当前位置:壹学网>试题>数学试题>四年级奥数题

四年级奥数题

时间:2025-01-11 12:11:19 数学试题 我要投稿

(优选)四年级奥数题

四年级奥数题1

  练 习 一

  1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人?

  2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?

  3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人?

  例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对?

  分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。所以,两题都答得不对的有36-33=3人。

  练 习 二

  1,五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。那么,有多少人两个小组都没有参加?

  2,一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。两种报纸都没有订阅的有多少人?

  3,某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖。已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?

  例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?

  分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

  练 习 三

  1,一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的`有多少人?

  2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人?

  3,三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人?

  例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?

  分析与解答:从1到100的自然数中,减去5或6的倍数的个数。从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。因此,是6或5的倍数的个数是 16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:100-33=67个。

  练 习 四

  1,在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?

  2,在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?

  3,五(1)班做广播操,全班排成4行,每行的人数相等。小华排的位置是:从前面数第5个,从后面数第8个。这个班共有多少个学生?

  例5:光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?

  分析与解答:由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数。24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以 2,即可求出其他年级参展作品的总数。(24+22-10)÷2=18幅。

  练 习 五

  1,科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。其他年级参展的作品共有多少件?

  2,六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅。其他年级参展的画共有多少幅?

  3,实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。一、二年级参展的书法作品共有多少幅?

四年级奥数题2

  专题简析:

  已知两个数的和与差,求出这两个数各是多少的应用题,叫和差应用题。解答和差应用题的基本数量关系是:

  (和-差)÷2=小数

  小数+差=大数(和-小数=大数)

  或:(和+差)÷2=大数

  大数-差=小数(和-大数=小数)

  解答和差应用题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

  例1:三、四年级同学共植树128棵,四年级比三年级多植树20棵,求三、四年级各植树多少棵?

  分析与解答:假如把三、四年级植的128棵加上20棵,得到的和就是四年级植树的2倍,所以,四年级植树的棵数是(128+20)÷2=74棵,三年级植树的棵数是74-20=54棵。

  这道题还可以这样解答:假如从128棵中减去20棵,那么得到的差就是三年级植树棵数的2倍,由出,先求出三年级植树的棵数(128-20)÷2=54棵,再求出四年级植树的棵数:54+20=74棵。

  练 习 一

  1,两堆石子共有800吨,第一堆比第二堆多200吨。两堆各有多少吨?

  2,用锡和铝混合制成600千克的合金,铝的重量比锡多400千克。锡和铝各是多少千克?

  3,甲、乙两人年龄的和是35岁,甲比乙小5岁。甲、乙两人各多少岁?

  例2:两筐梨子共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的梨子个数相等。两筐原来各有多少个梨?

  分析与解答:根据题意,第一筐减少10个,第二筐增加10个后,则两筐梨子个数相等,可知原来第一筐比第二筐多10×2=20个。

  假如从120个中减去 20个,那么得到的差就是第二筐梨子个数的2倍,所以,第二筐原来有(120-20)÷2=50个,第一筐原来有50+20=70个。

  练 习 二

  1,红星小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。两个班原来各有学生多少人?

  2,某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的`汽车辆数就相等。两个车队原来各有汽车多少辆?

  3,甲、乙两笨共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。两箱原来各有水果多少千克?

  例3:今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。今年妈妈和小勇各多少岁?

  分析与解答:3年前,小勇比妈妈小26岁,这个年龄差是不变的,即今年小勇也比妈妈小26岁。显然,这属于和差问题。所以妈妈今年(38+26)÷2=32岁,小勇(38-26)÷2=6岁。

  练 习 三

  1,今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。今年小刚和小强各多少岁?

  2,黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜将比胡敏大3岁。黄茜和胡敏今年各多少岁?

  3,两年前,胡炜比陆飞大10岁;3年后,两人的年龄和将是42岁。求胡炜和陆飞今年各多少岁。

  例4:甲乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋。两个仓库原来各有多少袋大米?

  分析与解答:先求甲、乙两仓库大米的袋数差,由“从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋”可知甲仓库原来比乙仓库多25×2+8=58袋。由此可求出甲仓库原来有(800+58)÷2=429袋,乙仓库原来有800-429=371袋。

  练 习 四

  1.甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放到乙箱中,则甲箱比乙箱还多6袋。两箱原来各有多少袋?

