当前位置:壹学网>教案>数学教案>六年级数学下册教案

六年级数学下册教案

时间:2025-10-11 11:06:30 数学教案 我要投稿

(优)六年级数学下册教案

  作为一名老师,常常需要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么写教案需要注意哪些问题呢?以下是小编整理的六年级数学下册教案,欢迎阅读,希望大家能够喜欢。

(优)六年级数学下册教案

六年级数学下册教案1

  教学目标

  1。理解利率,能利用百分数知识,解决与储蓄有关的实际问题。

  2。结合储蓄等活动,学会合理理财,培养分析问题、解决问题的能力。

  教学重点难点

  理解概念,能利用百分数知识,解决与储蓄有关的实际问题。

  教学过程

  一、复习引入

  1。复习利率有关知识:税收的种类,应纳税额,税率。

  2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。

  3。谁存过钱?怎么存的?将钱存入银行有什么好处呢?讨论利息的情况。

  4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。

  二、新课探究

  1。自读教材11页例4上面的`部分内容:

  学习要求:理清以下问题

  (1)存款有哪几种方式?

  (2)什么是本金?

  (3)什么是利息?

  (4)什么是利率?

  (5)怎样计算利息?

  学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。

  检测:

  (1)结合20xx年10月利率表,说说各种存款方式的年利率是多少?

  (2)整存整取一年的年利率是1。50%,表示什么意思?

  2。学以致用,教学例4:

  (1)出示例4。

  (2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?

  (3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)

  (4)归纳整理汇报:实际取回的钱数=本金+利息;利息=本金×利率×时间;

  学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。

  三、巩固练习

  1。完成教材第11页“做一做”

  (1)学生读题,分析题目,比例此题与例4的不同:本金不同,存期不同,利率不同。计算方法相同吗?

  (2)学生运用公式独立解答后集体订正。

  2。教材第14页“练习二”第9题。

  先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。

  3。教材第15页“练习二”第12题。

  (1)妈妈需要慎重选择吗?怎么办?

  (2)第一种方式的时间,利率是多少?第二种呢?

  (3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。

  小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。

  四、课堂小结。

  同学们,这节课有什么收获?

  学生汇报,引导学生懂得储蓄是利国利民的事情;在银行存款的方式很多种,如活期、整存争取、零存整取等;存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。

  板书设计

  利率

  利息=本金×利率×存期(时间)

  例4 5000 ×(1+3。75%×2)

  =5000×1。075

  =5375(元)

  答:到期时王奶奶可以取回5375元。

六年级数学下册教案2

  教学内容:

  分配

  教学目标:

  1、知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

  2、过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

  3、情感态度与价值观:进一步体会到数学与日常生活密切相关。

  教学重点:

  分配问题。

  教学难点:

  正确说明分配的结果。

  教学过程:

  一、学例1

  1、活动。

  把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

  学生思考各种放法。

  与同学交流思维的过程和结果。

  汇报交流情况。

  学生口答说明,教师利用实物木棒

  第一种放法:_________

  第二种放法:_________

  第三种放法:_________

  第四种放法:_________

  2、问题。

  不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?

  经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的`一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

  3、做一做

  7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

  说出想法。

  如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

  尝试分析有几种情况。

  说一说你有什么体会。

  学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。

  二、学例2

  1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

  摆一摆,有几种放法。

  不难得出,总有一个抽屉至少放进3本。

  2、说你的思维过程。

  果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

  3、一共有7本书会怎样呢?9本呢?

  学生独立思考,寻找结果。

  与同学交流思维过程和结果。汇报结果,全班交流。

  4、能用算式表示以上过程吗?你有什么发现?

  52=21 (至少放3本)

  72=31 (至少放4本)

  92=41 (至少放5本)

  说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

  5、做一做

  8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

  想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。

  三、巩固练习

  完成课文练习十二第2、4题。

  四、布置作业

  完成《家庭作业》第20练习。

六年级数学下册教案3

  【教学内容】:

  新人教版六年级上册第10页。

  【教学目标】:

  知识与技能

  1、使学生明确纳税的含义和重要意义,理解应纳税额和税率的含义,了解常见税种。

  2、能运用百分数的知识正确地计算应纳税额。

  过程与方法

  3、经历计算应纳税额的过程,体会数学与生活的紧密联系,提高解决实际问题能力。

  情感、态度与价值观

  4、体会数学与生活的紧密联系,感受数学应用价值。

  5、培养学生初步的实践能力,并对学生进行爱国主义教育。

  【教学重难点】:

  教学重点:理解“纳税”“税率”及其相关概念的含义,并会正确计算应纳税额。

  教学难点:理解税率的含义,会正确计算应纳税额,灵活应用解决实际问题。

  教学流程

  一、情境引入

  课件出示祖国蓬勃发展的图片,学生观看欣赏。

  师:建设的钱从哪里来?

  生:税收。

  关于税收你都知道些什么呢?今天这节课我们就一起来学习有关税收的`知识。

  二、自主交流,了解纳税的有关知识

  你听说过纳税吗?关于纳税你都知道些什么呢?

  学生自主交流,根据学生回答,教师有序的展示以下内容:

  纳税是根据国家税法的有关规定,按照一定的比率,把集体和个人收入的一部分缴纳给国家。

  税收是国家收入的主要来源之一。国家用收来的税款发展经济,科技,教育,文化和国防等事业。

  因此每个公民都有依法纳税的义务。

  税收主要分为消费税、增值税、营业税和个人所得税等几类。

  三、结合实际,理解“税率”的含义,探索应纳税额的计算方法的计算方法。

  1、出示纳税信息

  ③长沙卷烟厂今年2月销售额3000万元,应缴纳消费税1200万元。

  先请学生猜猜,可能会缴纳多少税款?再出示缴纳的税款,请学生计算是按什么比例来缴税的。解释概念,这里的40%就是税率。请学生说一说40%表示什么?进一步理解税率的含义,紧接着出示税率的定义,学生齐读。指出各种收入和应纳税款,小组讨论:税率,应纳税额,各种收入,这三者之间有怎样的关系呢?

