当前位置:壹学网>试题>数学试题>六年级比的应用题

六年级比的应用题

时间:2024-09-22 03:51:15 数学试题 我要投稿

六年级比的应用题

六年级比的应用题1

  1. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

  2. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

  3. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

  4. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

  5. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

  6. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

  7. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

  8. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

  9. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

  10. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的';乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

六年级比的应用题2

  1、下面的列式哪一个是正确的,请在算式上打勾。

  (1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

  ①2100-240×5÷3 ②(2400-240)÷3 ③(2100-240×5)÷3

  (2)一个装订小组要装订2640本书,3小时装订了240本。照这样计算,剩下的.书还需要多少小时能装订完?

  ①(2640-240)÷240 ②2640÷(240÷3) ③(2640-240)÷(240÷3)

  (3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天。照这样计算,再耕13.6公顷棉田,一共要用多少天?

  ①13.6÷(6.8÷4) ②13.6÷(6.8÷4)+4

  ③(13.6+6.8)÷(6.8÷4)

  (4)一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完。实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路?

  ①3.2×15÷0.8 ②3.2×15÷(3.2-0.8) ③3.2×15÷(3.2+0.8)

  (5)某化工厂采用新技术后,每天用原料14吨。这样,原来7天用的原料,现在可以用10天。这个厂现在比过去每天节约多少吨原料?

  ①14×7÷10-14 ②14×10÷7-14

  ③14-14×10÷7 ④14-14×7÷10

  能力素质提高

  1、黄河号货轮从甲港开往乙港,已经航行了85千米,正好航行了甲乙两港航道的5/7。这只货轮离乙港还有多少千米?

  2、铺路队铺一条路,每天铺2.5千米,7天铺好全长的5/8。这条路全长多少千米?

  渗透拓展创新

  1、五年级参加数学竞赛,女生有12人,相当于男生参赛人数的2/3。比赛结果,获奖人数占参赛人数的70%,获奖的有多少人?

  2、李阿姨想买两袋米(每袋35.4元)、14.8元的肉、6.7元的蔬菜和12.8元的鱼。李阿姨带了100元,够吗?

  智能趣题欣赏

  小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

六年级比的应用题3

  1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

  2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的`路程有多少米?

  3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

  4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)

  5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?

  6、 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?

  7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?

六年级比的应用题4

  某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

  因为33既不是5的倍数又不是8的倍数,所以甲用电超过50度,乙用电不足50度.设甲用电(50+x)度,乙用电(50-y)度.因为甲比乙多交33角电费,所以有:

  8x+5y=33.

  容易看出x=1时,y=5.推知甲用电51度,乙用电45度.

六年级比的`应用题5

  1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具,这个模具的高是多少分米?

  2、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?

  3、甲筐苹果的重量是乙筐的3倍。如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。两筐原来各有苹果多少千克?

  4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。师傅加工了多少个零件?

  5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。问这天购买通票的有多少人?

  6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?

  7、一辆汽车,从甲地到乙地。如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达。问甲乙两地的距离及原计划行驶的'时间?

  8、小红、小乔买了一本习题集,利用暑假做习题。小红做了364道,小乔做了228道后剩下的题目正好是小红剩下的2倍,问此书共有多少习题?

  9、父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?

  10、一个植树小组去栽树,如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗。问这个小组有多少人?一共有多少棵树苗?

六年级比的应用题6

  1、一堆货物,装满4箱,若再加15千克重量正好是这堆货物重量的3/7,剩下的刚好装满7箱,这堆货物共有多少千克?

  方法一: 1-1/7=4/7 一箱装全部的:4/7÷7=7/49 11箱占全部的4/19*(4+7)=44/49

  1-44/49=5/19 15÷5/49=147

  2 一件工作,有甲乙合作5小时可以完成,乙丙合作6小时可以完成,现在由甲丙合作2小时,余下的乙又用8小时做完,那么甲单独完成这件工作需几小时?

  甲丙合作2小时,余下的乙又用8小时做完相当于甲乙合作2小时+乙丙合作2小时+乙独做4小时

  1-1/5x2-1/6x2=4/15 乙的工效:4/15 /4=1/15 甲的工效:1/5-1/15=2/15 1/ (2/15)=7.5小时

  3 、某商店购进一批皮凉鞋,每双售出价比购进价多15%,如果全部卖出则可获利120元,如果只卖80双则差64元才够成本,问皮凉鞋进价是每双多少元?

  所有凉鞋成本:120/15%=800 一双凉鞋售价:(800-64)/80=9.2 9.2/(1+15%)=8

  4 、某小学六年级选出男生的1/11和24名女生参加数学竞赛,剩下的男生是剩下的女生的2倍,已知这个学校的六年级共有312名学生,问该校六年级男生女生各多少人?

