[热]六年级比的应用题15篇
六年级比的应用题1
1、 飞机每小时飞行480千米,汽车每小时行60千米。飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)
2、 修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)
3、 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
4、 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)
5、 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)
6、 小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?
7、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?
8、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?
9、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?
10、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?
11、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?
12、把3米长的.竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?
13.在一幅地图上,测得甲、乙两地的图上距离是12厘米,已知甲乙两地的实际距离是480千米。(1)求这幅图的比例尺。
(2)在这幅地图上量得A、B两城的图上距离是4厘米,求A、B两城的实际距离。
14.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?
15.在一幅比例尺为1:500的平面图上量得一间长方形教室的的周长是10厘米,长与宽的比是3:2。求这间教室的图上面积与实际面积。
16.修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?
六年级比的应用题2
教学内容:
课本第68页例及相应"做一做",练习十七1、4、9题
教学目标:
1、知识方面:使学生进一步掌握应用题中的数量关系,会用两种方法解答一般的两步计算的分数应用题。
2、过程与方法:以自学、小组交流讨论式学习
3、情感态度与价值观:进一步培养学生类推、迁移以及解答应用题的能力。
教学重点:
分析应用题的结构特征和数量关系。
教学难点:
变"不对应"为"对应"。
教具准备:
课件、小黑板
教学过程:
一、准备练习:找出单位"1",说出数量关系
甲班人数是乙班人数的3/5
实际相当于计划的2/9
鸭的只数占鸡的3/8
一桶油,倒出1/7
二、情境创设,导入新课
大家有没有听过一首歌曲名叫《一个真实的故事》,讲的是一个女大学生为了救一只陷入沼泽的丹顶鹤,不惜用自己的命换回了丹顶鹤的`命。尽管我们不太提倡这种做法,但我们每一个人要生活中要学会保护动物,不要随意伤害它们,因为动物是人类的好朋友。今天我们研究的问题就和丹顶鹤有关。
请看(复习题):xxxx年全世界约有丹顶鹤20xx只,我国占其中的1/4,我国有多少只?
谁能解答?让生做练习本上,一名做在小黑板上。
订正,说思路,明确单位"1"。
根据这两个条件,你还能提出什么问题?从而导入新授。
三、学习新课
1、教学例4。
(1)出示例4
①指名读题,说说和复习题的区别与联系,并弄清已知条件和问题。
②自己先独立思考后再与小组交流,讨论来解决这道题。要说出本组的解题思路。
③汇报合作成果
汇报时学生可能会出现这样的不同解法:
(1)我国有多少只?(1)其他国家占几分之几?
20xx×=500(只)1-1/4=3/4
(2)其他国家有多少只?(2)其他国家有多少只?
20xx-500=1500(只)20xx*3/4=1500(只)
综合算式:
20xx-20xx×1/42000×(1-1/4)
=20xx-500=20xx×3/4
=1500(只)=1500(只)
答:其他国家约有1500只。
教师根据学生汇报的情况课件展示线段图情况或板书,也可让学生到前面边做边讲解思路。
比较两种做法的区别与联系。
三、即时训练
1、做一做:少先队员采集标本152件,其中是植物标本,其余的是昆虫标本。昆虫标本有多少件?
(1)学生独立完成
(2)指名汇报解题过程
2、判断题。
(1)有一袋大米重4.5千克,吃了4/9,吃了多少千克?
4.5×(1-4/9)()
(2)有一袋大米重4.5千克,吃了4/9千克,吃了多少千克?
4.5×(1-4/9)()
(3)有一袋大米重4.5千克,吃了4/9,还剩多少千克?
4.5×(1-4/9)()
四、全课小结
五、课堂作业:练习十七1、4、9题
板书设计:
稍复杂的求一个数的几分之几是多少的应用题
(3)我国有多少只?(1)其他国家占几分之几?
20xx×=500(只)1-=
(4)其他国家有多少只?(2)其他国家有多少只?