  2.甲、乙两筐香蕉共重60千克,从甲筐中取5千克放到乙筐,结果甲筐比乙筐还多2千克。两筐原来各有多少千克香蕉?

  3.两笼鸡蛋共19只,若甲笼再放入4只,乙笼中取出2只,这时乙笼比甲笼还多1只。甲、乙两笼原来各有鸡蛋多少只?

  例5:把长108厘米的铁丝围成一个长方形,使长比宽多12厘米,长和宽各是多少厘米?

  分析与解答:根据题意可知围成的长方形的周长是108厘米,因此,这个长方形长与宽的和是108÷2=54厘米,由此可以求出长方形的长为(54+12)÷2=33厘米,宽为54-33=21厘米。

  练 习 五

  1,把长84厘米的铁丝围围成一个长方形,使宽比长少6厘米。长和宽各是多少厘米?

  2,赵叔叔沿长和宽相差30米的游泳池跑6圈,做下水前的准备活动,共跑1080米。游泳池的长和宽各是多少米?

  3,刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米。这个操场的面积是多少平方米?

四年级奥数题3

  题目:

  某车间计划20人每天工作8小时,8天完成一批订货,后来要提起交货,改由32人工作,限4天完成,每天需要工作几小时?

  解析:

  先列个简易的表格,整理好题目中已知的信息:

  20人8小时8天

  32人?小时4天

  在这个问题中工作总量是不变的.。把一个人一小时的工作量看作一份工作量,220人每小时可以完成20份工作量,先求出工作总量:20×8×8=1280(份)。

  32人每小时可以完成32份工作量,可以先求出每天的工作总量,再求出每天的工作时间:1280÷4÷32=10(小时);

  也可以先求出总共需要多少小时,再求出每天需要多少小时:1280÷32÷4=10(小时)。

  所以,每天需要工作10小时。

四年级奥数题4

  数列推理的妙用

  我们经常遇到这样一类问题,即给一列数,要求根据数与数之间的关系,通过分析推理,得出其排列规律,从而推出要填的数。例如:

  在下列各列数中,□内应填什么数?

  (1)3,11,19,□;

  (2)7.9,6.6,5.3,□;

  (3)□,25,42,59。

  这几列数的排列规律是不难发现的:在第(1)列数中,后一个数比前一个数多8,□内应填27;在第(2)列数中,后一个数比前一个数少1.3,□内应填4;在第(3)列数中,前一个数比后一个数少17,□内应填8。

  巧妙地运用这种简单的.推理方法,我们可以解决一类“消去问题”。今举数列说明如下。

  例1学校计划购买篮球和排球。如果购买6只篮球和5只排球要花263元;如果购买4只篮球和7只排球,则要花245元。问一只篮球和一只排球各值多少元?

  解把已知条件写成下面两列:

  篮球6 4

  排球5 7

  价值263 245

  首先我们横着看,把它们看成三列数,第一列由6到4,减少2,因此推出第三项的数为2,第四项的数为0,即6→4→2→0;同理,第二列数为5→7→9→11,第三列数为263→245→227→209。上面推理过程可以表述为:

  现在我们竖着看,第四列(推出的)数表示0只篮球与11只排球价值为209元,即1只排球为(209÷11=)19(元)。再根据第一个条件,可算得1只篮球为(263-19×5)÷6=)28(元)。

  例2甲、乙两人加工零件,甲做11时,乙做9时,共加工零件213个;甲做9时,乙做6时,共加工零件162个。问甲、乙两人每时各加工几个零件?

  解把已知条件写成竖列,按横列推理:

  竖着看:第四列(即推出的最后一列)表示甲5时做60个零件,则每时做(60÷5=)12(个)零件,从而知道乙每时做的零件个数为:(213-12×11)÷9=9(个)

  这种解题方法,把已知条件看成数列,而且往递减方向(至少有一列递减)推理,直到有一列的某项为零,就很容易得到结果。上面的两个例子,都是从左往右推理的,如果这样做得不到某列的某项为零时,就可考虑从右往左推理。

四年级奥数题5

  牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?

