

  1、亮出目标。

  指导学生阅读课本47页第一、二行。

  提问:谁能说一说这节课的学习目标?(学习解答应用题的一般方法。)(投影)

  2、 板书课题:一般应用题(一)

  3、 教学例1。出示例题。

  (同学们:如果我把练习(2)中已经做了375套换成已经做了5天,平均每天 做75套。就得到我们今天学习的例1,请同学们打开课本47页,一起阅读例1。一个服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的3天做完。平均每天做多套?

  (阅读后,请带着你是按照怎样的步骤去完成例1的解答的呢?这个问题去自学课本47页和48页)

  学生回答后,教师板书:

  1、理解题意; 2、分析题里的数量关系;

  3、列式计算; 4、检验,写出答案。

  ⑴审题,弄清题意。(板书)

  想一想(A)

  A、可以用什么方法来帮助理解题意呢?

  答:可以用两种方法来帮助理解题意:一种是摘录条件和问题。

  另一种是线段图:

  计划做660套衣服前5天做好的 后3天要做的每天做75套 每天?套想一想(B)B、问题中的平均每天做多少套是指哪些天的平均数?

  答:问题中平均每天做多少套,是指剩下3天的平均每天做多少套,不是指全部数量的平均数。

  ⑵根据刚才的题意分析,你能说说这道题的分析思路图吗?(板书:分析数量关系)

  ⑶根据分析思路图中的数量关系你们知道第一步先算什么?第二步再算什么?第三步算什么?并列出综合算式:(教师板书:列式计算)(请你们阅读课本47页,并完成第三步的算式,再写成综合算式)

  ㈠ 已做了多少套? (板书) 综合算式:

  755=375(套)

  ㈡ 后3天还要做多少套?

  660-375=285(套)

  ㈢ 平均每天做多少套?

  2853=95(套)

六年级比的应用题11

  1. 在一个边长17米的正方形ABCD的A点,有红、蓝两个甲虫。9:00同时沿着边以相同的速度爬行。红甲虫由A----B-----C----D;蓝甲虫由A---D---C。9:30红甲虫爬到AB间距离A点10米的E点后继续向前爬去,10:15到BC间的F点,再经C向前爬去。蓝甲虫爬到AD间距离D点5米的G的点休息了一会儿再往前爬去。当两个甲虫在CD上的H点相遇时,凑巧四边形EFHG的面积是正方形面积的一半。求蓝甲虫在G的点休息了多长的时间?

  2. 有15位同学,每位同学都有一个编号,依次是1至15号。1号的同学写了一个五位数,2号的同学说:"这个数能被2整除",3号的同学说:"这个数能被3整除";4号的同学说:"这个数能被4整除";……15号的同学说:"这个数能被15整除"。1号的`同学一一作了验算,只有编号连续的两位同学说的不对,其他同学都说得对。(1)说得不对的两位同学的编号个是多少?(2)这个五位数最小是多少?

  3. 甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A,C同时出发绕水池的边沿A---B---C---D----A的方向行走。甲的速度是每分钟50米,乙的速度是每分钟46米则甲、乙第一次在同一边上行走,是发生在出发后的第多少分钟?第一次在同一边上行走了多少分钟?

  4. 某公共汽车线路上共有15个站(包括起点和终点站)。在每个站上车的人中,恰好在以后各站分别下去一个。要使行驶过程中每位乘客均有座位,车上至少备有多少个座位供乘客使用?

  5. 一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟。后来在大桥下游距离大桥2千米处追到了水壶。那么该河流速是每小时多少千米?

  6. 从公路上的材料工地运送电线竿到500米以外的公路一方埋栽,每隔50米在路边栽一根。又知每次最多只能运3根,要完成运栽20根电线竿,并返回材料工地,问如何合理安排,运输卡车的总行程最小?最小是多少?

  7. 王师傅要加工一批零件,若每小时多加工12个零件,则所用的时间比原计划少1/9;若每小时少加工16个,则所用的时间比原来多3/5小时。这批零件有多少个?

  8. 甲、乙两人各加工一定数量的零件。若甲每小时加工24个,乙每小时加工12个,那么乙完成任务后,甲还剩下22个零件;若甲每小时加工12个,乙每小时加工24个,那么乙完成任务后,甲还剩下130个零件。问甲、乙各共要加工多少个零件?