20xx-500=1500(只)20xx=1500(只)
综合算式:
20xx-20xx×1/42000×(1-1/4)
=20xx-500=20xx×3/4
=1500(只)=1500(只)
答:其他国家约有1500只。
六年级比的应用题3
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的`数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
六年级比的应用题4
应用题
1.某商品降价1000元后,售价4000元,/降价百分之几?
2.科技小组进行玉米种子发芽试验.用500粒种子进行试验,只有15粒没有发芽,这次试验的种子发芽率是______.
3.一个面粉厂,用40000千克小麦磨出面粉34000千克.求小麦的出粉率.
4.一个小学去年植树1500棵,成活率是98%.植的树活了多少棵?
5.(1)油菜籽的'出油率是42%,2100千克油菜籽可榨油多少千克?
(2)油菜籽的出油率是42%,一个榨油厂榨出菜油2100千克,用油菜籽多少千克?
6.五年级学生达到体育锻炼标准的有100人,没有达到标准的有25人.五年级学生体育锻炼的达标率是多少?
7.美华小学召开少代会,出席40人,缺席10人.出席率是百分之几?
六年级比的应用题5
1. 甲、乙、丙、丁四人今年分别是16、12、11、9岁。问多少年前,甲、乙的年龄是丙、丁年龄和的2倍?
2. 在周长为200米的圆形跑道一条直径的两端,甲、乙两人分别以6米/秒,5米/秒的骑车速度同时同向出发,沿跑道行驶。问16分钟内甲追上乙几次?
3. 某公共汽车线路中间有10个站。车有快车及慢车两种,快车车速是慢车车速的'1。2倍。慢车每站都停,快车则只停靠中间一个站,每站停留时间都是3分钟。当某次慢车发出40分钟后,快车从同一始发站开出,两车恰好同时到达终点。问快车从起点到终点共用多少时间?
4. 有5堆苹果,较小的3堆平均有18个苹果,较大的两堆苹果数之差为5个。又较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个。最大堆与最小堆平均有22个苹果。问每堆各有多少苹果?
5. 甲、乙、丙三个班向希望工程捐赠图书。已知甲班一人捐6册,有二人各捐7册,其余人各捐11册;乙班有一人捐6册,三人各捐8册,其余人各捐11册;丙班有二人各捐4册,六人各捐7册,其余人各捐9册。已知甲班捐书总数比乙班多28册,乙班比丙班多101册。各班捐书总数在400册与550册之间。问各班各有几人?
6. 某公司彩电按原价销售,每台获利润60元;现在降价销售,结果彩电销量增加了1倍,获得的总利润增加了0。5倍,则每台彩电降价多少元?
7. 一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰好完成一半,现在甲、乙两队合作若干天后,由乙队单独完成,做完后发现两段时间相等。则共用几天?
8. 两个杯中分别装有浓度40%与10%的盐水,倒在一起后混合盐水浓度为30%。如果再加入300克20%的盐水,则浓度变成25%。那么原有40%的盐水多少克?
9. 甲、乙两车分别从A,B两地出发,相向而行。出发时,甲、乙的速度比是5:4,相遇后甲的速度减少20%,乙的速度增加20%,这样当甲到达B地时,乙离A地还有10千米,那么A,B两地相距几千米?
10. 小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件休息1。5分钟。现在他们要共同完成制作300个零件的任务,需要几分钟?
六年级比的应用题6
教学目的
使学生初步学会综合算式解答两步应用题,提高学生分析问题、解决问题的能力。
教学重点
如何分析应用题,依题意列出综合算式。
教学难点
确定先算什么,后算什么,正确使用小括号。
教具准备
投影片或教学课件。
教学过程
一、复习沟通,建立联系
出示下面文字题,让学生独立列出综合算式,并请一名同学说一说分析的思路。
(1)42乘5,再加上36,和是多少?
(2)75与25的和乘78,积是多少?
