- 相关推荐
行程问题应用题
行程问题应用题1
1、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。已知下坡路每小时行20千米,那么上坡路每小时行多少千米?
【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时
回的上坡时间+回的'下坡时间=3.5小时
则:来回的上坡时间+来回的下坡时间=8小时
所以来回的下坡时间=60÷20=3(小时)
则:来回的上坡时间=8-3=5(小时)
故:上坡速度为60÷5=12(千米/时)
2、两辆汽车同时从两地相对开出,沿同一条公路行进.速度分别为80千米/小时和60千米/小时,在距两地中点30千米的某处相遇.两地相距多少千米?
【解析】两人相遇时快车比慢车多行了30×2=60千米,则两车共行驶60÷(80-60)=3小时,两地相距(80+60)×3=420千米
行程问题应用题2
反映时间、速度、距离三者之间关系的应用题一般称为行程问题。行程问题的内容相当广泛,目前小学数学教材中行程问题仅涉及相向运动中的相遇问题。
相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。因此,它有三种基本形式:
第一是已知甲、乙的速度和相遇的时间,求距离;
第二是已知甲、乙的速度和距离,求相遇的时间;
第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。
例 1 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?
[解]46×3.5+48×3.5
=161+168
=329(千米)。
或(46+48)×3.5
=94×3.5
=329(千米)。
答:甲、乙两个城市的路程有329千米。
[常见错误]
46×3.5+48
=161+48
=209(千米)。
答:甲、乙两个城市的路程有209千米。
[分析]
这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。
例 2 两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?
[解]255÷(45+40)
=255÷85
=3(小时)。
45×3=135(千米)。
40×3=120(千米)。
答:相遇时甲车行了135千米,乙车行了120千米。
[常见错误]
(1)255÷(45+40)
=255÷85
=3(小时)。45×3=135(千米)。
答:相遇时各行了135千米。
(2)255÷(45+40)
=255÷85
=3(小时)。
40×3=120(千米)。
45×3=135(千米)。
答:相遇时甲车行了120千米,乙车行了135千米。
[分析]
解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的学生来说,更是如此。防止粗心大意的办法是要养成检验的良好习惯。
例 3 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
[解][3300-(82+83)×15]÷(82+83)
=[3300-165×15]÷165
=[3300-2475]÷165
=825÷165=5(分钟)。
答:还要5分钟两人可以相遇。
[常见错误]
(1)(82+83)×15÷(82+83)
=165×15÷165
=2475÷165
=15(分钟)。
答:还要15分钟两人可以相遇。
(2)[3300-(82+85)×15]÷82
=[3300-165×15]÷82
=[3300-2475]÷82
=825÷82
≈10.1(分钟)。
答:还要行10.1分钟两人可以相遇。
[分析]
这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。防止错误的.主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。
例 4 甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。客船开出12小时与货船相遇。已知货船每小时行15千米,客船每小时行多少千米?
[解](480-15×4)÷12-15
=(480-60)÷12-15
=420÷12-15
=35-15
=20(千米)。
答:客船每小时行20千米。
[常见错误]
(1)480÷12-15
=40-15=25(千米)。
答:客船每小时行25千米。
(2)(480-15×4)÷12
=(480-60)÷12
=420÷12
=35(千米)。
答:客船每小时行35千米。
[分析]
这道题中的数量关系较为复杂,解题时稍不留意就出错。错解(1)是套用公式,没有注意到“货船先行了4小时客船才开出”这个条件。错解(2)求出的是客、货两船的速度和。解答较复杂的应用题一定要养成认真审题的习惯,行程问题给出线段图将有助于理解题意与选择解法。
行程问题应用题3
1、一条公路全长60千米,分成上坡、平路、下坡路三段,各段路的长度比是1:2:3,某人走各段路所用的时间比是3:4:5.已知他走平路的速度是每小时5千米,他走完全程用多少时间?
2.甲乙两车同时从A、B两地相向开出,速度比是7:11.两车第一次相遇后继续按原方向前进,各自到达终点后立即返回,第二次相遇时,甲车离B地80千米,求A、B间的距离。
3.甲乙两车同时从东西两站地相向开出,第一次在过中点西侧12千米处相遇,相遇后继续按原方向前进,各自到达终点后立即返回,第二次相遇点离东站20千米,求东西两站间的'距离。
4.甲乙两车同时从A、B两地相向开出,第一次相遇点离A站90千米,第一次相遇后继续按原方向前进,各自到达终点后立即返回,第二次相遇时离B地的距离占AB两站间的35%,求A、B间的路程是多少千米?
