四年级奥数题(集锦15篇)
四年级奥数题1
前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?
答案与解析:
①第三次相遇时两车的`路程和为:
90+90×2+90×2=450(千米).
②第三次相遇时,两车所用的时间:
450÷(40+50)=5(小时).
③距矿山的距离为:40×5—2×90=20(千米).
四年级奥数题2
【试题】:
1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?
2、李老师的年龄比刘红的2倍多8岁,李老师10年前的'年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?
3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?
5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?
6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?
【答案】:
1、一年前。
2、刘红10岁,李老师28岁。
(10+8—8)÷(2-1)=10(岁)。
3、妹妹7岁。姐姐14岁。
[27—(3×2)]÷(2+1)=7(岁)。
4、小象10岁,妈妈19岁。
(28—1)÷3+1=10(岁)。
5、大熊猫15岁,小熊猫5岁。
(28—4×2)÷(3+1)=5(岁)。
6、父亲50岁,儿子20岁。
(15+10)÷(7—2)+15=20(岁)
7、王涛 12岁,妈妈34岁。爸爸36岁,奶奶58岁,爷爷 60岁。
提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。
(200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。
四年级奥数题3
专题简析:
已知两个数的和与差,求出这两个数各是多少的应用题,叫和差应用题。解答和差应用题的基本数量关系是:
(和-差)÷2=小数
小数+差=大数(和-小数=大数)
或:(和+差)÷2=大数
大数-差=小数(和-大数=小数)
解答和差应用题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例1:三、四年级同学共植树128棵,四年级比三年级多植树20棵,求三、四年级各植树多少棵?
分析与解答:假如把三、四年级植的128棵加上20棵,得到的和就是四年级植树的2倍,所以,四年级植树的棵数是(128+20)÷2=74棵,三年级植树的棵数是74-20=54棵。
这道题还可以这样解答:假如从128棵中减去20棵,那么得到的差就是三年级植树棵数的2倍,由出,先求出三年级植树的棵数(128-20)÷2=54棵,再求出四年级植树的棵数:54+20=74棵。
练 习 一
1,两堆石子共有800吨,第一堆比第二堆多200吨。两堆各有多少吨?
2,用锡和铝混合制成600千克的合金,铝的重量比锡多400千克。锡和铝各是多少千克?
3,甲、乙两人年龄的和是35岁,甲比乙小5岁。甲、乙两人各多少岁?
例2:两筐梨子共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的梨子个数相等。两筐原来各有多少个梨?
分析与解答:根据题意,第一筐减少10个,第二筐增加10个后,则两筐梨子个数相等,可知原来第一筐比第二筐多10×2=20个。
假如从120个中减去 20个,那么得到的差就是第二筐梨子个数的2倍,所以,第二筐原来有(120-20)÷2=50个,第一筐原来有50+20=70个。
练 习 二
1,红星小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。两个班原来各有学生多少人?
2,某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的汽车辆数就相等。两个车队原来各有汽车多少辆?
3,甲、乙两笨共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。两箱原来各有水果多少千克?
例3:今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。今年妈妈和小勇各多少岁?
分析与解答:3年前,小勇比妈妈小26岁,这个年龄差是不变的',即今年小勇也比妈妈小26岁。显然,这属于和差问题。所以妈妈今年(38+26)÷2=32岁,小勇(38-26)÷2=6岁。
练 习 三
1,今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。今年小刚和小强各多少岁?
2,黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜将比胡敏大3岁。黄茜和胡敏今年各多少岁?
3,两年前,胡炜比陆飞大10岁;3年后,两人的年龄和将是42岁。求胡炜和陆飞今年各多少岁。
例4:甲乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋。两个仓库原来各有多少袋大米?
分析与解答:先求甲、乙两仓库大米的袋数差,由“从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋”可知甲仓库原来比乙仓库多25×2+8=58袋。由此可求出甲仓库原来有(800+58)÷2=429袋,乙仓库原来有800-429=371袋。
练 习 四
1.甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放到乙箱中,则甲箱比乙箱还多6袋。两箱原来各有多少袋?
2.甲、乙两筐香蕉共重60千克,从甲筐中取5千克放到乙筐,结果甲筐比乙筐还多2千克。两筐原来各有多少千克香蕉?