二、探索知识,领悟方法
1、学习例4,出示题目,让学生独立列式解答,并让学生说一说是怎样想的。
可能出现以下情况:
(1)如果学生中既有分步解答,又有用综合算式解答的,教师就让列综合算式的学生说一说怎样想的。其他同学补充或提出不同的意见,然后教师根据学生的回答情况,进行总结:解答这样的.两步应用题,既可以用分步算式解答,也可以用综合算式解答。
(2)如果学生都是分步解答的,教师就让学生小组讨论:如果用综合算式解答这道应用题,应该怎样列算式?
小组汇报:一个小组汇报,其他组做出补充或提出合理的建议。最后教师小结:要列成一个综合算式,实际上就是把分步解答的两个算式合并成一个综合算式,首先要弄清先算什么。
2、独立思考:用综合算式解答两步应用题和解答两步文字题有什么联系和区别?
3、练习
让学生独立解答做一做中的题目,并让学生说一说自己的想法。
三、应用知识,掌握方法
学生独立完成练习二十一的第6、7、8题。
四、课堂小结
通过师生交流,突出两步应用题的数量关系。
板书设计:
用综合算式解答两步应用题
300-180=120(棵)(300-180)3
1203=40(棵)=1203
=40(棵)
答:平均每次要浇40棵。
六年级比的应用题7
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
二、置换问题
题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=20xx(分),比原来的总值多20xx-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。
列式:(20xx-1880)÷(20-10) =120÷10 =12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。
三、盈亏问题(盈不足问题)
题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
当一次有余数,另一次不足时: 每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时: 总份数=(较大不足数-较小不足数)÷两次每份数的差
例:学校把一些彩色铅笔分给美术组的同学,如果每人分给五支,则剩下45支,如果每人分给7支,则剩下3支。求美术组有多少同学?彩色铅笔共有几支?
(45—3)÷(7-5)=21(人) 21×5+45=150(支)
四、年龄问题
年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。
常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例:父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1) =42÷3 =14(岁)→儿子几年后的年龄
14-12=2(年)→2年后
答:2年后父亲的年龄是儿子的4倍。
五、牛吃草问题(船漏水问题)
若干头牛在一片有限范围内的`草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例:一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(头)→可供5头牛吃一天。
150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天
100÷(10-5) =100÷5 =20(天)
答:若供10头牛吃,可以吃20天。
六、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
六年级比的应用题8
学材分析
综合运用知识解答有关应用题
学情分析
学生已有一定的基础
学习目标
1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。
2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。
3、通过运用知识解题,提高解决实际问题的能力。
导学策略
导练法、迁移法、例证法
教学准备
小黑板、投影
导学流程设计:导入--探究新知--巩固练习--总结
教 师预设
学 生活动
一、 导入
谈谈学校的体育达标情况。
出示;体育达标率为99.7%
从这个条件,你能知道什么?你还想到了什么?
一、揭题:分数、百分数应用题
二、教学新课
(一)求分率
1、出示学校体育达标情况:优秀650人,良好400人,合格250人。
2、根据这些条件,你可以提出哪些不同的有关分数、百分数的问题?
3、同桌合作,讨论完成。
4、反馈
(1)一个数是另一个数的几(百)分之几?
例如:优秀率?650(650+400+250)=50%
(2)一个数比另一个数多(少)几(百)分之几?
例如:优秀比良好人数多几分之几?(650-400)400=5/8
(二)求单位1或求分率所对应的量
1、把问题当成条件,根据条件编分数、百分数应用题
优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。
2、小组合作完成
3、反馈,并解答,想想有没有另外方法可以解答。
①在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?
130050%=650(人)(说说你的揭题思路)
②在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?
65050%=1300(人)
③在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?
650(1+5/8)=400(人)(说说你的解题思路)
④在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?
400(1+5/8)=650人
4、观察这些应用题,找找相同点与不同点
①有共同的数量关系单位1分率=分率对应的`量
②单位1已知或未知
5、你认为在解这类应用题是要注意什么?