  把男生看做单位1, 剩下的女生是剩下的.男生的一半:(1-1/11)/2=5/11

  则剩下的人数相当于男生的10/11+5/11=16/11

  男生有: (312-24)/(16/11)=198

  女生有:312-198=114

  5、有一辆汽车要从甲地到乙地,如果提速15千米每小时,时间为原速到达时间的5/6,如果减速15千米每小时,时间就增加1.5小时,求甲乙两地距离。

  路程不变,时间与速度成反比,设原来速度为1, 现在速度为6/5 提高了6/5-1=1/5

  原来速度:15/(1/5)=75

  减少后速度为:75-15=60 原速度:现速度=75:60=5:4

  路程不变,速度和时间成反比 , 原时间:现时间=4:5

  时间比是5:4 那么他们相差1份,也就是1.5小时 那么4份也就是原来时间1.5*4=6小时

  即: 1.5/(5-4)*4=6 小时

  75x6=450km

六年级比的应用题7

  1. 李强从甲地去乙地,去时先骑自行车,途中又换乘汽车,3小时到达乙地;回来时全乘汽车,1+4/5小时就到达乙地。单乘汽车比既骑自行车又乘骑车少用的时间相当于去时骑自行车时间的3/5。那么李强从甲地到乙地全部骑车需要多少小时?

  2. 商店购进甲、乙、丙三种不同的糖果,所用的费用相等,已知甲、乙、丙三种糖果每千克的费用分别是4。4元、6元、6。6元,如果把这三种糖果混在一起作成什锦糖,那么这种什锦糖每千克的成本是几元?

  3. 甲、乙、丙三人共同购买一辆汽车,买车时甲、乙付的钱分别是其他二人付钱总数的1/4,假如甲、乙再各付30000元,那么丙比乙少付6000元,买这辆车共用几元?

  4. 甲、乙两人以均匀的速度绕圆形跑道按相反的方向跑步,他们的出发点分别在直径的两个端点,如果他们同时出发,那么在乙跑完100米时第一次相遇,甲跑一圈还差60米时,第二次相遇。跑道的长是几米?

  5. 甲、乙两个圆柱形容器,底面积比为4:3,甲容器水深7厘米,乙容器水深3厘米。再往两个容器各注入同样多的水,直到水深相等,这时水深几厘米?

  6. 有一辆沿公路不停地往返于M,N两地之间的汽车。老王从M地沿这条公路步行向N地,速度为每小时3。6千米,中途迎面遇到从N地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回。N,M两地的路程有多少千米?

  7. 用甲、乙、丙三个排水管排水,甲管排出1立方米水的`时间,乙管能排出1。25立方米的水,丙管能排出1。5立方米的水。现在要排完某个水池的水,先开甲管,2小时后开乙管,几小时后再开丙管,到下午4时正好把水排完,且各个排水管排出的水量正好相等。问什么时候打开的丙管?

  8. 有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0。5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天。已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?

  9. 小明5点多起床,一看钟,6字恰好在时针和分针的正中间(即两针到6的距离相等),这时是5点几分?

  10. 一只救生船从港口开到出事地点要行840千米,船速每小时20千米,船上一架直升飞机,每小时可飞行220千米,中途飞机起飞,提前赶到出事地点,这样从船离港口到飞机到达出事地点一共用了10小时,飞机在船离港口后多长时间起飞?

六年级比的应用题8

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一:复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的'重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

六年级比的应用题9

  1.四对夫妇坐在一起闲谈。四个女人中,安娜吃了3个梨,叶莉吃了2个,尼娜吃了4个,莫娃吃了1个;四个男人中,西蒙吃的梨和他妻子一样多,皮埃尔是妻子的2倍,路易是妻子的3倍,阿西是妻子的4倍,他们共吃了32个梨。你知道路易的妻子是谁吗?

  2.甲、乙、丙三人都是业余射箭爱好者,在一次练习中,他们箭箭命中,甲、乙、丙分别射了八发、七发和六发,但是成绩都是51环。为了试试你的智力,他们向你提供了一张练习用的靶纸(见图6-18),并请你正确填写出下面的成绩表。

  3.甲、乙、丙三人射击,每人打五发子弹,中靶的位置在图6-19中用点表示,计算成绩时发现三人得分相同。甲说:“我头两发打了8环”,乙说:“我头两发打了9环”。请你判断唯一的10环是谁打的?