3.两笼鸡蛋共19只,若甲笼再放入4只,乙笼中取出2只,这时乙笼比甲笼还多1只。甲、乙两笼原来各有鸡蛋多少只?
例5:把长108厘米的铁丝围成一个长方形,使长比宽多12厘米,长和宽各是多少厘米?
分析与解答:根据题意可知围成的长方形的周长是108厘米,因此,这个长方形长与宽的和是108÷2=54厘米,由此可以求出长方形的长为(54+12)÷2=33厘米,宽为54-33=21厘米。
练 习 五
1,把长84厘米的铁丝围围成一个长方形,使宽比长少6厘米。长和宽各是多少厘米?
2,赵叔叔沿长和宽相差30米的游泳池跑6圈,做下水前的准备活动,共跑1080米。游泳池的长和宽各是多少米?
3,刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米。这个操场的面积是多少平方米?
四年级奥数题4
甲、乙两个哲人将正整数5至11分别写在7张卡片上。他们将卡片背面朝上,任意混合之后,甲取走三张,乙取走两张。剩下的两张卡片,他们谁也没看,就放到麻袋里去了。甲认真研究了自己手中的三张卡片之后,对乙说:“我知道你的两张卡片上的数的和是偶数。”试问:甲手中的.三张卡片上都写了哪些数?答案是否唯一。
答案:
西师大版四年级奥数题及答案《写了哪些数》:甲手中的3张卡片上分别写了6,8和10。甲知道其余4张卡片上分别写了哪些数,但不知道它们之中的哪两张落到了乙的手中。因此,只有在它们之中任何两张卡片上的数的和都是偶数时,甲才能说出自己的断言。而这就意味着,这4张卡片上所写的数的奇偶性相同,亦即或者都是偶数,或者都是奇数。但是由于一共只有3张卡片上写的是偶数,所以它们不可能都是偶数,从而只能都是奇数。于是3张写着偶数的卡片全都落入甲的手中。
四年级奥数题5
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒货车超过了它;另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它。如果客车的长度是货车的2倍,客车的速度是货车的3倍。请问:客车和货车在什么时间相遇?两车错车需要多长时间?
「分析解答」
行程问题中的三个量路程、速度和时间,如果题目中只出现了一个的量的具体数值,那么我们可以设出来没出现具体数值的两个量中的任意一个量。
当然也可以不设出来,用设份数的方法来做,但这种方法比较抽象,这里我们采用设数的方法。
设货车的长度为60米,则客车的长度为120米。
从追上米老鼠到超过,货车用30秒,所以货车与米老师的速度差是60÷30=2米/秒。
从和米老鼠相遇到离开,客车用12秒,所以客车与米老师的速度和是120÷12=10米/秒。
所以我们可以知道客车与货车的速度和是10+2=12米/秒。
又知道客车的'速度是货车速度的3倍,则可以求出客车的速度是9米/秒,货车的速度是3米/秒。然后可以求出米老鼠的速度是1米/秒。
下面的留给同学们去分析吧。
实际上本题就算不知道客车速度是货车速度的3倍,也是可以做出来的。当然,这时候就算不出客车、货车和米老鼠的具体速度了。但还是求出来的答案的。
四年级奥数题6
题目:
学校第一批买进3个篮球和8个排球共值500元,第二批买进4个篮球和5个排球共值525元,求一个篮球、一个排球各多少元?
解析:
先列个简易的表格,整理好题目中已知的信息:
3个篮球8个排球→共500元
4个篮球5个排球→共525元
题中有两个未知的量:篮球单价和排球单价,要消去其中的一个未知量,才能求出另一个未知量。
但这一题已知条件与问题之间有着明显的空隙,不易探求,可以对条件作出符合逻辑的假设,然后根据变化了的新条件进行推理,找出解决问题的途径。假设第一批买的两种球的个数是原来的4倍,则总价也扩大了4倍;第二批买的`两种球的个数都是原来的3倍,则总价也扩大3倍,得到两组新的信息:
12个篮球32个排球→共2000元
12个篮球15个排球→共1575元
在假设的情况中,两批买进的篮球的个数是一样的,正好抵消掉,第一批比第二批多了(32—15=)17个排球,多花了(20xx—1575=)425元钱,即17个排球总价为425元,可以求出排球的单价。列式为:
(500×4—525×3)÷(8×4—5×3)
=(20xx—1575)÷(32—15)
=425÷17
=25(元)。
把排球单价带入第一批买球的条件中,可以求出篮球的单价:
(500—25×8)÷3
=(500—200)÷3
=300÷3
=100(元)。
所以,一个篮球100元,一个排球25元。
四年级奥数题7
一、填空.