  汇报交流:(板书)税率=应纳税额÷各种收入×100%

  应纳税额=各种收入×税率

  各种收入=应纳税额÷税率

  2、说说下面信息中的税率各是多少?税率表示什么?

  ①海口晨光文具店20xx年全年的销售额是40万元,按销售额的5%缴纳增值税2万元。

  ②海南宾馆20xx年上半年营业额是800万元,按营业额的4%向国家缴纳营业税32万元。

  四、解决问题

  1、出示例3

  一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?

  ①读题,说说“营业额30万元”是指什么,“营业额的5%”是什么意思?营业税指什么?这里的营业额30万元“是指收入,5%就是指(税率:应缴纳营业税款占营业额的百分比)。营业税指应纳税额。

  ②怎样计算应纳税额?

  学生独立完成。

  ③集体交流反馈,知道在这种情况下有如下关系成立:

  营业额×税率=营业税。

  2、把表格填完整

  学生试做,教师巡视指导。

  指名板演,并说一说是怎么想的?集体纠正。

  重在方法和计算的指导。

  3、稍复杂问题的解决,

  李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?

  ①学生读题,

  ②分析思考:这里的3%是是所有收入的3%吗?从哪里,从哪里可以知道呢?3%的单位“1”是谁呢?

  ③学生独立解答

  ④汇报交流,集体纠正。

  4、变式练习

  将3的问题改成,她税后收入是多少?

  学生思考:求“税后收入”是求什么呢?

  怎样算呢?学生独立试做,指名回答。

  集体纠正。

  5、依然是问题3的变式练习

  李阿姨今年二月份的工资扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税60元。她今年二月份的工资是多少元?

  学生读题

  这道题知道了什么,要求什么呢?学生思考,讨论交流。

  汇报答案,课件展示。

  五、课堂总结

  通过这节课的学习,你有什么收获呢?

  课后调查:问一问爸爸、妈妈每月收入是否需要缴纳个人所得税?了解我国对个人所得税的税收规定。

六年级数学下册教案4

  教学内容:

  教科书30到32页。

  教学目标:

  1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

  2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

  3、 通过教学情境,培养学生热爱祖国的思想感情。

  教学过程

  一、 导入新课

  1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

  2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

  3、 按大小分类。(讨论后说明随意画的长方形不是教室的'平面图)

  4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

  5、 分别请同学说说自己画的设想。

  6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

  7、 板书课题。“认识比例尺”

  二、 新课展开

  1、自学课文

  让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

  说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。

  改写自己所画的图的比例尺。

  2、出示中国地图(投影)

  <1>找出这幅地图的比例尺:1:30000000

  (电脑演示放大效果)

  介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

  <3>你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

  <5>小组反馈,评比优秀方案。

  <2>电脑课件演示。

  <4>根据讨论板书:

  补充板书:

  把实际距离按原来的大小画出来,比例尺就是1:1

  三、 练习

  1|试一试。

  四、 作业:31页练一练。

六年级数学下册教案5

  教学目标:

  1、使学生能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  灵活应用圆柱的体积公式解决实际问题。

  教学过程:

  一、复习

  1、复习圆柱体积的推导过程

  长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。

  2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。

  二、解决实际问题

  1、练习三第4题。

  学生独立练习,强调选取有用信息,培养认真审题习惯。

  2、练习三第5题。

  (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

  (2)学生选择喜爱的方法解答这道题目。

  3、练习三第10题。

  指名说说解答第10题的思路:根据两个圆柱的.底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

  4、练习三第8题。

  (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

  (2)在充分理解题意后学生独立完成,集体订正。

  4、练习三第9题

  (1)学生独立审题后完成。

  评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

  5、练习三第11题。

  此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。

  (3)三、布置作业

  完成练习中未做完的习题

  教学反思

  第五课时特别关注

  练习三第4题,在教学中必须应该特别关注。

  关注理由:

  1、有多余条件,是培养学生收集有用信息的契机。

  这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。

  在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。

  2、有容易忽视的条件,是培养学生认真审题的契机。

  一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。

  学生巧解

  ——巧求削去部分的体积

  今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?

  我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。

  同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。

  而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

六年级数学下册教案6

  教学目标

  1.在具体情境中认识怎样用字母表示南、西、东等方向,初步掌握根据方向和距离确定物体位置的方法,能根据方向和实际距离在平面图上确定物体的位置。

  2.在掌握根据方向和距离在平面图上确定物体的位置的过程中,进一步培养画图能力、计算能力,发展空间观念。

  3.积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发同学们的兴趣。

  教学重点

  根据方向和实际距离在平面图上确定物体的位置。

  教学难点

  明确在平面图上表示物体位置的具体过程和方法。

  教学关键

  重视不同数学知识的综合应用,感受数学知识的内在联系,不断提高解决实际问题的能力。

  教学过程

  一、复习

  1.出示以灯塔为中心的平面图。

  (1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

  相机指出:东——E西——W南——S

  (2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

  2.如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

  二、新课教学

  1.出示教材中例2的平面图。

  谈话:这是一幅以灯塔为中心的平面图,你能从图中了解哪些信息?