  9. 甲、乙两个修路队,共同修3600米长的一条铁路。当甲完成所分任务的3/4,乙完成所分任务的4/5又40米时,还剩下780米的任务没完成。甲、乙两队各分了多少米的任务?

六年级比的应用题12

  教学目标

  1.使学生理解按比例分配问题的意义。

  2.使学生掌握按比例分配应用题的结构及解答方法。

  3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

  教学重点和难点

  1.理解按比例分配问题的意义。

  2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

  教学过程设计

  (一)复习准备

  1.复习比的有关知识,为学习新知识做准备。

  已知六年级1班男生人数和女生人数的比是3∶4。

  男生人数与全班人数的比是( )∶( )。

  女生人数与全班人数的比是( )∶( )。

  2.创设情境,提出课题。

  (1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

  提问:妈妈是怎样分的?(平均分)

  (2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

  提问:这样分还是平均分吗?

  日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

  (二)学习新课

  1.讲解例2。

  例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

  (1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

  (2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。

  ④玉米的`面积与播种总面积的比是2∶5,玉米面积是播种面积的

  各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

  (3)解答例2。

  ①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

  ②说说你是怎样做的?

  方法a:3+2=5

  播种大豆的面积 10053=60(公顷)

  播种玉米的面积 10052=40(公顷)

  方法b:总面积平均分成的份数为

  3+2=5

  ③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

  说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

  (4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

  2.练习:第62页中的做一做(1)。

  六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

  (1)弄懂题意。

  (2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)

  (3)独立完成。组员之间互相检验。

  3.学习例3。

  例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

  (2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

  (3)请你在练习本上独立完成。

  ①三个班的总人数:

  47+45+48=140(人)

  ②一班应栽的棵数:

  ③二班应栽的棵数:

  ④三班应栽的棵数:

  答:一班、二班、三班分别栽树94棵、90棵、96棵。

  (4)同组同学互相检验。

  4.练习:第62页中的做一做(2)。

  一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

  (1)在练习本上独立完成。

  (2)同组同学互相检验。

  (三)课堂总结

  今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

  回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

  (四)巩固反馈

  1.填空练习:

  ①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。

  2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

  3.第62页的做一做(3)。

  一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

  与练习题2有什么区别?

  如果求它的最短边、最长边怎么求?

  4.判断练习:(正确举,错误举)

  一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

  (五)布置作业

  第63页第1,2,3,4题。

  课堂教学设计说明

  本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

  本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

六年级比的应用题13

  教学目标:

  1、通过复习一般类型的分百应用题,使学生明确这类应用题的联系与区别,沟通知识之间的内在联系,熟练掌握解题思路,准确找出量率之间的对应关系。

  2、使学生明确分数、百分数应用题的解题思路和解题方法是基本一致的。

  3、提高学生分析,判断解答应用题的能力,渗透对立统一的辩证思想。

  教学重点:

  掌握分数、百分数一般类型应用题的内在联系和解题规律。

  教学难点:

  数量关系的分析,弄清谁是单位“1”,谁是比较量。

  教学过程:

  一、创设情境,引入复习内容

  1、师:同学们,什么节日快到了?(六一儿童节)

  为了庆祝这个节日,我们学校六年一班组成了一个小合唱队,其中有男生5人,女生4人。(磁力贴出示)

  (一)复习分百应用题一类题:求一个数是另一个数的几分之几(或百分之几)的应用题

  师:根据这两条信息,你能提出什么数学问题?(学生提问题)

  (主要贴以下四条)(1)男生是女生的百(几)分之几?

  (2)女生是男生的百(几)分之几?

  (3)男生比女生多百(几)分之几?

  (4)女生比男生少百(几)分之几?

  请同学列式解答。

  师:大家看我们今天要复习什么?(分百应用题)

  同学们看看这四道题都属于哪类的分百应用题?

  (求一个数是另一个数百(几)分之几的应用题)

  师:解决这类题的的关键是什么?(找单位“1”)

  【预设】1、学生说出找单位“1”

  2、学生说不出来,但会说出找关键句,那师应问:找关键句的目的是什么?(确定单位“1”)(板书:找单位“1”)

  师:这类题该怎样做?(比较量÷单位“1”)【如果学生说不出此关系式,师可以从四个题中找一个举例,如:男比女多百分之几?是用谁除以谁?】

  (二)复习“一个数的百分之几是多少”和“已知一个数的百分之几是多少,求这个数”

  1、师:继续刚才的题,我把这四个问题变成了四个已知信息,老师给你们布置一个编题的小任务:请你从这6个条件里选择两个,提一个数学问题,组成新的题。(学生口答,教师贴条)【一定有意识,已知男求女贴一边;已知女求男贴另一边】

  1、男生有5人,女生是男生的80%,女生有多少人?