1).如果被减数和减数都增加3.5,那么差就 ( ) .
2).比3.96多1.07的数是( ).
3).把28.45扩大100倍,再缩小1000倍,得数是( ).
4).4在百分位上比在百位上少( ).
5)、一个九位数,个位上的数字是7,十位上的数字是2,任意相邻三个数字的和都是15,这个九位数是( ).
6)、一个两位数,其小数点向右移动一位后,结果比原来的数大41.85.原来的两位小数是( ).
7)、图书角共有48本书,小芳想使三层书架上的书本数相等,她先从第一层拿8本放入第二层,然后从第二层拿6本放入第三层,就完成了.请问:原来第一层有 本,第二层有 本,第三层有 本.
8)、有一个挂钟,每小时敲一次钟,几点钟敲几下,钟敲 6 下,5 秒钟敲完,钟敲 12 下,( )秒钟敲完.
9)、一座楼房每上一层要走 16 个台阶,到小英家要走 64 个台阶,他家住( )楼.
10)、甲乙丙三个数的平均数是97,已知甲数是95,乙数是92,丙数是( ).
11)、被除数是3320,商是150,余数是20,除数是( ).
12)、468是3个连续自然数的.和,其中最小的数是( ).
13)、在下面的式子中填上括号,使等式成立.
5×8+16÷4-2=20
14)、两个数之和是444,大数除以小数商11,且没有余数,大数是( ).
15)、把四个5和三个0组成一个七位数,读出三个“零”的是( ),一个“零”也不读的是( ).
16)、小明和他爸爸今年共有48岁,年后他和他爸共有100岁.10、甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).
17)、右图中,所有正方形的个数是( )个.
二、用简便方法计算,并要写出主要过程.
395-283+154+246-117 8795-4998+2995-3002
1+2+3+4+5+······+49+50 125×27×8
395-283+154+246-117 8795-4998+2994-3002-20xx
1999+999×999 31×55+68×55+55
三、应用题.
1、王雪读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完.她一共读了多少天?
2、期末考试小东的语文、自然两门共197分,语文、数学两门共有199分,数学和自然共196分,哪一科的成绩最好,是多少分?
3、一张长方形纸,长66厘米,宽33厘米,用它做成底是33厘米,高是22厘米的三角形小红旗,最多可以做几面?
4、仓库里有水泥若干吨,第一天上午运出所存水泥的一半,下午运出10吨,这时仓库还有水泥44吨,问仓库原有水泥多少吨?
5.一个正方形与一个长方形的周长相等,长方形的宽是6米,相当于长的一半,求正方形的面积.
6.水产研究所投放新鱼种,每公顷投放3500条小鱼,在一块长600米,宽450米的鱼塘里,应投放小鱼多少条?
7一列火车以同样的速度上午运行了4小时,下午运行了6小时,上午比下午少运行了136千米,该火车以这样的速度从西安到北京共用了14小时15分钟,问西安到北京的距离?(7分)
四年级奥数题8
一、1、 学校有排球、足球共50个,排球比足球多4个,排球、足球各多少个?
2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?
3、甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?
4、小宁与小芳今年的'年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?
5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁.小敏和他爸爸的年龄各是多少岁?
6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分.小兰语文、数学各得多少分?
四年级奥数题9
1、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?
2、某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度?
3、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时?
4、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱.由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?
5、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?
6、锅炉房按照每天3600千克的用量储备了140天的.供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天?
7、学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋.问鸡蛋价格下调后每千克是多少元?
8、18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?
9、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?
10、张师傅计划加工552个零件.前5天加工零件345个,照这样计算,这批零件还要几天加工完?
11、 3台磨粉机4小时可以加工小麦2184千克.照这样计算,5台磨粉机6小时可加工小麦多少千克?