  4.10名选手参加象棋比赛,每两名选手间都要比赛一次。比赛结果表明:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等。问:前六名的分数各为多少?(胜得2分、和得1分、输得0分)

  5.八名选手参加国际象棋比赛,每两名选手间都要比赛一局。已知:选手们所得分数都不相同,第二名得分与后四名所得总分相同。(比赛规定:每胜一局得1分、平局各得0.5分、输局不得分)。问:在前四名选手中,是否有人输给比自己名次低的选手?为什么?

  6.六个人参加乒乓球比赛,每两个人都要赛一场,胜者得2分,负者得0分。比赛结果,第二名和第五名都是两人并列。问:第一名和第四名各得多少分?

  7.五个人参加象棋比赛,每两个人都要赛一场。规定:胜者得2分,平局各得1分,负者得0分。比赛结果,第一名和第四名都是两人并列。问:第三名得多少分?

  8.三名运动员进行了一次多项目比赛,共有35分,每个比赛项目分数相同。比赛结果,在得分相同的两人中,只有一人获得过一次第一名。请问:共有几个项目?三人在各项目中各得多少分?

  9.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、7和17分,甲得了一个第一名。已知:第一名的得分大于第二、三名得分之和,各个比赛项目分数相同。问:比赛共有几个项目?三人在各项目中各得多少分?

  10.甲、乙、丙三个班进行棋类比赛,比赛设象棋、军棋和跳棋三项。前四名得分标准是:第一名5分、第二名3分、第三名2分、第四名1分。比赛结果:甲班得名次的人最少,总分却是第一;乙班没人得第一,总分比甲班少一分;丙班得名次的人最多,总分却比乙班还少一分。问:三个班各得了几个什么名次?

  11.四人进行跳远、百米、铅球、跳高四项比赛,各个单项的.一、二、三、四名(没有并列名次)分别得5、3、2、1分。已知总分第一名者共获17分,其中跳高得分低于其它项得分;总分第三名者共获11分,其中跳高得分高于其它项得分。试求获得总分第一、二、三、四名者的各个单项得分。

  12.甲、乙、丙三人进行了一次体操五个单项的比赛,每个单项比赛的前三名依次得分为5、2、1分。甲获得单杠第一名,丙总分为22分。问:谁获得单杆第二名?

  13.有A、B、C三个足球队,两两比赛一场,共赛了三场。A队两胜,进6球失2球;B队一胜一负,进4球失4球;C队两负,进2球失6球。试写出三场比赛的具体比分。

  14.有五所小学,每所小学派出两支足球队参加足球赛。比赛规定:同一学校的两队不赛,不同学校的各队间都要赛一场。当比赛进行了若干天后,某个球队发现,其他9支球队比赛的场数各不相同。试分析这支球队和与它同校的另一支球队,这时各比赛了几场。

  15.甲、乙、丙、丁约定上午10点在公园门口集合。见面后,甲说:“我提前到了6分钟,乙是正点到的”;乙说:“我提前到了4分钟,丙比我晚到2分钟”;丙说:“我提前到了3分钟,丁提前了2分钟”;丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收音机报北京时间10点整”。

  根据他们的谈话,请你推算他们四人的手表各快(慢)几分钟。

  16.老王家和老李家各有两个女孩,四个女孩年龄各不相同。已知:(1)小华比她姐姐小3岁;(2)小丽的年龄等于两个妹妹的年龄和;(3)小玲的年龄是老王家一个孩子年龄的一半;(4)小芳比老李家第二个孩子大5岁;(5)他们两家在五年前都只有一个孩子。问:四个孩子各是谁家的?她们各几岁?

  17.五年级三个班举行年级运动会,设跳高、跳远和百米三项,各项均取前三名,第一名5分,第二名3分,第三名1分。已知一、二班总分相等,并列第一名,而二班进入前三名的人数是一班的两倍。问:三班总分多少?

  18.在一次考试中,A、B、C、D四人的得分是不小于90且互不相同的整数,四人的平均分也是整数,A、B、C平均95分,B、C、D平均94分,B得96分是第二名。问:他们各得多少分?