5.甲乙二人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:
2.相遇后甲速提高20%,乙速提高40%,当甲到达B地时,乙离A地26千米,求
A、B间的距离。
6、一辆快车和一辆慢车分别从甲乙两地同时相对开出,经过12小时相遇,快车又行了8小时到达乙地,那么相遇后慢车还要行驶多少小时才能到达甲地?
7.有一人从甲地上山,越过山顶到达山脚的乙地。他上山速度是每小时2千米,下山速度是每小时5千米。他从甲地到乙地要20.5小时,从乙地到甲地需14.5小时。求甲乙两地的距离.
8.从甲地到乙地快车要6小时,慢车要8小时,如果辆车同时从甲乙两地相对开出,可在距中点20千米处相遇,甲乙两地相距多少千米?
9、一个圆形花坛周长是240米,甲乙两人分别从花坛直径的两端同时出发,沿着圆周行进。如果两人同向而行,甲追上乙需300秒;如果两人逆向而行50秒相遇。甲乙两人的速度各是多少?
10、一艘轮船顺流航行120千米,逆流航行80千米,共用16小时;顺流航行60千米,逆流航行120千米也用16小时;求水流速度和船在静水中的速度
11、甲乙两车同时从A、B两地相向开出,经过2小时相遇。.两车相遇后继续按原方向前进,又经过1.5小时,甲车到达B地,这时乙车距A地还有35千米,求A、B间的距离。
12、甲乙两人同时以每小时4千米的速度从到地办事,行走2.5小时候,甲返回A地取文件,他以每小时6千米的速度赶往A地,取到文件后,仍以每小时6千米的速度回头追赶乙,结果他们同时到达B地。已知甲在办公室耽误了15分钟。求A、B间的距离
13、一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到;如果以原来的速度行120千米后,再将速度提高25%,则可提前40分钟到,甲乙两地相距多少千米?
14、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
行程问题应用题4
相遇求路程的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的'行程问题。其中必须让学生明确“运动方向”、“出发时间”“运行结果”等运动要素。教学时,以一个物体运动的特点和数量关系为基础,让学生认识“相遇问题”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。
教学中,通过多媒体的演示,让学生了解两个物体在同一段路上运动的方向、地点、时间和结果等方面可能出现的各种情况,这样学生观察起来直观、易懂,兴趣调动起来了。通过填写表格,让学生理解“张华走的路程+李诚走的路程=他们两家的距离”为例5的解法作了铺垫。
在例5的解题中,教师利用线段图帮助学生理解“小强走的路程+小丽走的路程=两家的距离”,同时,通过多媒体演示,让学生认识“速度和”,理解“4个每粉两人所走的路程的和与两家的距离是相等的”从而使学生进一步理解解题思路,掌握解答方法。
行程问题应用题5
教学目标:
1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。
2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。
3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。
4、在《小组竞赛学习法》督促下,逐步引导学生自学 , 使学生的被动学习变为主动学习。
教学重难点
重点:通过学案引导学生分析例题 , 寻找等量关系列方程。
难点:
1、通过学案引导学生从不同角度来寻找等量关系,列方程。
2、通过小组竞赛做题的竞争 , 慢慢地培养学生学习的'积极性 , 逐步加强学生的自学能力。
教学方法:《小组竞赛学习法》
教学设计
课前准备
创设悬念 提出问题。
(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)
课堂教学过程
一、老师出示学案的答案(选做题暂不给答案 , 下课后,学生可用 U 盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得 1 分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。 ( 选做题让教师讲解后再让学生讲的不加倍给分。
小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用 20 分 -30 分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。
二、小组推磨检查,一般每小组的前四名检查下组的后四名,( 8 人一个组)。
三、各组长统计分数并让被检组认可,教师统计各组分数, 对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。
四、布置下节自学任务而结束本节上课。
以下是备用内容
学生自学内容 (就是学案)
先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:
问题 1“ 甲乙两人,同时出发,相对而行,距离是 50 千米,甲每小时走 3km, 乙每小时走 2km ,问他俩几小时可以碰面?
苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗? ”
请 同学们先画出示意图:
再由图填空:甲乙相遇时,他们共行的路程为( )
从路程的角度分析:甲走的路程 + 乙走的路程为( )
从时间角度分析:甲走的时间 = 乙走的时间。
如果 设甲、乙相遇时他们所用时间为 x 小时,此时相等关系:
甲走的路程 + 乙走的路程) = ( )
即甲行走的速度×甲行走的( ) + 乙行走的( )×乙行走的时间 = ( )
行程问题应用题6
1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的。速度应为多少?
解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?
解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的`平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米).
行程问题应用题7
1、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案:为两人跑一圈各要6分钟和12分钟。
600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
2、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案:为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的`和。
3、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案:为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
4、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米
5、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b两地相距多少千米?
答案:720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案:为22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案:是猎犬至少跑60米才能追上。
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8、 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟
设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分钟,乙需90分钟
故得解
9、如题:甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。在第二次相遇时离B地的距离是AB全程的1/5。这时已知甲车在第一次相遇时行了120千米。问题是AB两地相距多少千米?
答案:是300千米。
通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
行程问题应用题8
1、甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。已知摩托车开始的.速度是每小时50千米,中途减为每小时40千米;汽车的速度是每小时80千米,并在途中停留10分钟。那么,张山骑摩托车在出发分钟后减速。
答案与解析:
汽车行驶了100÷80×60=75(分)
摩托车行驶了75+60+10=145(分)
设摩托车减速前行驶了x分,则减速后行驶了(145-x)分。
5x+580-4x=600
x=20(分)
2、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?
解:甲车到达终点时,乙车距离终点40×1=40千米
甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时
两地距离=40×5=200千米
行程问题应用题9
【例1】
龟兔赛跑,全程5.4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,……,那么先到达终点的比后到达终点的快几分钟呢?
【例2】
在一条公路上,甲、乙两个地点相距600米。张明每小时行走4千米,李强每小时5千米。8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,……分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?
5.多人行程---这类问题主要涉及的人数为3人,主要考察的`问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
【例1】
有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。甲每分40米,乙每分38米,丙每分36米。出发后,甲和乙相遇后3分钟又与丙相遇。这花圃的周长是多少?
【例2】
甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。
行程问题应用题10
1. 甲乙两地相距234千米,一只船从甲到乙要9小时,从乙到甲要13小时,问船速和水速各是多少?
2. 一只客船的船速为每小时15千米,它从上游甲地到下游乙地共花了8小时,水速是每小时3千米,问客船从乙地返回甲地要多少小时?
3. 两地相距360千米,一艘游艇在其间驶个来回。顺水而下时要12小时,逆水而上时要18小时,求游艇速度。
4. 客船和货船的速度分别中每小时20千米和16千米。两船从某码头同向顺水而行,货船先行3小时,已知水流速度是每小时4千米,问几小时后客船可以追上货船?
5. 一船每小时行25千米,在大运河中航行140千米,水速是每小时3千米,要几小时?
6. 甲、乙两码头相距 72 千米,一艘轮船顺水行需要 6 小时,逆水行需要 9 小时,求船在静水中的速度和水流速度。
7. 静水中,甲船速度是每小时 22 千米,乙船速度是每小时 18 千米,乙船先从某港开出顺水航行, 2 小时后,甲船同地同方向开出,若水流速度为每小时 4 千米,求甲船几小时可以追上乙船?
8. 一条大河有 A 、 B 两个港口,水从 A 流向 B ,水流速度为每小时 4 千米,甲、乙同时由 A 向 B 行驶,各自不停的在 A 、 B 间往返航行,甲船在静水中的速度是每小时 28 千米,乙船在静水中的速度为每小时 20 千米,已知两船第二次迎面相遇的地点与甲船第二次追上乙船的地点相距 40 千米,求 A 、 B 两港之间的距离。
9.甲、乙两港间的'水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
10.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
行程问题应用题11
准备题:
1、 小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?
2、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?
3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?
用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?
知识整理:
基本数量关系:
【练习巩固】
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?
3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?
4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?
5、甲、乙两车同时从相距480千米的`两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?
6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?
针对练习:
1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?
2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?
3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?
4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?
5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?
6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?
提高题:
1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?
2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?
【行程问题应用题】相关文章:
工程问题应用题教案11-25
数学相遇问题应用题04-09
工程问题应用题教案3篇11-26
归一问题的数学应用题04-09
数学利润问题的应用题(精选5篇)04-09
六上数学工程问题的应用题04-09
分数应用题说课稿08-04
数学实际应用题04-09
小学数学应用题04-10