- 相关推荐
五年级数学下册教案优秀15篇
作为一位杰出的教职工,通常会被要求编写教案,借助教案可以更好地组织教学活动。我们该怎么去写教案呢?以下是小编帮大家整理的五年级数学下册教案,欢迎大家分享。
五年级数学下册教案1
教学目标:
1、经历自主尝试用折线统计图表示数据并进行描述、分析的过程。
2、进一步认识折线统计图,能用折线统计图有效地表示数据,能根据统计图中的数据进行简单的预测。
3、体验数学与日常生活的密切联系,认识到许多实际问题都可以借助折线统计图来表述和交流。
教学重难点:
能用折线统计图有效地表示数据,能根据统计图中的数据进行简单的预测。
教学过程:
画折线统计图
让学生了解表中的数学信息。
观察未完成的统计图,说一说图中圆点表示什么,然后鼓励学生试着完成折线统计图。
交流、展示学生画的统计图,让画得美观、漂亮的同学介绍画图的.方法。
议一议
观察统计图,用自己的语言描述这6年中戴眼镜的人数有什么变化。
你能试着说一说这种变化的原因吗?
练一练
让学生读统计图,了解表中的信息。
让学生观察身长变化的统计图,说一说图的特点,使学生了解,第一小格表示1到50厘米,以后每格表示2厘米。然后再让学生自己完成折线统计图并交流、展示。
鼓励学生自己画体重变化的折线统计图。
交流、展示学生画的统计图。
根据画好的统计图回答问题。
五年级数学下册教案2
教学内容:
教材第122 、123页的内容及第124 、125页练习二十四的第1—3题。
教学目标:
1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3、体会统计在生活中的.广泛应用,从而明确学习目的,培养学习的兴趣。
重点难点:
1、重点:理解众数的含义,会求一组数据的众数。
2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。
教具准备:
投影。
教学过程:
一、导入
提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。
二、教学实施
1、出示教材第122页的例1 。
提问:你认为参赛队员身高是多少比较合适?
学生分组进行讨论,然后派代表发言,进行汇报。
学生会出现以下几种结论:
( 1)算出平均数是1 。 475,认为身高接近1 。 475m的比较合适。
( 2)算出这组数据的中位数是1 。 485,身高接近1 。 485m比较合适。
( 3)身高是1 。 52m的人最多,所以身高是1 。 52m左右比较合适。
2、老师指出:上面这组数据中,1 。 52出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。
3、提问:平均数、中位数和众数有什么联系与区别?
学生比较,并用自己的语言进行概括,交流。
老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。
4、指导学生完成教材第123页的“做一做”。
学生独立完成,并结合生活经验谈一谈自己的建议。
5、完成教材第124页练习二十四的第1 、2 、3题。
学生独立计算平均数、中位数和众数,集体交流。
三、思维训练
小军对居民楼中8户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。
( 1)计算出8户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)
( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72户)一个月内使用塑料袋的数量作出预测。
五年级数学下册教案3
教学内容
正方体的认识
教材第20页的内容及练习五第4、第9题。
教学目标
1.通过观察实物和动手操作,掌握正方体的特征,建立正方体的概念。
2.理解长方体和正方体之间的关系,明确正方体的特征,掌握正方体与长方体的区别与联系。
3.培养学生的观察、操作和抽象概括的能力,发展空间观念。
重点难点
重点:掌握正方体的特征,理解正方体与长方体的关系。
难点:建立立体图形的概念,形成表象。
教具学具
多媒体课件,正方体实物模型。
教学过程
一、创设情境,激趣导入
师:当右面长方体的长、宽、高都相等的时候,这个长方体变成了什么?
生:正方体。
师:同学们猜得对不对呢?老师暂时先保密,相信学完本节课的内容,大家就都清楚了。
【设计意图:通过把长方体变成正方体,把正方体的特征化难为易,学生初步体会到正方体与长方体的关系】
二、探究体验,经历过程
投影出示例3 。
1.探究正方体的特征。
师:谁还记得上节课我们是从哪几个方面研究长方体的特征的?