  介绍:我们已经知道在平面图上常用N表示方向北,另外还常用E表示方向东,用S表示方向南,用W表示方向西。

  提问:你能在平面图上指出东、西、南、北以及北偏东、北偏西、南偏东、南偏西等方向吗?请你在平面图上指一指。

  题目还告诉我们“灯塔北偏东40?方向20千米处是清凉岛”,这句话有哪几层意思?

  (一是告诉了清凉岛相对于灯塔的方向,二是告诉了灯塔到清凉岛的实际距离)你能根据题中的已知数据指出清凉岛的大致位置吗?

  怎样在平面图上准确地表示出清凉岛的位置呢?在小组里说说自己的想法。

  2.在班内交流。教师帮助学生明确在平面图上确定物体位置的.具体步骤。

  (1)在平面图上确定北偏东40?的方向。

  根据“北偏东”的含义,以表示灯塔的点为顶点,正北方向为角的一条边,用量角器偏东40?画出角的另一条边,并在图中标出角的度数。

  (2)应用比例尺的知识计算出灯塔到清凉岛的图上距离。

  根据“图上距离1厘米表示实际距离5千米”计算出灯塔到清凉岛的图上距离。

  (3)根据计算出的图上距离在所画射线上确定清凉岛的位置。

  提醒:①根据计算出的图上距离,找到清凉岛的位置,用圆点表示,并在旁边标注“清凉岛”。

  ②标注出实际距离,把射线多余的部分擦掉。

  3.同桌互相说一说刚才指出清凉岛的大致位置与准确位置相差远不远。

  4.试一试

  (1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?

  (2)各自独立完成。

  (3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

  三、组织练习

  1.完成“试一试”。

  (1)让学生尝试做题。

  (2)组织展示、交流。

  (3)提问:你是怎样确定南偏西30?方向的?是怎样计算出灯塔到红枫岛的图上距离的?在图上表示红枫岛位置时你又是怎样做的?

  2.完成“练一练”。

  (1)学生独立完成,在小组内交流。

  (2)在班内交流。并提问:你能完整地描述出熊猫馆和孔雀园的位置吗?它们到猴山的距离你是怎样算出来的?

  (3)指名说一说在图中表示蛇馆位置的具体步骤。

  3.完成练习十二第3题。

  谈话:这道题内容比较多,要仔细读题弄清题意,明确题目要求。提问:图中以机场所在地点为端点,向四周画了许多条射线,每相邻的两条射线的夹角是多少度?你是怎么知道的?“每相邻两个圆之间的距离是10千米”这句话是什么意思?指着图说一说。

  (2)提问:飞机A在屏幕上的位置是怎样确定的?

  (3)让学生各自在图上表示出飞机B、C、D、E的位置,再展示部分学生的答案,共同评议、校正。

  4.完成练习十二第4题。

  (1)让学生在图中指出各场所的大体位置。

  (2)让学生按给出的条件在图中画一画,算一算,确定每个单位在平面图中的位置。

  (3)在小组里互相检查、评议。

  5.完成练习十二第5题。

  (1)学生独立做题。

  (2)指名说一说1号、2号运动员落地的实际位置。

  (3)同桌互相检查3号运动员落地的图上位置画得对不对。

  四、小结

  提问:这节课我们学到了什么知识?你哪些方面表现较好?

  五、作业

  练习十二第4题和第5题。

  板书设计

  根据方向和距离确定物体的位置

  北—— N东—— E南—— S西—— W

六年级数学下册教案7

  教学目标:

  1、巩固对储蓄存款的认识,了解教育储蓄、国债利率

  2、在自主活动中进一步熟悉掌握存款利息计算方法

  3、培养学生认识到存款利国利民

  教学重点:

  掌握有关存款形式、利息的计算方法

  教学难点:

  运用有关知识解决实际问题

  教学过程:

  一、明确问题

  李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?

  三种理财方式:普通储蓄存款、教育储蓄、购买国债

  二、交流汇报有关利率、教育储蓄、国债相关小知识

  1、学生汇报自己收集到的`相关知识

  2、教师释疑

  A、收集到的利率为什么与教材上的不同?

  B、不同银行存款利率不一样

  C、国家利率调整的原因

  D、教育储蓄存款存期的计算

  三、设计方案

  根据利息=本金x利率x存期计算每种方案最后利息

  1、学生分组讨论交流,设计不同方案

  2、教师巡回指导,选择代表性方案演板

  方案一:一年期存6次利息:3880。95元

  方案二:二年期存3次利息:4845。9元

  方案三:三年期存2次利息:5425。13元

  方案四:先存五年期一次,再存一年期一次利息:5492。5元

  教育储蓄:五年按六年计算利息:5700元

  购买国债:六年利息:6384元

  四、讨论:选择方案,比较利弊

  根据各种实际情况,灵活选择

  五、当堂检测

  六、活动总结

  七、谈谈本节课的收获与困惑

六年级数学下册教案8

  一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。

  二、教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。

  3、注意渗透类比、转化思想。

  三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。

  四、教学难点:推导圆柱的体积计算公式。

  五、教法要素:

  1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。

  2、原型:圆柱模型。

  3、探究的问题:

  (1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?

  (2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个

  部分?

  (3)怎样计算圆柱的体积?

  六、教学过程:

  (一)唤起与生成。

  1、什么叫物体的体积?我们学过哪些立体图形的体积计算?

  2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?

  切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?

  (二)探究与解决。

  探究:圆柱的体积

  1、 提出问题,启发思考:如何计算圆柱的'体积?

  2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方

  体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。

  3、 转化物体,分析推理:

  怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。

  (拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。

  4、全班交流,公式归纳:

  交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。

  回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?