  答案与解析:

  设1头牛1天的.吃草量为“1”,10头牛吃20天共吃了10×20=200份;15头牛吃10天共吃了15×10=150份.第一种吃法比第二种吃法多吃了200-150=50份草,这50份草是牧场的草20-10=10天生长处来的,所以每天生长的草量为50÷10=5,那么原有草量为:200-5×20=100.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100÷20=5(天)可将原有牧草吃完,即可供25头牛吃5天.

四年级奥数题6

  饲养员小王在自家庭院里养了鸡和兔共40只,他们的脚数一共是108只,小王养的鸡和兔各多少只?

  答案与解析:

  假设小王养了40只兔,一共就有4×40=160(只)脚,比实际的108只多了160-108=52(只)脚。多出的52只脚是因为把饲养的'鸡理解成兔造成的,也就是每只鸡被多算了4-2=2(只)脚,因此,52里面有多少个2就会有多少只鸡,即:52÷2=26(只)鸡。兔的只数:40-26=14(只)

  解:

  鸡的只数:(4×40-108)÷(4-2)=26(只)

  兔的只数:40-26=14(只)

  答:小王饲养26只鸡,14只兔

四年级奥数题7

  在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线杆多少根?

  答案与解析:此题是植树问题中植树线路不封闭的一种,并要求植树线路的两端都不植树.那么全长、棵数、间隔长三量之间的.关系是:

  棵数=全长÷间隔长-1

  全长=间隔长×(棵数+1)

  间隔长=全长÷(棵数+1)

  只要知道其中两个,就可以求出第三个量.2500米是全长,50米是间隔长,求棵数.列式是:2500÷50-1=50-1=49(根)

  答:共需电线杆是49根.

四年级奥数题8

  一、填空题

  1.船行于120千米一段长的江河中,逆流而上用10小明,顺流而下用6小时,水速_______,船速________。

  2.一只船逆流而上,水速2千米,船速32千米,4小时行________千米。(船速,水速按每小时算)

  3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速________。

  4.某船在静水中的.速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米。

  5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时。

  6.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时。

  7.A河是B河的支流,A河水的水速为每小时3千米,B河水的水流速度是2千米。一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行_______小时。

  8.甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米。

  9.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时。

  10.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口。已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行______小时。

  二、解答题

  11.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?

  _____________________________________

  12.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?

  _____________________________________

  13.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度。

  _____________________________________

  14.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?

  _____________________________________

四年级奥数题9

  1、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?

  2、某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度?

  3、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时?

  4、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱.由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?

  5、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?

  6、锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天?

  7、学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的.鸡蛋.问鸡蛋价格下调后每千克是多少元?

  8、18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?

  9、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?

  10、张师傅计划加工552个零件.前5天加工零件345个,照这样计算,这批零件还要几天加工完?

  11、 3台磨粉机4小时可以加工小麦2184千克.照这样计算,5台磨粉机6小时可加工小麦多少千克?

  12、一个机械厂4台机床5小时可以生产零件720个.照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时?

  13、一个修路队计划修路126米,原计划安排7个工人6天修完.后来又增加了54米的任务,并要求在6天完工.如果每个工人每天工作量一定,需要增加多少工人才如期完工?

  14、九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?

  15、扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天?

  16、师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务.徒弟每小时加工多少个?

  17、甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时.泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地?

  18、旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务?

  19、舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆?

  20、德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题?

四年级奥数题10

  时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.

  解答:

  (1)当n=8时,有可能不能覆盖12个数,比如每块扇形错开1个数摆放,盖住的.数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.

  (2)每个扇形覆盖4个数的情况可能是:

  (1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数

  (2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数

  (3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数

  (4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数

  当n=9时,至少有3个扇形在上面4个组中的一组里,恰好覆盖整个钟面的全部12个数.

  所以n的最小值是9.

四年级奥数题11

  在1、2两个数之间,做这样的操作。第一次写上了3,即1、3、2;第二次写上4、5,即1、4、3、5、2;第三次也在相邻两数之间,写上这两个相邻数的和。这样的过程重复了5次。那么这时所有数的和是多少?