6、师小结:找准单位1的量,根据已知与未知判断方法。列出题中数量间的相等关系。
(三)练习
1、对比练习
①学校运动队有30名男队员,女队员比男队员少1/6,女队员比男队员少多少人?301/6=5人
(说说另外的方法)
②学校运动队有25名女队员,女队员比男队员少1/6,女队员比男队员少多少人?
25(1-1/6)-25=5(人)(说说另外的方法)
通过练习,你想说什么?(看清单位1,找准关系。)
2、一题多解
陈老师看一本200页的故事书,前5天看了1/4,照这样计算,还要几天可以看完?
你能用几种方法就用几种方法,先独立完成,不能解答时与同桌交流,比比谁的方法多,谁的方法好?
师总结:在解答时可以不用具体数量,直接用分率求,也可以用具体数量进行计算。通过比较可以发现用分率求比较简单。
3、专题研究
某种股票进期走势如下
日期13日14日15日16日
涨跌+5%+5%-5%-5%
某股民用10000元炒该股,你认为该股民从13日购入到16日为止是亏还是盈,并说明理由。
(四)课堂总结
谈谈通过这节课的复习,说说你的想法
六年级比的应用题9
1.要排成一个4行4列的'正方形方阵,需要()名同学。
2.学生进行军训队列表演,排成一个7行7列,如果去掉一行一列,要去掉()人,还剩下()人。
3.某年级同学参加广播操比赛,因服装问题要横竖各减少一排,这样共去掉了19人,则此年级原准备()人参加比赛。
4.某校学生站成25行25列方阵,现去掉5行5列,要减少()人。
5.正方形广场四周均匀挂彩灯,四个角上都挂一盏,每边挂了20盏,则这块广场的四周共需挂()盏彩灯。
6.在一个正方形场地四周插入彩旗,四个角都插一面,共插了24面彩旗,问四周每边插彩旗()面。
7.游乐场用木桩排一个四层的空心方阵,最外边一层每边15根木桩,则共需()根木桩。
8.小红用围棋字摆了一个八层空心方阵,共享了424个,则最外层每边有()个棋子。
9.一个五层空心方阵最外层每边有20人,则最内层每边有()人。
10.一个六层空心方阵最内层每边有6人,则最外层每边有()人。
六年级比的应用题10
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的.分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
(略)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
六年级比的应用题11
教学目的:
1.学生通过观察、探究、研讨等活动,初步认识多(少)几求和、几倍求和(差)的两步应用题的结构,掌握这类应用题的分析方法,并会分步列式解答。弄清含有两个已知条件的一步应用题与两步应用题的联系和区别,加深学生对两步应用题的理解。
2.初步培养学生主动探索、独立获取知识的能力,提高学生分析处理信息和解决简单实际问题的能力。
3.渗透数学来自于生活实践的思想,培养学生初步的数学应用意识和实践能力。
教学重点:两步应用题的分析思路和方法。
教学难点:理清数量关系,找出中间隐藏的条件。
教具、学具准备:多媒体课件一套。
教学过程:
一、呈现材料,提出问题:
1.出示课件,师:春天来了,小动物们都出来活动,看!森林里有一群小兔子,它们也出来找吃的了。
出示:白兔5只,黑兔比白兔多5只。
2、问:
(1)从图中你看到了什么?你得到了哪些数学信息?(生汇报)
(2)你是怎样理解这些数学信息的?(学生分析黑兔比白兔多5只的含义)
(3)信息中的数量有直接关系吗?你怎么想的?
(4)你根据这些信息,能提哪些数学问题呢?(学生说,师用黑板条出示)
①有5只白兔,黑兔比白兔多5只。黑兔有多少只?
②有5只白兔,黑兔比白兔多5只。两种兔共有多少只?
(5)这些问题中,哪个一步能解决?哪个不能一步解决?(生说)
3、明确要研究的问题:
那我们就一起来研究这个问题,师指②
二、合作探索,研究问题:
1、这道题应该怎样分析呢?在小组内试着分析一下。
学生在小组内用不同方法分析(线段图、从条件入手、从问题入手)
教师巡视、指导。
2、小组汇报分析方法:
(1)哪个小组先来说说你们是怎样分析这道题的?
