当前位置:壹学网>试题>数学试题>四年级奥数题

四年级奥数题

时间:2025-01-19 06:58:24 数学试题 我要投稿

四年级奥数题[共15篇]

四年级奥数题1

  【试题】:

  1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?

  2、李老师的年龄比刘红的2倍多8岁,李老师10年前的'年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?

  3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。

  4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?

  5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?

  6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。

  7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?

  【答案】:

  1、一年前。

  2、刘红10岁,李老师28岁。

  (10+8—8)÷(2-1)=10(岁)。

  3、妹妹7岁。姐姐14岁。

  [27—(3×2)]÷(2+1)=7(岁)。

  4、小象10岁,妈妈19岁。

  (28—1)÷3+1=10(岁)。

  5、大熊猫15岁,小熊猫5岁。

  (28—4×2)÷(3+1)=5(岁)。

  6、父亲50岁,儿子20岁。

  (15+10)÷(7—2)+15=20(岁)

  7、王涛 12岁,妈妈34岁。爸爸36岁,奶奶58岁,爷爷 60岁。

  提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。

  (200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。

四年级奥数题2

  1.行程问题

  甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?

  解答:分析 若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:

  解: 乙的速度为:10÷5×4÷2=4(米/秒)

  甲的速度为:10÷5+4=6(米/秒)

  答:甲的速度为6米/秒,乙的速度为4米/秒.

  2.行程问题

  上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明、再追上他的`时候,离家恰好是8千米,问这时是几点几分?

  解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分.

四年级奥数题3

  甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?

  答案:

  由两人同一地点出发背向而行,经过2分钟相遇知两人每分钟共行400÷2=200(米)由两人从同一地点出发同向而行,经过20分钟相遇知甲每分钟比乙多走400÷20=20(米)根据和差问题的'解法可知甲的速度是每分钟(200+20)÷2=110(米)乙的速度为每分钟110-20=90(米).

四年级奥数题4

  1、小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?

  解答:由于小红的速度不变,行驶的'路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).

  2、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时行驶多少千米?

  解答:老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。

  3、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。

  解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。另外ST图也是很关键)

  第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)

  第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24

  第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504

  第四步:收官之战:5048-24=39(千米)

四年级奥数题5

  例1 有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?

  【解析】 依题意,大卡车每吨耗油量为10÷5=2(公升)

  小卡车每吨耗油量为5÷2=2.5(公升)。

  为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2

  最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)

  例2 烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

  【解析】 先洗水壶 然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

  共需要1+10=11分钟。

  例3 用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?

  【解析】 一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟

  但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?

  可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

  两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

  例4 甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

  【解析】 所花的总时间是指这四人各自所用时间与等待时间的`总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。

  应按丙,乙,甲,丁顺序用水。

  丙等待时间为0,用水时间1分钟,总计1分钟。

  乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟。

  甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟。

  例5 甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?

  【解析】 大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。

  而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。

  为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。

  接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。

  所以花费的总时间为:2+1+10+2+2=17分钟。

四年级奥数题6

  某工厂为了表扬好人好事核实一件事,厂方找了A,B,C,D四人。A说:“是B做的。”B说:“是D做的。”C说:“不是我做的。”D说:“B说的不对。”这四人中只有一人说了实话。问:这件好事是______做的。

  答案与解析:好事应该是C做的。

  ①最新的小学四年级奥数题及答案-真假话:假设A说的是实话,则C说的也属实话,不符合题意,所以A说的是假话;

  ②假设B说的是实话,那么好事应该是D做的,C说的'应该是实话,显然这与“只有一个人讲了实话”相矛盾,所以B说的是假话;

  ③假设C说的是实话,即好事不是C做的,也因①、②已分别说明B和D未做,则只剩下A做,那么D说的也是真话,这与题设相矛盾,所以C说的也是假话;

  ④假设D说的是实话,那好事应该不是D做的,是C做的.符合题设条件。

  所以,好事应该是C做的。

四年级奥数题7

  专题简析:

  已知两个数的和与差,求出这两个数各是多少的应用题,叫和差应用题。解答和差应用题的基本数量关系是:

  (和-差)÷2=小数

  小数+差=大数(和-小数=大数)

  或:(和+差)÷2=大数

  大数-差=小数(和-大数=小数)

  解答和差应用题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

  例1:三、四年级同学共植树128棵,四年级比三年级多植树20棵,求三、四年级各植树多少棵?

  分析与解答:假如把三、四年级植的128棵加上20棵,得到的和就是四年级植树的2倍,所以,四年级植树的棵数是(128+20)÷2=74棵,三年级植树的棵数是74-20=54棵。

  这道题还可以这样解答:假如从128棵中减去20棵,那么得到的差就是三年级植树棵数的2倍,由出,先求出三年级植树的棵数(128-20)÷2=54棵,再求出四年级植树的棵数:54+20=74棵。

  练 习 一

  1,两堆石子共有800吨,第一堆比第二堆多200吨。两堆各有多少吨?