  2、男生有5人,男生是女生的125%,女生有多少人?

  3、男生有5人,男生比女生多25%,女生有多少人?

  4、男生有5人,女生比男生少20%,女生有多少人?

  5、女生有4人,男生是女生的125%,男生有多少人?

  6、女生有4人,女生是男生的80%,男生有多少人?

  7、女生有4人,男生比女生多25%,男生有多少人?

  8、女生有4人,女生比男生多20%,男生有多少人?

  师:请你独立完成这8道题,要求只列式(或方程)不计算。(学生独立完成)

  师:我请同学来说说你是怎样解决这几道题的。(生汇报,在汇报过程中要有关系式,教师板书每一题的等量关系式)

  如果我要将这8道题进行分类,请你想想能分几类?把你的想法和小组内的同学交流一下,说说你是怎么分的?(其实就是这两种题的区别是什么)

  小组汇报展示。(主要呈现已知单位“1”和未知单位“1”的两种情况,板书体现)

  第一类:

  1、男生有5人,女生是男生的80%,女生有多少人?

  2、男生有5人,女生比男生少20%,女生有多少人?

  3、女生有4人,男生是女生的125%,男生有多少人?

  4、女生有4人,男生比女生多25%,男生有多少人?

  第二类:

  1、男生有5人,男生是女生的125%,女生有多少人?

  2、男生有5人,男生比女生多25%,女生有多少人?

  3、女生有4人,女生是男生的80%,男生有多少人?

  4、女生有4人,女生比男生多20%,男生有多少人?

  (分类后)师:虽然我们把这8道题按已知单位“1”和未知单位“1”分成了两类,但是它们之间是有联系的,是什么呢?(或者我们说解题的根据是什么呢?)

  都是“求一个数的'几(百)分之几是多少,用乘法计算”

  【师手指左一类,问:这类都是已知单位“1”的(指一道)比如求男生有多少人实际就是求女生的(1+25%)是多少】

  【师手指右一类】这都是未知单位“1”的,(在关系式上标上x)我们就可以用方程来解

  师:大家看,我们今天复习的分百应用题,它们的解题步骤是什么?

  确定单位“1”——找数量关系式——列式或方程

  二、当堂训练

  师:大家复习的怎么样了?我出几道题来考考大家!请看第一题

  (一)只列式(或方程)不计算

  1、在一次体育测试中,某班有38人成绩合格,有2人不合格,这个班的合格率是多少?

  2、一本书共100页,小明第一天看了这本书的50%,第二天看了25%,还剩下多少页没有看?

  3、小明看一本100页的故事书,第一天看了全书的50%,第二天看了第一天的1/2。第二天看了多少页?

  4、小明看一本书,第一天看了这本书的50%,第二天看了25%,第一天比第二天多看了25页,这本书共有多少页?

  学生独立完成,教师巡视,指名汇报。

  三、解决问题

  1、某服装店老板将两件不同的衣服以相同的价格出售,一件赚了25%,另一件赔了25%,有人认为这个老板不赔不赚,你同意这种说法吗?请用数据说明。

  2、某机械厂两天生产一批零件,用同样的箱子包装。第一天完成总量的,装满3箱还剩90个,第二天生产的零件正好装满5箱。这批零件共有多少个?

  四、课堂总结。

  师:通过复习分百应用题的一般类型题,我们掌握了基本解题方法,遇到问题条件比较复杂或隐蔽的题目时,为了把条件具体化,可以通过画图的方法帮助我们分析并找到他们。

六年级比的应用题14

  教学目标

  1、使学生进一步认识分数应用题的基本结构和相应的解题规律,更好地掌握分数应用题的解题思路与方法,能正确解答基本的分数乘除法应用题。

  2、进一步培养学生分析、推理的能力和解答分数应用题的能力。

  教学重难点

  进一步培养学生分析、推理的.能力和解答分数应用题的能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 基本训练

  二、基本题练习

  三、综合练习

  四、课堂

  五、作业

  1、口算

  做练习十的12题

  2、揭示课题

  我们已经学习了基本的分数乘、除应用题,这节课我们将重点解答分数乘除应用题。

  3、基本训练

  (1)问:解答分数应用题一般是怎样想的?