生:我们组是用画线段图方法来分析的.。
师:那好,请你到前面边画图边分析,好吗?
白兔
5只共?只
黑兔
多5只
(2)师:他们组是用画线段图的方法来分析的。其他组的同学又是怎样想的呢?
生:我们组是从条件入手分析的。
师:你能分析吗?指名分析。
师:他是从条件入手分析的,他分析的多完整呀!
(3)师:还可以怎样分析呢?
生:我是从问题入手分析的。指名分析。
师:他分析的真准确。谁还能用这样的方法再来分析一遍。
指名两人分析。
3、 解决问题:
(1)能把你们的想法用算式表示出来吗?学生自己列式解答,教师巡视、指导后进生。
(2)指名板演:
① 黑兔有多少只?5+5=10(只)
② 两种兔共有多少只?10+5=15(只)
(3)指名讲解,师追问:为什么第一步要先求黑兔的只数?也就是说黑兔的只数是解决两种兔共有多少只的什么?(中间问题)
谁再说说解决两种兔共有多少只的中间问题是什么?
4、 讨论比较:
大家观察比较一下第①和②小题,看这两道题有什么相同点?有什么不同点?
学生充分讨论,认识到:这两道题的条件相同,问题不同,所以解答方法不同。第(1)题只需一步解答;
第(2)小题却要分两步计算,问:在解答过程中,哪个条件用了两次?为什么用两次?其中黑兔的只数用了两次,即含有两个已知条件的两步应用题。(板书课题)
三、联系实际,巩固提高:
1、求异拓展:
小兔子们又给我们提出一个新的问题。
出示线段图:
白兔
5只 共?只
是白兔的2倍
黑兔
(1) 你先看图说说图意、指名说。
(2)你能分析解答这道题吗?自己分析、解答。
(3)指名分析、解答。师追问:解决共有多少只的中间问题是什么?哪个条件用了两次?为什么用两次?
2、开放练习,灵活组合:
小兔子们看同学们这么聪明,给我们带来了一些礼物。快看看是什么?
出示:
① 海棠花12盆;②杜鹃花比芦荟多10盆。③茉莉花的盆数是海棠花的3倍;
④芦荟8盆;⑤月季花比海棠花少6盆;⑥蝴蝶兰的盆数是芦荟的2倍。
师:你知道海棠花的盆数是月季花的多少倍吗?
自己分析解答;指名汇报。
你能提出用两步解答的问题吗?自己提问题、解答。
四、总结收获:
1、 你有什么收获?
2、比较归纳,揭示规律。
师问:今天学习的应用题从结构上有一个共同的特点是什么?你认为解答含有两个已知条件的两步应用题的关键是什么?
(解答含有两个已知条件的两步应用题的关键是根据题里给出的已知条件,确定出哪一个已知条件要用两次,先求出中间隐藏的条件,再进行计算。)
五、课外实践作业:观察和调查自己身边的一些事物,应用本节学到的本领,编成两步计算的数学问题,并解答出来。
六、板书设计:
含有两个条件的两步应用题
① 有5只白兔,黑兔比白兔多5只。黑兔有多少只?
5+5=10(只)
② 有5只白兔,黑兔比白兔多5只。两种兔共有多少只?
白兔 ①黑兔有多少只? ①黑兔有多少只?
5只 共?只 5+5=10(只) 52=10(只)
黑兔 ②共有多少只? ②共有多少只?
多5只 10+5=15(只) 10+5=15(只)
六年级比的应用题12
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一:复习
1、根据条件说出把哪个数量看作单位1。
(1)棉田的面积占全村耕地面积的2/5。
(2)小军的体重是爸爸体重的3/8。
(3)故事书的本数占图书总数的1/3。
(4)汽车速度相当于飞机速度的1/5。
2、找单位1,并说出数量关系式。
(1)白兔的只数占总只数的2/5。
(2)甲数正好是乙数的3/8。
(3)男生人数的1/3恰好和女生同样多。
3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?