  5、举一反三,应用规律:

  (1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。

  如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h

  (2)教学例6

  学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

  (三)训练与强化。

  1、基本练习。

  练习三第1题,学生独立完成,这两个都可以直接用V=sh来计算。全班订正,注意培养学生良好的计算习惯。

  2、变式练习。

  第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。

  第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。

  3、综合练习。

  第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=V÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。

  4、提高性练习。22页第10题,学生先小组讨论,再全班交流。

  (四)总结与提高。

  这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。

六年级数学下册教案9

  一、教学目标

  1.使学生认识圆柱和圆锥的特征, 能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。

  2.通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。

  3.从实际生活入手,通过解决实际问题,发展学生的空间观念。

  二、教学重难点

  认识圆柱和圆锥的高,并会测量高。

  三、教学过程

  一、创设情境,引入新课 。

  师:前面我们学习了一些平面图形和立体图形,今天老师带来一些图形, 仔细观察,你有什么发现?(出示)

  (通过演示,总结)点动成线、线动成面、面动成体。(板书课题)

  师:请同学们思考,一个长方形沿一条直线旋转会形成什么图形?一个梯形呢?半圆呢?直角三角形呢?

  二、探索尝试,解释交流。

  1.感知圆柱、圆锥。

  师:日常生活中,有很多圆柱、圆锥形状的物体, 老师也收集了一些圆柱、圆锥物体的画面, 找一找这些物体中哪些物体的形状是圆柱体,哪些物体的形状是圆锥体?

  师:圆柱、 圆锥有什么特征呢?

  2.认识圆柱的各部分名称。师:我们先来研究圆柱有哪些特征?

  请同学们用看一看、摸一摸、量一量等方法来研究圆柱的特征,看哪个小组合作的好,发现的多。

  (1)哪个小组先来说一说你们的发现?

  (2)介绍圆柱各部分的名称,让学生结合圆柱各部分的名称再来说一说圆柱的`特征。

  (3)质疑:

  ①圆柱的上、下两个底面是什么图形?它们的大小有什么关系?

  ②用手摸一摸圆柱的侧面,你发现什么?

  ③圆柱有几条高?用直尺量一量圆柱的高,你发现什么?

  3. 探究圆锥的特征。

  (1)我们 已经知道了圆柱的特征,下面请同学们结合圆柱特征的研究方法,来研究圆锥有哪些特征?

  (2)哪个小组来说一说你们的发现?

  (3)说一说圆锥的特征。

  4.对比。

  师:我们已经知道了圆柱、圆锥的特征请同学们结合板书,想一想,圆柱、圆锥有什么相同点和不同点?

  三、课堂练习。

  1.填一填。

  (1)圆柱上下面是两个( )的圆形,圆锥 的底面是 一个( )形。

  (2)圆柱有( )个面是弯曲的,圆 锥的侧面是一个( )面。

  (3)圆柱两个底面之间的距离叫圆柱的( ),一个圆柱有( )条高。

  (4)从圆锥的( )到( )的距离是圆锥的高,一个圆锥有( )条高。

  2.判一判。

  (1)圆柱上、下两个底面的周长相等。 ( )

  (2)圆柱和圆锥的高都有无数条。 ( )

  (3)从正面 或侧面看圆锥,看到的都是等腰三角形。( )

  (4)圆柱上、下底面上任意两点间的线段,就是圆柱的高。( )

  3.找一找。

  4.拓展提升。

  将 一个长10厘米、宽5厘米的长方形,围绕一边快速旋转一周,能形成一个圆柱。你能画出来吗?

  四、总结

  今天这节课你有什么收获?

六年级数学下册教案10

  复习目标:

  1、通过复习使学生熟练地掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。

  2、使学生能正确地掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。

  复习过程:

  一回顾与交流。

  1、运算定律。

  问:我们学过哪些运算定律?

  (1)学生回顾曾经学过的运算定律,并与同学交流。

  (2)根据表格,填一填。

  名称举例用字母表示

  加法交换律

  加法结合律

  乘法交换律

  乘法结合律

  乘法分配律

  (3)算一算。

  ①计算:2.5×12.5×4×8

  =(2.5×4)×(12.5×8)……应用乘法交换律、结合律

  =10×100

  =1000

  2.混合运算.

  (1)说一说整数四则混合运算顺序.

  算一算:(710-18×4)÷2

  板书(710-18×4)÷2

  =(710-72)÷2

  =638÷2

  =319

  (2)分数、小数四则混合运算顺序与整数一样吗?

  二巩固练习。

  1.做一做

  2.完成课文练习十四第3~7题。

  复习内容:综合练习

  练习目标:

  1、通过综合复习使学生能牢固地掌握四则混合运算的顺序;能选择合理、灵活的计算方法。

  2、能理解四则运算中的数学术语,列综合算式解答文字题;进一步提高计算能力。

  练习过程:

  一、选择合理的算法进行四则混合运算

  1、四则混合运算的顺序是怎样的?

  在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

  在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

  2、练习。(让学生先练习并讲出算法,然后讲评)

  二、文字题的列式计算

  1、例:用去除3与2.25的差,所得的商再减去0.9,结果是多少?(先让学生列综合算式,然后讲解)

  (1)这里的“结果”是表示什么?(差)

  (2)什么数与什么数的差?(商与0.9的差)

  (3)那么商是多少?怎么算?

  (4)在老师的引导下列出综合算式:

  (3-2.25) -0.9

  =0.75 -0.9

  =1-0.9

  =0.1

  0.75除以,虽然是小数与分数混合运算,但是像这样情况还是要让学生掌握,以提高他们的运算能力。

  2.练习

  (1)25.16除以3.7的商,减去0.2乘20的积,结果是多少?

  25.16÷3.7- 0.2×20

  =6.8-4

  =2.8

  问:这里“的商”“的积”为什么可以不添上括号?