根据学生的回答,老师板书:面、棱、顶点。
师:那正方体有几个面、几条棱、几个顶点?它的面和棱各有什么特征呢?请你也用探究长方体的方法,看一看,量一量,比一比,把你的发现记录下来。
师:请同学们观察正方体的特征。(出示观察要点)
(1)正方体有几个面?有什么特点?
(2)正方体有几条棱?有什么特点?
(3)正方体有几个顶点?
【设计意图:利用学生的心理特点,让学生进行看、数、量、比的实践活动,凸显知识的形成过程,采用多种方式开展小组合作研究,发挥了学生的创新思维,教学生学会学习方法,也提高了学生的学习兴趣】
小组汇报:
(1)正方体有6个面,这6个面都完全相同。
(2)正方体有12条棱,这12条棱长都相等。
(3)正方体有8个顶点。
2.探究正方体和长方体的区别与联系。
师:通过制作正方体,相信同学们一定对正方体的特征有了更深的了解,到现在为止,我们已认识了长方体和正方体这两种立体图形,那么让我们想一想,它们有什么相同点和不同点呢?
学生对照长方体和正方体模型,在组内交流观察到的长方体和正方体的相同点和不同点。教师巡视指导,学生汇报讨论结果。
投影展示:
相同点不同点面棱顶点面的形状面积棱长6个12条8个6个面都是长方形(也可能有两个相对的面是正方形)相对的面完全相同相对的棱长相等6个12条8个6个面都是正方形6个面的面积都相等12条棱的长度都相等
师:说它是特殊的长方体,它特殊在哪儿呢?(让学生明确正方体是一个长宽高都相等的长方体)
师:现在我们之前的那个猜测,是不是得到验证了呢?如果我们画图来表示它们之间的'关系,该怎样画呢?
板书展示:
【设计意图:通过对长方体及正方体的特征的比较,从而渗透事物是相互联系的辩证思想。以图文表结合的形式,生动、形象、直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通】
三、课末总结,梳理提升
在这节课里,我们认识了正方体,知道了正方体有6个面,每个面都完全相同,有8个顶点,12条棱,每条棱的长度都相等。了解了长方体与正方体的区别与联系,知道了正方体是特殊的长方体。
板书设计
教学反思
在本节课的教学中,我注重了知识的条理性,培养学生有条理地研究问题和总结结论。在研究长方体和正方体的区别和联系时,我让学生分别从面、棱、顶点三方面去研究,学生对于研究有了方向。学生在小组内讨论结束后,我组织学生有条理地总结,并有条理地板书。让学生自己先研究再交流,为后面学习长方体的表面积作铺垫。
课堂作业新设计
A类
1.因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体。
2.一个正方体的棱长为a,棱长之和是( ),当a=6厘米时,这个正方体的棱长总和是( )厘米。
3.一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?
B类
用72厘米长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少厘米?
参考答案
课堂作业新设计
A类:
1.相等特殊2. 12a 72 3. 5×12=60(厘米)
B类:
72÷12=6(厘米)
教材习题
教材第20页做一做
(1) 8个(2)略(3)搭成的是正方体
教材第21页练习五
4.正方体10厘米6个9. C F D
五年级数学下册教案4
教学目标:
1.使学生掌握质数和合数的意义,能正确判断一个数是质数还是合数。
2.知道100以内的质数,会熟记20以内的质数。
3.培养学生自主探索,合作交流的能力。
教学重点:理解质数和合数的意义。
教学难点:正确判断一个数是质数还是合数。
教学准备:PPT课件
一.创设情境,生成问题
同学们,你们知道2的倍数有什么的特征吗,如果把这些数分类,可以怎样分呢?(可以分为奇数和偶数)还可以怎样分呢?这节课我们就来共同探究新的知识。
二.探究新知
1.探究质数和合数的意义
( 1 )提问:找出1~20各数的因数。
( 2 )学生讨论。
( 3 )汇报讨论结果。教师根据学生的汇报板书:
1的因数:1。
2的因数:1,2。
3的因数:1,3。
4的因数:1,2,4。
5的因数:1,5。
6的因数:1,2,3,6。
7的因数:1,7。
8的因数:1,2,4,8。
……
( 4 )提问:你能按照上面各数的因数的个数给这些数分类吗?