  2,用锡和铝混合制成600千克的合金,铝的重量比锡多400千克。锡和铝各是多少千克?

  3,甲、乙两人年龄的和是35岁,甲比乙小5岁。甲、乙两人各多少岁?

  例2:两筐梨子共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的梨子个数相等。两筐原来各有多少个梨?

  分析与解答:根据题意,第一筐减少10个,第二筐增加10个后,则两筐梨子个数相等,可知原来第一筐比第二筐多10×2=20个。

  假如从120个中减去 20个,那么得到的差就是第二筐梨子个数的2倍,所以,第二筐原来有(120-20)÷2=50个,第一筐原来有50+20=70个。

  练 习 二

  1,红星小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。两个班原来各有学生多少人?

  2,某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的汽车辆数就相等。两个车队原来各有汽车多少辆?

  3,甲、乙两笨共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。两箱原来各有水果多少千克?

  例3:今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。今年妈妈和小勇各多少岁?

  分析与解答:3年前,小勇比妈妈小26岁,这个年龄差是不变的,即今年小勇也比妈妈小26岁。显然,这属于和差问题。所以妈妈今年(38+26)÷2=32岁,小勇(38-26)÷2=6岁。

  练 习 三

  1,今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。今年小刚和小强各多少岁?

  2,黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜将比胡敏大3岁。黄茜和胡敏今年各多少岁?

  3,两年前,胡炜比陆飞大10岁;3年后,两人的年龄和将是42岁。求胡炜和陆飞今年各多少岁。

  例4:甲乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋。两个仓库原来各有多少袋大米?

  分析与解答:先求甲、乙两仓库大米的袋数差,由“从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋”可知甲仓库原来比乙仓库多25×2+8=58袋。由此可求出甲仓库原来有(800+58)÷2=429袋,乙仓库原来有800-429=371袋。

  练 习 四

  1.甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放到乙箱中,则甲箱比乙箱还多6袋。两箱原来各有多少袋?

  2.甲、乙两筐香蕉共重60千克,从甲筐中取5千克放到乙筐,结果甲筐比乙筐还多2千克。两筐原来各有多少千克香蕉?

  3.两笼鸡蛋共19只,若甲笼再放入4只,乙笼中取出2只,这时乙笼比甲笼还多1只。甲、乙两笼原来各有鸡蛋多少只?

  例5:把长108厘米的铁丝围成一个长方形,使长比宽多12厘米,长和宽各是多少厘米?

  分析与解答:根据题意可知围成的`长方形的周长是108厘米,因此,这个长方形长与宽的和是108÷2=54厘米,由此可以求出长方形的长为(54+12)÷2=33厘米,宽为54-33=21厘米。

  练 习 五

  1,把长84厘米的铁丝围围成一个长方形,使宽比长少6厘米。长和宽各是多少厘米?

  2,赵叔叔沿长和宽相差30米的游泳池跑6圈,做下水前的准备活动,共跑1080米。游泳池的长和宽各是多少米?

  3,刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米。这个操场的面积是多少平方米?

四年级奥数题8

  比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的`边缝在一起,另3条边则与其它白色皮子的边缝在一起。如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?

  答案与解析:

  分析:12块黑色正五边形皮子共有12×5=60条,这60条边每一条都是与白皮子缝合在一起的。而对于白皮子来说,每块6条边,其中有3条边是与黑色皮子的边缝在一起,还有3条边则是与其它白色皮子的边缝在一起。因此,白皮子的边的总数就是黑皮子的边的总数的2倍,即共有60×2=120条边。那么,共有120/6=20块白皮子。

四年级奥数题9

  【试题】5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?

  【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的.总时间为:2+1+10+2+2=17分钟。

  解:2+1+10+2+2=17分钟

  【试题】6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。

  【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。

  解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟

  然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟

  最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。

  总共用时(2+1)+(6+2)+2=13分钟。

四年级奥数题10

  一、

  1、 学校有排球、足球共50个,排球比足球多4个,排球、足球各多少个?

  2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?

  3、甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?

  4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?

  5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。小敏和他爸爸的年龄各是多少岁?

  6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。小兰语文、数学各得多少分?

  二、

  1、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本?

  2、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。原来每桶各有水多少千克?

  3、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。甲、乙两个仓库各存大米多少吨?

  4、甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元?

  三、

  1、甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?

  2、甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨?

  3、甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克?

  4、甲乙两个学校共有学生20xx人,如果从甲校调走20人,乙校调走15人,甲校比乙校还多5人,两校原各有学生多少人?

  5、学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克?

  6、《红楼梦》分上、中、下三册,全书共108元。上册比中册贵11元,下册比中册便宜5元。上、中、下三册各是多少元?

  7、四个人年龄之和是77岁,最小的10岁,他和最大的人的`年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁?

  8、小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米?

  9、曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克?

  10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?

四年级奥数题11

  两个煤场,甲厂有煤252吨,已厂有煤180吨,两场每天都运出26吨煤。问几天后甲厂剩下的煤是已厂的4倍?