集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)
二、新授
1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?
(1)指名读题,说出已知条件和问题。
(2)共同画图表示题中的条件和问题。
(3)分析数量关系式
提问:根据水份占体重的4/5,可以得到什么数量关系式?
学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。
根据学生的回答,把线段图进一步完善。
提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)
让学生试列方程,并说出方程表示的意义。
让学生把方程解完,并写上答案。
出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)
2、比较。
提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?
根据学生的回答,帮助学生整理出:
(1)看作单位1的数量相同,数量关系式相同。
(2)复习题单位1的量已知,用乘法计算;
例1单位1的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。
三、巩固练习
1、做书P34做一做
要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。
2、做练习九第1题。
先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。
四、小测:(略)
五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?
六、布置作业
练习九第2题
教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的'观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。
再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
六年级比的应用题13
小学六年级数学易错应用题
1、一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来木料的体积是多少立方厘米?
2、一个圆锥形麦堆的底面周长12.56米,高1.2米,如果每立方米小麦重500千克。这堆小麦重多少吨?
3、一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?
4、一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?
5、一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?
6、用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?
7、小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?(用比例解)
8、有一个等腰三角形,它的两个角的度数比是1:2,这个三角形按角分类可能是什么三角形?
9、织布厂加工完成一批布,甲乙合作16天完成,甲单独做20天完成,乙每天织600米,这批布共多少千米。
10、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。乙车的时速是多少千米?
11、机床厂制造某种机床,每台用钢材1.5吨,实际每台节约0.25吨。结果比原计划多制造10台。原计划造机床多少台?
12、小王按批发价买进一批牙刷,每枝0.35元,零售价每枝0.40元,当还剩下200枝没卖时,小王计算扣除所有成本已获利200元。商店买来牙刷多少枝?
13、盐完全溶解在水中变成盐水,已知某种盐水中盐和水的重量比是1:10。500克盐要加水多少千克?
14、修一条公路,前5天修了它的20%,照这样计算,修完这条路一共要多少天?
15、一台洗衣机原价1450元,现降价20%出售,但售价仍比成本高1/9。这台洗衣机成本多少元?
16、要修建一条新路,实际投资了158.8万元,比原计划节约了21.2万元。节约了百分之几?
17、单独完成一项工程,甲队要10小时,乙队要15小时。现在甲队先独做2小时,余下的乙队在参加工作,还需要多少小时完成任务?
18、小林早晨7:30从家去学校,每分钟走50米。刚到学校门口发现数学书没有带,立即沿原路返回,每分钟走70米。到家正好是7:54。小林家离学校多少米?
19、一个长方体仓库从里面量约长9米。宽6米,高5米。如果放入棱长为2米的正方体木箱,至多可以放进多少只?
20、某厂会计发现现金多了273.6元,经查帐发现原来是有一笔支出款的小数点点错了一位。问这笔款是多少元?
21、某造纸厂开展增户节约运动,每天节约用煤1.44吨,如果3千克煤可供发电7.5度,每天节约的煤可供发电多少度?
22、某数的小数点向左移动一位,比原数少了41.4,原来这个数是多少?
23、一个三角形的`面积是18平方厘米,它的底边是12厘米,高是多少厘米?
24、一箱肥皂分发给某车间工人,平均每人可分到12块。若只分给女工,平均每人可分到20块;若只分给男工,平均每人可分到多少块?
25、一件商品,利润是成本的20%,如果把利润提高到30%,那么售价应提高百分之几?
26、有一油坊榨油,100千克的菜籽可榨油38千克,问榨1千克油需要菜籽多少千克?1千克菜籽可榨油多少千克?
27、把长48厘米的铁丝折成三条边的比为3∶4∶5的直角三角形,求这个直角三角形的面积。
28、小红家有一桶油连桶重8千克,用去一半后,连桶还重4.5千克,原有油多少千克?