  (2)174.8减去74.7,所得的差除以0.91,得出的商再减去100.95,结果是多少?

  (174.8-74.7)÷0.91-100.95

  =100.1÷0.91-100.95

  =110-100.95

  =9.05

  问:这里“的差”为什么要添上括号?

  从以上练习中可以看出,在文字题中数学术语的理解非常重要,特别是在除法中有几种不同的表达方式要着重掌握。

  例如:

  a÷b可以读着:

  (1)a除以b; (2)b除a;

  (3) a被b除; (3)b去除a。

  可以看出:“a被b除”与“a除以b”是一样的;“b去除a”与“b除a”是一样的。

  3.总结:四则混合运算要认真审题,观察题目里的运算符号决定运算顺序,选择合理的简捷算法。对于文字题列成综合算式,审题时要注意最后一步求的是什么?在列式时如果要改变运算顺序,就要合理地使用括号,以及注意题目中的叙述,如“除”与“除以”等。

  复习内容:解决问题

  复习目标:

  1、使学生进一步理解、掌握运用分数乘法、除法知识解决有关问题,发展应用意识。

  2、形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。

  3、形成评价与反思的意识。

  4、对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论。

  复习过程

  一基础练习

  1、算一算。

  出示算式:

  过程要求:

  (1)利用计算卡片逐一出示算式。

  (2)学生口算,直接说出计算结果。

  (3)选择部分算式,说一说计算的过程、方法。

  2、列式计算。

  (1)200的是多少? (2)200减少后是多少?

  (3)甲数是500,乙数是甲数的,乙数是多少?

  (4)甲数是500,乙数比甲数多,乙数是多少?

  (5)甲数是500,乙数比甲数多,乙数比甲数多多少?

  过程要求:

  ①利用电脑课本或幻灯逐一出示以上题目。

  ②认真读题,说一说题中分率表示的意义。

  ③求一个数的几分之几是多少,用什么方法计算?

  ④列式计算。

  二知识梳理

  1、说一说解决问题,有哪些主要步骤。

  学生回答时,不必要求统一表述,让学生说出自己的理解。只要内容正确都应该予以肯定。

  如:

  (1)认真读题,理解题意;

  (2)分析题目中的数量关系;

  (3)判断解决问题的方法,列出算式;

  (4)计算;

  (5)验算。

  2、说一说分析数量关系的方法。

  过程要求:

  (1)学生回顾解决问题时,所采用的方法;

  (2)与同学交流,互相探索、整理;

  (3)不必作统一要求,让学生找到自己所理解的方法。

  3、举例说明。

  (1)出示例题。

  六年级举行“小发明”比赛,六(1)班同学上交32件作品,六(2)班比六(1)班多交1/4 。六(2)班交了多少件作品?

  (2)解决问题。

  ①认真读题,弄清题意。

  ②分析数量关系。

  A、这里的1/4表示什么?

  (表示把六(1)班作品平均分成4份,六(2)班的作品比六(1)班多其中的1份)

  B、画线段图表示。

  C、六(2)班作品是六(1)班的几分之几?

  (六(2)班的作品是六(1)班的“1+ 1/4”)

  D、求六(2)班交了多少件作品,实际是求什么?

  (实际是求六(1)班的“1+1/4 ”是多少,也就是求32件作品的“1+ 1/4”是多少件)

  E、求一个数的几分之几是多少,用什么方法计算?请列出算式,并计算结果。

  三练习。

  1、完成课本做一做。

  2、完成课文练习十四第6、7题。

  教学内容:式与方程

  复习目标:

  1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何形体的周长、面积、体积等公式。

  2、能根据字母所取的数值,算出含有字母的式子的值。

  3、理解方程的含义,会较熟练地解简易方程,能通过列方程和解方程解决一些实际问题。

  复习过程

  一回顾与交流。

  1、用字母表示数。

  (1)请学生说一说用字母表示数的作用和意义。

  (2)教师说明。

  用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

  (3)说一说你会用字母表示什么。

  学生回顾曾经学过的用字母表示数的知识,进行简单的整理后再与同学交流。然后汇报交流情况。

  ①说一说,在含有字母的式子里,书写数与字母、字母相乘时,应注意什么?

  如:a乘4.5应该写作4.5a;

  s乘h应该写作sh;

  路程、速度、时间的数量关系是s=vt.

  ②你还知道哪些用字母表示的数量关系或计算公式?

  学生汇报,教师板书。

  如:用字母表示运算定律。

  加法交换律:a+b=b+a

  加法结合律:a+(b+c)=(a+b)+c

  乘法交换律:ab=ba

  乘法结合律:a(bc)=(ab)c

  乘法分配律:a(b+c)=ab+ac

  用字母表示公式。

  长方形面积公式:s=ab

  正方形面积公式:s=a平方

  长方体体积公式:V=abh

  正方体体积公式:V=a三次方

  圆的周长:C=2πr

  圆的面积:S=πR

  圆柱体积:v=sh

  圆锥体积:v= sh

  (4)做一做。

  完成课文做一做。

  2.简易方程。

  (1)什么叫做方程?

  ①含有未知数的等式叫做方程。

  ②举例。

  如:X+2=16 4.5X=13.5 X÷ =30

  (2)什么叫做解方程?什么叫做方程的解?

  方程的解:使方程左右两边相等的未知数的值叫做方程的解.

  解方程:求方程的`解的过程,叫做解方程.