  答案与解析:由于两个煤场每天运出的重量是相同的,所以两厂剩下的煤的差与原有煤的差是一样的,即(252-180)吨。又知甲厂剩下的煤是已厂的'4倍,可知(252-180)吨相当于已厂剩下煤的(4-1)倍,从而可以求出已厂剩下煤多少吨,在求出已厂运走煤多少吨,根据运走煤的吨数与每天运走的吨数就可以求出运走了几天。

  解:已厂剩下的煤:(252-180)÷(4-1)=24(吨)

  已厂运走的煤:180-24=156(吨)

  运走的天数:156÷26=6(天)

  答:6天后,甲厂剩下的煤是已厂的4倍。

四年级奥数题12

  四位数:(高等难度)

  如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?

  四位数答案:

  四位数的`千位数字是1,百位数字(设为a)可在0、2、3、4、5、6、7中选择,这时三位数的百位数字是9-a;四位数字的十位数字设为b,可在剩下的6个数字中选择,三位数的十位数字是9-b。四位数的个位数字c可以在剩下的4个数字中选择,三位数的个位数字是9-c。因此,所说的四位数有7×6×4=168个。

四年级奥数题13

  1、《二次相遇》难度:

  甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?

  答:两地相距米。

  2、《追及问题》难度:

  在一只野兔跑出90米后,猎狗去追。野兔跑8步的路程,猎狗只需要跑3步。猎狗跑3步的时间,野兔能跑4步。问,猎狗至少跑出多远,才能追上野兔?

  :猎狗至少跑出米,才能追上野兔。

  3、《相向而行》难度:

  张红和王强同时从家里出发相向而行。张红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。若张红提前4分钟出发,且速度不变,王强每分钟走90米,则两人仍在A处相遇。张红和王强两人的家相距多少米?

  答:张红和王强两人的家相距千米。

  4、《求面积》难度:

  已知图中大正方形的面积是20平方厘米,请你算一算,最里面的'小正方形面积是多少平方厘米?

  :小正方形面积是平方厘米。

  5、《至少有多少页》难度:

  一本书的页码里共含有88个数字“8”,这本书最少有多少页,最多有多少页?

  答:最少有页,最多有页。

四年级奥数题14

  每到周末假日,通往西城的交通总是陷入一片混乱.由海滨度假中心前往西城的车辆皆塞在A城的主干道上(参见上面的道路图),且由B点的主干道离开此城.地图上的数字表示城市中的道路每小时可容纳的最大车流量,单位为百辆.

  假设抵达A点的车子能最有效地利用道路,则由A至B可能的最大车流量是多少?有几条道路可以改为行人专用道而不影响由A到B最大的'车流量?

  如果有足够的经费可以让道路工程师在下一个度假旺季之前增加某一段道路的容量,则应整修哪一段?又应修改为多少容量?整修后会不会对行人专用道的规划造成影响?

四年级奥数题15

  1、奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元?

  2、3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克?

  3、张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元?

  4、粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克?

  1、一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克?

  2、一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克?

  3、一瓶酒连瓶重80克,喝了一半的酒后,连瓶还重50克,原来有酒多少克?瓶重多少克?

  4、一瓶汽水连瓶重45克,用去一半的汽水后,连瓶还重25克,原来有汽水多少克?瓶重多少克?

  1、有6箱鸡蛋,每箱鸡蛋个数相等,如果从每箱中拿出50个,那么6箱剩下的鸡蛋个数正好和原来5箱的个数相等,原来每箱鸡蛋多少个?

  2、有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的'个数相等,原来每筐苹果多少个?

  3、有5箱饼干,每箱鸡蛋重量相等,如果从每箱中拿出40克,那么5箱剩下的总克数正好和原来3箱的克数相等,原来每箱饼干多少克?

  4、一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人?

  1、韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字?

  2、张梓涵看一本书,计划每天看15页,实际每天比计划多看3页,结果提前两天完成任务。这本书有多少页?

  3、修一条路,计划每天修60米,实际每天比计划多修8米,结果提前4天完成任务。这条路多少米?

  4、陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤?

  1、琦涵有10张画片,郑洁有4 张画片。琦涵给郑洁多少张画片后,她俩的画片张数相等?

  2、红盒子里有52个玻璃球,蓝盒子里有34个玻璃球,每次从多的盒子里取出3个放到少的盒子里,拿几次才能使两个盒子里的玻璃球的个数相等?

  3、大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等?

  4、书架的上层有25本书,下层有27本书,爸爸又买回10本书,怎样放才能使书架上、下两层的书同样多?

【四年级奥数题】相关文章:

奥数题及答案[经典]07-02

奥数题及答案07-02

小升初奥数题06-07

奥数题及答案(实用)07-07

奥数题及答案(优)07-09

初三奥数题10-25

奥数题及答案(热门)07-04

(热门)小升初奥数题06-08

小升初奥数题[精品]06-08

奥数题及答案【经典15篇】07-05