  解答:

  考虑每次操作后所有数的总和。原来是3,第一次是3×3-1-2=6,第二次是6×3-1-2=15。每次写上的数是相邻两数的`和,中间所有数都算了两次,只有两边的1和2算了一次,因此可以认为写上的数是所有数的2倍,然后加上原来这些数,总和就变成了原来的3倍,再减去两边只算了一次的1和2即可。第三次是15×3-1-2=42,第四次是42×3-1-2=123,第五次是123×3-1-2=366。

四年级奥数题12

  有一筐苹果,把它们三等分后还剩两个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩2个。问:这筐苹果至少有几个?

  答案与解析:

  因为要求至少多少个,所以我们可以先假设最后的每一份只有1个苹果。

  那么,第三次没有操作前的`两份就有1*3+2=5个,2汾是5个显然不对。

  我们再假设最后的每一份有2个苹果。

  还原:

  第三次取出的两份有2*3+2=8个,每份8/2=4个;

  第二次取出的两份有4*3+2=14个,每份14/2=7个;

  原有7*3+2=23个。

四年级奥数题13

  为了方便四年级学生练习奥数题,为您提供四年级奥数题,此题属于高等难度奥数题,希望同学们细心解答,然后再来查看下面的答案。

  游泳路程:(高等难度)

  两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的`速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。如果不计转向的时间,那么在这段时间内两人共相遇多少次?

  游泳路程答案:

  有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;

  于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n-1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

四年级奥数题14

  编者小语:为四年级的同学挑选了一道奥数应用题,同学们要仔细对待这道锻炼逻辑思维能力的应用题。下面就开始四年级奥数应用题:下一个等式

  老师在黑板上写下四行数字,并在每行中用加号和等号连接每个数字,变成四个等式:

  1+2=3

  4+5+6=7+8

  9+10+11+12=13+14+15

  16+17+18+19+20=21+22+23+24

  请你想一想,下一个等式是什么,你还能继续写下去吗?

  解答:我们先来看看前四个等式排列的规律:第一行开头的数是1,共3个数,前面两个数的和等于后面一个数;第二行开头的数是1+3,共5个数,前面三个数的和等于后面两个数的和;第三行开头的数是1+3+5,共七个数,前面四个数的和等于后面三个数的和;第四行开头的数是1+3+5+7,共九个数,前面五个数的和,等于后面四个数的和;由此看出它们的.规律是:第n行开头的数应该是1+3+5+……(2n-1),即n2,共有2n+1个数,前面n+1个数的和,等于后面n个数的和。接下去写的是第五行的等式。开头的数是1+3+5+7+9=52=25,共有2×5+1=11个数。即:25+26+27+28+29+30=31+32+33+34+35

四年级奥数题15

  颜色组合:(高等难度)

  A先生的衬衫都是由红、蓝、黄、绿、黑5种颜色中的任何两种组成的。某一周,从星期一到星期日A先生按下列规则挑选每天穿的衬衫:

  1、每天都穿不同配色的衬衫;

  2、同一种颜色不连续出现在连着的2天中;

  3、有一个颜色出现在了4天中;

  4、星期一穿的是蓝黑组合;

  5、星期四的有绿色;

  6、星期五不出现黄色;

  7、红和黑组合不能出现。

  请问:星期六穿的衬衫是哪两种颜色的组合。

  颜色组合答案:

  解答:

  根据3,有一种颜色出现在了4天,而同一种颜色不能出现在连着的2天中,那么这种颜色肯定是出现在周一、周三、周五、周日。

  而星期一穿的.是蓝黑组合,说明周三、周五、周日一定有蓝色或黑色。

  而根据星期四有绿色,那么星期五就不能有绿色。

  星期五又不能穿黄色,则周五只有红、蓝、黑三种选择,其中必须而且只能出现蓝色或黑色一种。则有红蓝和红黑两种选择。而又不能出现红黑的选择,所以周五穿的是红蓝。

  由于周一是蓝黑,则周三是蓝绿或蓝黄。由于周四有绿色,则周三只能是蓝黄。则周日是蓝绿。则周六是黄黑。

【四年级奥数题】相关文章:

奥数题及答案[经典]07-02

奥数题及答案07-02

小升初奥数题06-07

奥数题及答案(实用)07-07

奥数题及答案(优)07-09

初三奥数题10-25

奥数题及答案(热门)07-04

(热门)小升初奥数题06-08

小升初奥数题[精品]06-08

奥数题及答案【经典15篇】07-05