  (3)解方程。

  过程要求:

  ①学生独立解方程。

  ②请一位学生上台板演。

  ③师生共同评价,强调书写格式。

  3.用方程解决问题。

  (1)出示例题。

  学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

  (2)结合例题说一说用列方程的方法解决问题的步骤。

  (3)学生列方程解决问题。

  (4)全班反馈、交流。

  路程不变

  原速度×原时间=实际速度×实际时间

  3.8×=实际速度×2.5

  (5)做一做。

  二巩固练习

  完成课文练习十五。

  复习内容:常见的量。

  复习目标:

  1.通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。

  2.熟练掌握有关计量单位之间的进率关系,并能正确进行单位换算。

  复习过程:

  一常见的量与计量单位

  师:这一节课,我们来复习常见的量。

  板书:常见的量。

  问:我们学过哪些量?它们各有哪些计量单位?

  过程要求:

  (1)由小组同学共同分类整理。

  (2)教师引导学生列表整理,并巡视课堂进行个别指导。

  (3)全班交流。

  分类整理结果如下:

  1.长度、面积、体积单位。

  (1)板书:

  长度单位毫米厘米分米米

  面积单位平方毫米平方厘米平方分米平方米

  体积单位立方毫米立方厘米立方分米立方米

  容积单位毫升升

  (2)说一说。

  ①什么是长度?什么是面积?什么是体积?

  长度:两点之间的距离。

  面积:物体表面(图形)的大小。

  体积:物体所占空间的大小。

  ② 1厘米有多长?1分米有多长?1米呢?

  ③ 1平方厘米有多大?1平方分米有多大?1平方米呢?

  ④ 1立方厘米有多大?1立方分米有多大?1立方米呢?

  要求:学生用手比划或举例说明。

  (3)单位之间的进率是多少?有什么联系?

  1米=10分米1分米=10厘米1米=100厘米

  1平方米=100平方分米1平方分米=100平方厘米

  1立方米=1000立方分米1立方分米=1000立方厘米

  (1升=1000毫升)

  (4)你还知道哪些长度、面积或体积单位?

  ①学生回顾曾经学过的有关单位。

  如:千米、平方千米、公顷等。

  ②与同学交流,说一说你对这些计量单位的理解。

  2.质量单位。

  (1)常见单位:克(g)千克(kg)吨

  (2)进率:1吨=1000千克

  1千克=1000克

  (3)估一估。

  ①1只梨大约有多少克?1块橡皮擦大约有多少克?

  ②你的体重是多少千克?

  3.时间单位。

  (1)常见单位:年、月、日、时、分、秒。

  (2)进率:1年=12个月1月有31日、30日、28日或29日

  1年=365天(闰年366天)

  1日=24时

  1时=60分

  1分=60秒

  (3)说一说

  ① 1节课有多长?1小时大约有多长?

  ② 1秒是多长?你跑100米大约要多少秒?

  4.人民币单位。

  (1)人民币单位:元、角、分

  (2)进率:1元=10角

  1角=10分

  二单位换算

  1.说一说。

  (1)如何把高级单位的名数改写成低级单位的名数?

  (2)如何把低级单位的名数改写成高级单位的名数?

  2.练一练。

  (1)3时20分=( )分

  (2)2.6吨=( )吨( )千克

  (3)3080克=( )千克( )克

  (4)7立方分米8立方厘米=( )立方分米=( )升

  把高级单位的名数改写成低级单位的名数要乘进率,把低级单位的名数改写成高级单位的名数要除以进率。

  在学生理解单位改写的原理的基础上,再引导运用小数点移动的方法进行改写。

  3.做一做

  三巩固练习

  完成课文练习十六

六年级数学下册教案11

  教学内容分析

  教材首先用文字说明了储蓄的意义,介绍了本金、利率、利息的意义以及三者之间的关系,然后通过例4让学生掌握计算利息的基本方法。

  教学目标

  1.知道储蓄的意义,理解本金、利息、利率的意义。

  2.掌握计算利息的基本方法。

  3.经历收集信息的过程,培养学生在合作交流中解决问题的能力。

  重点:掌握利息的计算方法。

  难点:正确理解概念,能解决与利息有关的实际问题。

  教学设计思路

  创设情境,导入新课→合作交流,探究新知→巩固应用,提升能力→课堂小结,拓展延伸

  教学准备

  教师准备:PPT课件

  教学过程

  一、创设情境,导入新课。(5分钟)

  1.创设情境。

  师:同学们一定很喜欢过年吧,因为过年不仅有好吃的,好玩的,还可以得到不少压岁钱。你们的压岁钱是谁在保管着呢?(引导学生想到储蓄比较安全,并且能够得到利息)

  2.导入新课。

  师:同学们,你们了解储蓄吗?关于储蓄有哪些知识呢?这节课我们了解一下储蓄的知识。

  二、合作交流,探究新知。(20分钟)

  1.引导学生自学教材第11页关于储蓄的知识。

  (1)出示自学提示:

  ①储蓄的好处。

  ②储蓄的方式。

  ③什么是本金、利息、利率?

  ④利息的计算公式是什么?

  (2)检验自学成果,引导学生找出下题中的本金和利息。

  课件出示:明明20xx年11月1日把100元压岁钱存入银行,整存整取1年,到20xx年11月1日,明明不仅可以取回存入的100元,还可以得到银行多付给的1.5元,共101.5元。

  2.用储蓄的知识解决问题。

  (1)课件出示例4,引导学生读题并找出已知条件和所求问题。

  (2)组织小组讨论:求2年后可以取回多少钱,就是求什么。

  (3)组织学生尝试解题。

  (4)组织全班交流,明确解题思路。

  思路一:先求利息,最后求可取回多少钱。可取回钱数为本金+(本金×利率×存期)。

  思路二:把本金看作单位“1”,先求出本金和2年的利息一共是本金的百分之几,再求可以取回多少钱。可取回的钱数为本金×(1+年利率×2)。

  三、巩固应用,提升能力。(10分钟)