  (2)说单位“1”和数量关系式。(题目见幻灯)

  指出:确定了单位“1”和数量关系式就可以根据数量关系来解答分数应用题了。

  1、做练习十13题

  问:数量关系是怎样的?该两题的三个数量有什么相同点和不同点?解题时有什么相同点和不同点?

  2、做练习十第15题

  学生独立写出数量关系式并解答。

  强调:,单位“1”已知的类型直接用乘法解答,单位“1”未知的类型一般用方程解答。

  3、补充应用题

  (1)先说出哪个数量是单位“1”,再说出数量关系式。

  苹果数棵数是果树棵数的1/5

  (2)根据上面的条件,补充一个条件和问题

  使得它成为用乘法解答的应用题

  使得它成为用方程解答的应用题

  1、做练习十16题

  问:这两个问题在解法上有什么相同点和不同点?列式有什么不同?为什么不同?

  指出:求一个数是另一个数的几倍,和求一个数是另一个数的几分之几用除法计算。解答时要把单位“1”的数量当除数。

  这节课练习了什么内容?你进一步了解了哪些知识?

  练习十14题

  课后感受

  通过这节课的学习,学生们进一步了解了求一个数是另一个数的几分之几和几倍的问题也能归为单位“1”求。

六年级比的应用题15

  分数应用题解题模式的构建

  分数应用题有三种基本类型:

  (1)求一个数是另一个数的几分之几是多少;

  (2)一个数的几分之几是多少;

  (3)已知一个数的几分之几是多少,求这个数。

  对于稍复杂的分数应用题,需要先确定单位“1”,找出具体数量与分率对应的关系,是解答各类分数应用题的切入点和关键环节。在教学中,采用“量率对应”的方法教学分数应用题,效果很好,具体介绍如下:

  例1:小明读一本120页的故事书,已经读了总页数的,还剩多少页?

  分析:引导学生判断单位“1”,理解量率对应的含义,出示基本形式。

  单位“1”的量× (分率) =对应的量 (具体数量)

  总页数×剩下的分率=剩下的页数

  例2:小明读一本120页的故事书,已经读了总页数的,剩下90页没有读,这本书有多少页?

  分析:单位“1”的量是总页数,剩下的页数是90页,“量率对应”关系可写成:

  总页数 × 剩下的分率 = 剩下的'页数

  由除法的意义可直接列式。比较例1、例2,引导学生归纳方法:解答分数应用题,关键确定单位“1”,单位“1”的量已知用乘法即单位“1”的量×问题对应的分率=所求的问题;单位“1”的量未知,求单位“1”的量用除法即具体数量÷它对应的分率=单位“1”的量。

  例3:小明读一本故事书,第一天读了总页数的1/4,第二天读了总页数的1/3,第二天比第一天多读4页,这本数有多少页?

  分析:先确定单位“1”(总页数),再看总页数未知,问题求单位“1”的量确定用除法。

  用“量率对应”这种方法教学分数应用题,不需提及分数乘除法应用题的类型和各种类型的'解法,只需在题中的“具体数量”找出“对应的分率”或由“已知分率”找出“对应的具体数量”,由单位“1”是否告诉确定方法。这种方法能应对千变万化,错综复杂的分数应用题。实践证明,使用这种方法学生学得轻松、愉快,掌握牢固。学生根据应用题的特点、牢固的解题模式解答应用题能很快找到解题思路,但是易形成思维定势,遇到曾相识的问题就不假思索,依赖思维定势去解决,很容易出差错。为了避免出现这种情况,教学时还应重视加强比较练习。

【六年级比的应用题】相关文章:

六年级比的应用题08-18

六年级比的应用题08-22

【必备】六年级比的应用题08-21

六年级比的应用题[热]08-23

【经典】六年级的应用题及答案09-01

六年级的应用题及答案08-29

六年级比的应用题(通用15篇)08-20

六年级比的应用题15篇(精华)08-18

[热]六年级比的应用题15篇08-19

(优秀)六年级比的应用题15篇08-20