六年级比的应用题10

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的'问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

六年级比的应用题11

  教学目标:

  1、知识与技能:通过复习,能把稍复杂的分数和百分数应用题的有关知识系统化。

  2、数学思考:能牢固掌握分数和百分数应用题的基本数量关系和解题方法。

  3、解决问题:能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。提高学生独立解决实际问题的能力。

  4、情感与态度:培养学生认真审题和学会联系实际的良好学习习惯。

  教具准备:

  电脑课件

  教学过程:

  一、谈话导入,揭示课题。

  二、复习梳理,再现知识。

  1、复习一类应用题。

  (1)复习巩固。

  屏幕出示两条信息,生根据这两条信息自己提出问题,自己解决问题。

  水彩画50幅;蜡笔画80幅。

  (2)合作交流。

  在小组中相互说说解题时是怎样想的。

  (3)讨论梳理。

  比较归纳各题的相同点。

  板书:找出单位”

  2、复习二、三类应用题。

  (1)复习巩固。

  屏幕出示如下信息:

  A、蜡笔画有80幅 B、水彩画有50幅

  35

  C、水彩画比蜡笔画少—

  88

  让学生从以上信息中任选两条,自己提出问题,自己解决问题。

  (2)交流探讨。

  屏幕出示四种情况。(略)

  (3)总结梳理。

  以上各题的'解题思路有什么相同的地方?

  弄清以哪个数量作为单位”;再分析数量间的关系;选择适当的方法解答。(后两条板书)

  (4)类推延伸。

  教师点拨:如果把以上几道应用题分率句中的分数改为百分数,你会做吗?这说明什么?

  小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的单位”,再分析数量间的关系,然后根据实际情况,选择算术或方程来解答。

  三、加强联系,综合应用。

  1、迁移方法,完成练习卷上的第1题练习。

  (1)生独立思考解答,后集体订正。

  (2)师小结。

  2、出示”的第1题。

  (1)生独立思考解答,再指名说说解题思路。

  (2)师点拨:废品率、合格率之间的关系。

  四、巩固练习。

  1、做练习纸上的第2、3、4题。

  2、讲评。

  五、总结归纳。

  1、这节课你有哪些收获?

  2、指导看书P111的例4,并补充完整。

  六、布置作业。

  练习二十二的第1、2、3、4题。

  板书设计

  1、找出单位”;

  2、分析数量间的关系;

  3、 选择适当的方法解答。

  《分数应用题的整理和复习》

  教学设计说明

  复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、梳理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。它是小学数学教学中的重要课型之一,在小学数学教学中占有重要的地位。如何把复习课上得轻松愉快又富有实效呢?

  《数学课程标准》(实验稿)在”中提倡”的学习方式。同样,要上好数学复习课,也应该切实转变复习方式,突出自主性、针对性、系统性,才能全面提高复习效率。现结合六年制小学数学第十二册第四单元《分数应用题的整理和复习》的教学谈谈具体做法。

六年级比的应用题12

  为了解决农名工子女入学难的问题,某市建立了一套进城农名工子女就学的保障机制,其中一项就是免交"借读费"。据统计,20xx年秋季有4200名农名工子女进入主城区中小学学习,20xx年有所增加,其中小学增加20%,中学增加30%,这样,20xx年秋季增加1080名农名工子女在主城区中小学学习。如果按小学生每年收"借读费"500元,中学生每年每生收"借读费"1000元计算。

  (1)20xx年增加的1080名中小学一共免收多少"借读费"?

  (2)如果小学每40名学生配备2名教师,中学每45名学生配备3名教师,按20xx年秋季入学后农名工子女在主城区中小学就读的`学生人数计算,一共需要配备多少名中小学教师?

  【解析】

  设"20xx年"有x名农民工子女进入"小学"、y名农民工子女进入"中学"。

  则有:x+y=5000;20%x+30%y=1160;

  根据以上两个等式联立解方程组,解得x=3400,y=1600。

  所以,20xx年在20xx年的基础上,"新增"小学生3400×20%=680名,且小学生的"总人数"变为3400+680=4080名;"新增"中学生1600×30%=480名,且中学生的"总人数"变为1600+480=20xx名。可知,

  (1)共免收"借读费"500×680+1000×480=820000元=82万元。

  (2)一共需要配备2×(4080÷40)+3×(20xx÷40)=360名中小学教师。

六年级比的应用题13

  一、教材分析、学情分析

  (一)教材的地位和作用

  《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。

  这部分教材在安排上有以下一些特点:

  1、 从学生已有的知识和生活经验出发,帮助学生理解数学。

  2、 设置数学活动生活情境,培养学生的解决问题意识和探究精神。

  (二)学情分析

  对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。

  二、教学目标与重难点

  根据以上分析,我确定了本节课的教学目标如下:

  1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。

  2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识

  3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。

  重点:解答求一个数是另一个数的百分之几的.应用题。

  难点: 正确理解达标率、发芽率等这些百分率的意义

  三、教学学法、教学设计

  (一)学生学法

  在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在,教师要指导学生观察计算方法,发现共同点,通过思考,提出问题,通过探究,解决问题。

  (二)教学设计理念

  本节课的教学设计具有以下几个特点:

  1、依据知识的迁移规律,进行了必要的铺垫。根据新课“求一个数是另一个数的百分之几”的需要,复习了百分数的意义,以及分数、小数化成百分数的方法,重点突出了准备题,为讲授新课做了铺垫。

  2、引导学生找出新旧知识的异同点,进一步强化了教学的重点。

  3、精心设计习题,使知识引向深入

  四:教学过程:

  (一) 创设情境,激趣导入。

  1爱迪生的名言:“我成功的秘诀就是:一份的灵感加上九十九份汗水”

  谈谈你对这句话的理解。(成功来自不易等等)

  从这句名言你能提出什么数学问题?