  1.完成教材第11页“做一做”。

  2.完成教材第14页第9题。

  四、课堂小结,拓展延伸。(5分钟)

  1.这节课我们学习了什么?引导学生回顾总结。

  2.计算利息时,存款的利率是年利率,计算时所乘的`时间单位应是年;存款的利率是月利率,计算时所乘的时间单位应是月。

  板书设计利率

  例4方法一5000×2.10%×2=210(元)

  5000+210=5210(元)

  方法二5000×(1+2.10%×2)

  =5000×(1+0.042)

  =5000×1.042

  =5210(元)

  答:到期时王奶奶可以取回5210元。

  培优作业1.刘亮有20xx元,打算存入银行2年。现有两种储蓄方法:第一种是直接存2年,年利率是2.10%;第二种是先存1年,年利率是1.50%,第一年到期时再把本金和利息合在一起,再存1年。选择哪种储蓄方法得到的利息多一些?

  第一种储蓄方法:20xx×2.10%×2=84(元)

  第二种储蓄方法:20xx×1.50%×1=30(元)

  (20xx+30)×1.50%×1=30.45(元)

  30+30.45=60.45(元)

  60.45<84,选择第一种储蓄方法得到的利息多一些。

  提示:在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。

  2.赵伯伯把一笔钱存入银行5年,年利率为2.75%,到期后取得275元利息。赵伯伯存入银行多少钱?

  275÷2.75%÷5=20xx(元)

  答:赵伯伯存入银行20xx元。

  教学反思培养学生的数学能力是小学数学教学的重要任务之一。为此,教学中,要引导学生正确运用公式计算各种情况下的利息问题。

  微课设计点教师可围绕“利息的计算方法”设计微课。

六年级数学下册教案12

  【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

  【教学目标】

  1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

  2、能按一定的比,将一些简单图形进行放大或缩小。

  【教学重点】图形的放大与缩小。

  【教学难点】按一定的比把图形放大或缩小。

  【教学准备】多媒体

  【自学内容】见预习作业

  【教学预设】

  一、自学反馈

  1、什么叫做比例尺?

  一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2、怎样求比例尺?

  求图上距离和实际距离的最简整数比。

  3、一栋楼房东西方向长40,在图纸上的.长度是50c。这幅图纸的比例尺是多少?

  (1)学生尝试独立求比例尺。

  (2)汇报交流

  50c:40=50c:4000c=1:80

  (3)你是怎么想的?

  二、关键点拨

  1、求比例尺。

  (1)怎样求一幅图的比例尺?

  先写出图上距离与实际距离的比,再化成最简整数比。

  (2)比例尺有什么特点?

  比例尺是前项或后项为1的比。

  (3)比例尺可以怎样表示?

  数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

  2、求实际距离。

  (1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

  (2)学生尝试独立列比例解答。

  (3)汇报交流

  解:设这两地之间的实际距离大约是x厘米。

  =

  =5000000

  5000000c=50

  (4)你觉得在求实际距离时要注意什么问题?

  实际距离一般用千米做单位。

  3、求图上距离

  (1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

  (2)学生尝试画操场的平面图。

  (3)汇报交流

  你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

  三、巩固练习

  1、课本第53页练习八第1题求比例尺。

  2、课本第52页做一做第1题。

  3、课本第52页做一做第2题。

  四、分享收获 畅谈感想

  这节课,你有什么收获?听课随想

六年级数学下册教案13

  教学内容:

  人教版六年级下册16页

  教学目标:

  1:知识与技能:了解利率调整的原因,知道如何是收益最大;让学生获得运用数学知识,解决实际问题的能力。

  2:过程与方法:经历小组合作调查交流储蓄知识,解决和利率有关的实际问题的过程,体会成功的喜悦。

  3:情感价值观:感受数学知识与日常生活的密切联系、体会学数学、用数学的乐趣,激发学习知识的热情。

  教学重点:深化百分数的意义和运用,掌握百分数问题的解决办法。

  教学难点:强调生活体验和社会实践,培养分析和解决问题的能力。

  课前准备:学生自己或小组到家附近的银行做调查、网上调查。

  教学用具:多媒体、堂上小组汇总用纸:

  本课总的设计理念:

  本课的教学设计着力体现把生活中的鲜活题材引入学习数学的大课中,只要让数学扎根于生活这个肥沃的土壤,注意以学生的生活实践为基础,选择那些看得见、摸得着、感兴趣的,能激发他们好奇心和求知欲的内容,才是生动的最具创造性的'素材。学生才会觉得自己的数学学习是有意义的、有价值的从而产生积极的情感体验和开拓意识也才真正体现培养学生的学习数学、应用数学的意识。

  新授课:

  一:复习引入

  1:跟着学校的吉祥物晶晶和灵灵来到中国银行,让孩子自己发现看到什么数学信息?并根据数学信息说出有关的数学知识?

  2:利息是计算方法?

  同学们,在前面的学习中,我们知道“利息”与我们的生活是息息相关,可以说“利息”也是我们生财之道。但是不一样的理财方式,带来的效益是不同的,那怎么样理财才能给我们带来尽可能多的回报呢?今天我们一起来探讨《生活与百分数》的联系。

  二:探索新知

  活动(一):调查最新的利率,了解国家调整利率的原因。

  1:自己或小组为单位,汇报家附近银行最新的利率、国债和理财产品。

  (给一个调查表学生自己填写,并用于小组讨论与汇总)

  2:汇报完后与课本11页的利率表进行对比有什么不同或相同的地方?

  (学生自己回答,发表自己的看法)

  3:提出问题,你知道国家调整利率的原因吗?