12、一个机械厂4台机床5小时可以生产零件720个.照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时?
13、一个修路队计划修路126米,原计划安排7个工人6天修完.后来又增加了54米的任务,并要求在6天完工.如果每个工人每天工作量一定,需要增加多少工人才如期完工?
14、九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?
15、扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天?
16、师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务.徒弟每小时加工多少个?
17、甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时.泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地?
18、旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务?
19、舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆?
20、德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题?
四年级奥数题10
练 习 一
1,A、B两港间的水路长208千米。一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达。求船在静水中的速度和水流速度。
2,甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。求船在静水中的速度和水流速度。
3,甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达。求这架飞机的速度和风速。
例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。
练 习 二
1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时。已知这段航道的水流是每小时4千米,求A港到B港相距多少千米?
2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?
3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的'水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?
例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同。根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行 80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。所以,乙船在静水中每小时行16-6=10千米。
练 习 三
1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?
3,一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要2
四年级奥数题11
将1-13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的'数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为()。
答案与解析:
这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张。
四年级奥数题12
1、《二次相遇》难度:
甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?
答:两地相距米。
2、《追及问题》难度:
在一只野兔跑出90米后,猎狗去追。野兔跑8步的路程,猎狗只需要跑3步。猎狗跑3步的时间,野兔能跑4步。问,猎狗至少跑出多远,才能追上野兔?
:猎狗至少跑出米,才能追上野兔。
3、《相向而行》难度:
张红和王强同时从家里出发相向而行。张红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。若张红提前4分钟出发,且速度不变,王强每分钟走90米,则两人仍在A处相遇。张红和王强两人的家相距多少米?
答:张红和王强两人的家相距千米。
4、《求面积》难度:
已知图中大正方形的`面积是20平方厘米,请你算一算,最里面的小正方形面积是多少平方厘米?
:小正方形面积是平方厘米。
5、《至少有多少页》难度:
一本书的页码里共含有88个数字“8”,这本书最少有多少页,最多有多少页?
答:最少有页,最多有页。
四年级奥数题13
1、琦涵有10张画片,郑洁有4 张画片.琦涵给郑洁多少张画片后,她俩的画片张数相等?
2、红盒子里有52个玻璃球,蓝盒子里有34个玻璃球,每次从多的盒子里取出3个放到少的盒子里,拿几次才能使两个盒子里的玻璃球的个数相等?
3、大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的.糖的粒数相等?
4、书架的上层有25本书,下层有27本书,爸爸又买回10本书,怎样放才能使书架上、下两层的书同样多?
四年级奥数题14
一次数学考试后,小军问小昆数学考试得多少分.小昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道小昆得多少分吗?
答案与解析:
解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把小昆的'叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.
如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.
解:{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:小昆这次数学考试成绩是96分.
四年级奥数题15
甲、乙、丙三人各有糖豆若干粒,甲从乙处取来一些糖豆,使自己的糖豆增加了一倍;乙接着从丙处取来一些糖豆,使自己的糖豆也增加了一倍;丙再从甲处取来一些糖豆,也使自己的糖豆增加了一倍。现在三人的糖豆一样多。如果开始时甲有51粒糖豆,那么乙最开始有多少粒糖豆?
答案与解析:
假设最后三个人一样多时都是4份糖豆,
还原:
丙再从甲处取来一些糖豆,也使自己的糖豆增加了一倍:丙=4/2=2份,甲=4+2=6份;
乙接着从丙处取来一些糖豆,使自己的'糖豆也增加了一倍:乙=4/2=2份,丙=2+2=4份;
甲从乙处取来一些糖豆,使自己的糖豆增加了一倍:甲=6/2=3份,乙=2+3=5份;
即甲、乙、丙原来各有3、5、4份。 所以,如果开始时甲有51粒糖豆,那么乙最开始有
(51/3)*5=85粒。
【四年级奥数题】相关文章:
奥数题及答案[经典]07-02
奥数题及答案07-02
小升初奥数题06-07
奥数题及答案(实用)07-07
奥数题及答案(优)07-09
初三奥数题10-25
奥数题及答案(热门)07-04
(热门)小升初奥数题06-08
小升初奥数题[精品]06-08
奥数题及答案【经典15篇】07-05