  2.例如:把“成功”看着100份,那么“灵感”就占了它的1份,“汗水”就占它的99份。

  (1)“灵感”占“成功”的几分之几?

  (2)“汗水”占“成功”的几分之几?

  今天我们一起来学习百分率的求法。

  (二) 范例讲析。

  例1.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?

  问题1是那两个量相比?

  问题2哪个量是单位“1’?怎样计算?

  120÷160=3/4

  例2.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

  问题1对比两题,什么没有变?问题有何变化?

  2,达标率:达标人数占学生总人数的百分之几。

  问题3如何求达标率?

  达标率=达标人数÷总人数×100%

  注意:1求百分率必须乘100%。

  2.结果写成百分数的形式。

  3.便于比较,计算。

  120÷160×100%=0.75×100%=75%

  答:六年级的达标率是75%。

六年级比的应用题14

  1、 飞机每小时飞行480千米,汽车每小时行60千米。飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)

  2、 修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)

  3、 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)

  4、 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)

  5、 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)

  6、 小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?

  7、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?

  8、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?

  9、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?

  10、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?

  11、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?

  12、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?

  13.在一幅地图上,测得甲、乙两地的.图上距离是12厘米,已知甲乙两地的实际距离是480千米。(1)求这幅图的比例尺。

  (2)在这幅地图上量得A、B两城的图上距离是4厘米,求A、B两城的实际距离。

  14.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?

  15.在一幅比例尺为1:500的平面图上量得一间长方形教室的的周长是10厘米,长与宽的比是3:2。求这间教室的图上面积与实际面积。

  16.修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?

六年级比的应用题15

  教学内容:

  课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

  教学重点:

  学会找单位1

  教学难点:

  依题意画出线段图

  教学目的:

  1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2.培养学生分析能力,发展学生思维。

  教学过程:

  一、复习

  1.先说下列各算式表示的意义,再口算出得数。

  2.列式计算。

  (1)20的是多少?

  (2)6的是多少?

  让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

  二、新授。

  1.教学例1。

  出示例1:学校买来100千克白菜,吃了,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示100千克白菜。

  吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图:

  (3)分析数量关系,启发解题思路。

  引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

  (4)学生列式计算:=100(20)?=80

  (5)再让学生分析一下数量关系。

  (6)练一练:完成第18页做一做第1题。

  评讲订正时,让学生分析一下数量关系。

  2.教学例2。

  出示例2:小林身高米,小强身高是小林的,

  小强身高多少米?

  (1)明确题意,指名读题,说出条件和问题。

  (2)让学生画出线段图并标明条件和问题。

  ①要画几条线段表示题里的数量关系?

  ②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

  ③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

  启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。

  教师边启发边画出如下线段图:

  (3)分析数量关系,启发解题思路。

  启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

  (4)让学生列式计算。

  (5)如果把上题改成下面的题:

  小强身高米,小林身高是小强的倍,小林身高多少米?

  问:哪条线段画得长一些?怎样画?

  把谁看作单位1为什么?

  怎样列式?

  教师边启发边画出如下线段图:

  (6)教师说明:

  一个数是另一个数的.几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

  指出:在这种情况下乘得的积大于原来的被乘数。

  (7)做一做。

  完成课本14页做一做的第3题。

  三、巩固练习

  1.完成课本第14页做一做的第3题。

  学习列式计算后,指名让学生分析数量关系。

  2.完成练习四的第5题。

  说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

  订正时指名分析。

  四、全课小结。

  今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

  五.作业。

  练习四的第1~4题。

【六年级比的应用题】相关文章:

六年级比的应用题08-22

【必备】六年级比的应用题08-21

六年级比的应用题[热]08-23

【经典】六年级的应用题及答案09-01

六年级的应用题及答案08-29

六年级比的应用题(通用15篇)08-20

六年级比的应用题15篇(精华)08-18

[热]六年级比的应用题15篇08-19

(优秀)六年级比的应用题15篇08-20