  (学生根据自己上网查找资料小组讨论、再汇报)

  综合网络的结果,调整理利率的原因大体如下:

  A:宏观调控经济发展规划。如:为了限制房地产过热,可以调高利息。

  B:抑制通货膨胀,调高利率,引导储蓄,减少市场上资金的流动。

  C:控制外汇汇率及外汇储备,调高利率,持有人民币的意愿增加有利于人民币的升值。

  活动(二)利用调查的利率来给李阿姨设计收益最大的储蓄方法

  我们从宏观上了解到利率也是根据实际需求不断调整。从而具体到我们每个人的实际需求。我们应该选取怎么样的理财方式,也要慎重选择。请根据屏幕的利率表,帮助李阿姨算一算。李阿姨准备给儿子存2万元,供他六年后上大学。如果你们是李阿姨的理财团队,你们会给李阿姨多少种储蓄方法?你怎么说服李阿姨用你们的方法?并告诫李阿姨如何选择理财?

  1:带着以上的问题,让小组讨论?

  2:小组汇报方法?

  3:各小组补充?

  4:开始计算

  5:小组汇报你选用了那种方法,并把答案算出来。(温馨提示:理财产品有很多种,越高回报率的产品存在的风险越大)(同时板书)

  6:学生自己看结果选取最优方案(尝试成功的喜悦)

  7:总结:确定储蓄原则:

  能定期不活期,

  能长期不短期,

  能国债不储蓄。

  8:学生自己独立完成:

  老师有1万元钱,有两种理财 方式:一种是买3年期国债,年利率4.5%;另一种是买银行1年期理财产品,年收益率4.3%,每年到期后连本带息继续购买下一年的理财产品。3年后,哪种理财方式收益更大? (学生独立完成、交流、指名回答集体订正)

  活动(三)了解千分数、万分数。

  日常生活中常常见到百分数,但你知道吗?除了百分数还有千分数、万分数!请同学们打开课本16页,自己阅读学习。

  1:交流感知;练习本自己写千分号、万分号!在规定的时间内看看自己能写多少个千分数和万分数!

  2:尝试让孩子说说日常生活中常见到的千分数、万分数(自己准备好PPT展示)

  三:本课小结

  让孩子自己说说自己本课的收获,并回家分享给爸妈知道,自己的理财经验。

  四:拓展练习:

  结合自己调查的利率表,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息,明天汇报!

  板书设计:

  生活与百分数

  整存整取 国债 理财产品

  A:1+1+1+1+1+1 A:1+1+1+1+1+1 A:一次6年

  B:2+2+2 B:3+3

  C:3+3

  确定储蓄原则

  能定期不活期 能长期不短期 能国债不储蓄

六年级数学下册教案14

  教学内容:教科书第45页的例5,“试一试”,“练一练”,练习十的第5~8题。

  教学目标:

  1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基

  本性质。

  2、让学生在经历探究的过程中,体验学习数学的快乐。

  教学重点:

  学会解比例。

  教学难点:

  掌握解比例的书写格式。

  教学准备:多媒体

  教学过程:

  一、导入

  1、小练笔:

  在()里填上合适的数。5:4=():124:()=():6

  2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

  3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。

  二、新授

  出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

  (1)读题审题,理解题意

  老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

  (2)引导分析,写出比例

  如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

  师介绍:“像上面这样求比例中的未知项,叫做解比例。

  (3)找到依据,变形解答

  讨论:怎样解比例?根据是什么?

  思考:“根据比例的基本性质可以把比例变成什么形式?”

  教师板书:6x=13.5×4。“这变成了什么?”(方程。)

  说明:这样解比例就变成解方程了,利用以前学过的解方程的`方法就可以求出未知数X的值。

  (4)、板书过程,思路

  师生把解比例的过程完整地写出来。指名板书。

  师问:第一步计算的依据是什么?师生解比例的过程。

  提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

  (5)、练习提高,再说思路

  做“试一试”,学生独立完成,再说说解题思路。

  三、巩固练习

  1、做“练一练”

  2、做练习十第6、7、8题。

  学生交流

  四、

  1、通过本课的学习,你有哪些收获?

  2、把你掌握的解比例的方法在小组里介绍一下,交流。

  五、作业

  完成《练习与测试》相关作业

  板书设计

  比例的基本性质

六年级数学下册教案15

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话导入

  同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。

  ⊙实践与操作

  1.明确提出活动要求。

  “有趣的平衡”活动由三部分组成。

  (1)制作实验用具。

  (2)探索规律,体验“杠杆原理”。

  (3)应用规律,体会反比例关系。

  2.小组合作,自主活动。(教师巡视,适当点拨)

  3.展示制作实验用具情况。

  4.汇报探索到的规律。

  观察实验二、实验三的操作过程,你有什么发现?

  预设

  生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。

  生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。

  生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。

  生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。

  5.活动小结。

  “左边所放棋子数×左边的.刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。

  ⊙典型例题解析

  你能利用杠杆原理算出左边物体的质量吗?

  分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。

  解答 500×5÷2=1250(g)

  ⊙探究活动

  1.课件出示探究内容。

  星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?

  2.小组讨论、分析、解答。

  3.交流、汇报。

  (答案不唯一)

  ⊙全课总结

  通过本节课的学习,你有什么收获?

  ⊙布置作业

  找一找生活中还有哪些地方应用了杠杆原理。

  板书设计

  有趣的平衡

  有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。

【六年级数学下册教案】相关文章:

数学六年级下册教案07-07

人教版数学六年级下册教案01-10

六年级数学下册教案10-11

六年级数学下册教案04-11

六年级下册数学教案09-06

【精华】六年级数学下册教案06-24

六年级下册数学教案06-25

六年级下册数学教案09-29

数学六年级下册圆柱的体积教案07-09

六年级下册数学教案【热】09-27