29、修一条10千米的路,甲队单独修要8天,乙队单独修要12天。现在两队合修需要几天完成?
30、一个长方形花坛面积是6平方米,如果长增加1/3,宽增加1/4,现在的面积比原来增加多少平方米?
六年级比的应用题14
加强比与分数的联系,培养学生灵活解答应用题的能力。
比、分数、除法有着本质的联系,它们之间可以相互转化。
例如:一片农场种有杨树和柏树,杨树的棵数与柏树的比是5∶7,已知柏树比杨树多48棵,这片林场种柏树和杨树各有多少棵?
解法一:根据比的意义,运用份数解题,杨树5份,柏树7份,柏树比杨树多48棵,就多7-5份,2份是48棵,从而求出一份是多少棵。
48÷(7-5)=24(棵)杨树:24×5=120(棵)柏树:24×7=168(棵)
解法二:将比转化为分数,运用量率对应的方法解答。杨树与柏树的`比是5∶7转化成杨树是柏树的5/7,杨树比柏树少48棵,对应的分率是1-5/7,可以先求单位“1”的量即柏树的棵数。
柏树:48÷(1-5/7)=168(棵)
杨树:168×5/7=120(棵)
通过这样的对比练习,使学过的知识前后呼应,融会贯通,多角度地分析和解答应用题。
六年级比的应用题15
教学目标
1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
教学重点和难点
理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。
教学过程设计
(一)复习准备
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。
板书:分数应用题
(二)学习新课
1.成数的含义。
师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之( ),改写成百分数是( )。
“三成五”是十分之( ),改写成百分数是( )。
(2)把下面的“成数”改写成百分数。
七成 二成五 五成 九成九
十成 二成八 七成四 八成二
2.出示例1。
例1 小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五。去年收白菜多少吨?
(1)学生默读。
(2)这道题和复习中的第三题有什么不同之处?
(3)指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书:
=41.6×(1+25%)
=41.6×1.25
=52(吨)
答:今年收白菜52吨。
3.练习。
小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?
4.折扣的含义。
师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。
某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的( )%出售,也就是减价( )%。
5.出示例2。
例2 商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?
(1)学生读题。
(2)问:打九折出售是什么意思?
(3)求比原价便宜了多少元?你想怎样解答?
(4)指名说解题思路。
板书:方法(一) 330-330×90%
=330-297
=33(元)
方法(二) 330×(1-90%)
=330×10%
=33(元)
答:比原价便宜了33元。
6.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。
(三)巩固反馈
1.填空:
(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。
(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。
(3)一种皮茄克打九折出售。这句话的意思是( )是( )的90%。
(4)一批旧书打五五折出售。这句话的.意思是现价比( )便宜了( )%。
2.把下面的折扣数改写成百分数。
七折 九折 六五折 八五折 六八折
3.把下面的百分数改写成“成数”。
75% 60% 42% 100% 95%
4.一套西服,商店在节日里按八五折优惠出售。西服的原价是560元,西服现售价多少元?
5.东门乡去年的棉花产量比前年增加二成。去年的棉花产量是267.6吨,前年的棉花产量是多少吨?
6.一种画册原价每本6.9元,现在按每本4.83元出售。这种画册按原价打了几折?
7.张利在减价商品柜台买了一个水壶,打“八五”折,实际花了25.5元。这个水壶原价多少元?
8.小强花315元买了一台收录机,这台收录机是打七五折出售的。小强买这台收录机少花了多少元?
课堂教学设计说明
本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
【六年级比的应用题】相关文章:
六年级比的应用题08-18
六年级比的应用题08-22
【必备】六年级比的应用题08-21
六年级比的应用题[热]08-23
【经典】六年级的应用题及答案09-01
六年级的应用题及答案08-29
六年级比的应用题(通用15篇)08-20
六年级比的应用题15篇(精华)08-18
(优秀)六年级比的应用题15篇08-20