有1个因数的数:1。
有2个因数的数:2,3,5,7,11,13,17,19。
有2个以上因数的数:4,6,8,9,10,12,14,15,16,18,20。 (学生可能还会分成有3个、4个、5个、6个因数的,教师可以说明,把有3个、4个、5个、6个因数的数归为一类,
( 5 )观察比较,发现特点。师:观察2,3,5,7,11的因数,你发现了什么?(只有1和它们本身两个因数)
师:观察4,6,8,9,10的因数,你发现了什么?
(除了1和它们本身还有别的因数)
教师明确:根据这些数的因数的个数的多少给这些数分类,也就是今天我们要学习的新知识--质数和合数。
( 6 )明确质数、合数的意义。
(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
(2)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。(板书)
(3)提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有1个因数,既不符合质数的特点,也不符合合数的特点。
(4)提问:判断一个数是质数还是合数,关键看什么?(看因数的'个数,有2个因数的数是质数,有2个以上因数的数是合数)
( 7 )课件出示自然数的两种分类方法
设计意图:质数和合数是对自然数进行分类的另一种方法,在本环节的教学设计中,教师把探究知识的过程交给学生,让学生在合作交流的过程中知道按因数个数的多少可以把自然数分为质数、合数和1三类,学生很容易掌握本节课所学的知识,轻松、愉快地突破了教学难点。
2.找出100以内的质数,做一个质数表。
用课件出示教材第14页的例1
师:想一想做质数表时应该划掉什么数?
让学生交流找质数的方法
学生1:应先划掉自然数1
学生2:再划掉2,3,的倍数,但是2,3本身不能划掉。
学生3:再划掉5,7的倍数,但是,5,7本身不能划掉。
学生4:……
归纳找质数的方法
用课件出示100以内的质数表,并齐读找到的25个质数。
三.巩固应用,内化提高
1.看谁能猜出老师家的电话号码。
2.检测
3.想一想
4.判断
5.思考
设计意图:这是具有检测性的一个环节,通过有针对性的、有层次、有坡度的应用练习,帮助学生把所学数学知识应用于实际生活,促进学生对知识的理解和应用。
四.课堂总结
通过今天的学习,你有哪些收获?
教学反思
1.自主学习能力可以说是学生学会求知、学会学习的核心。在学生找20以内各数的因数时,放手让学生自己想办法在最短的时间内找出各数的因数,并在教师的引导下按因数的个数给各数分类,最终得出质数和合数的概念,让学生成为探索家。
2.设计有梯度的练习题,促进学生差异发展。 “因材施教”是教学工作的重要原则,“因材而练”,就是要让不同的学生做不同的练习,真正实现《数学课程标准》中提出的“不同的人在数学上得到不同的发展”目标。因此,本课时在习题的设计上呈现了多样性的原则,让学有余力的学生可以只选择难度较大的习题,学习困难的学生也可以避开那些啃不动的难题,选择基础题和经过努力可以完成的习题。实行同一起点,不同的人达到不同的终点,这样既保护了学生的自信心和自尊心,又调动了学生的主动性和积极性,促进了学生的差异发展。
五年级数学下册教案5
方向与路线
教育目标:
1.知识与技能:能根据平面示意图,用角度确定并描述物体所在的方向;会看简单的路线图,能根据路线图说出行走的方向和路线。
2.过程与方法:在辨认物体方向和路线的过程中,发展学生的空间观念。能解决现实生活中有关方向和路线的简单实际问题,并试图寻找其它方法。
3.情感、态度与价值观:体验数学与日常生活的密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
(一)在平面图上用角度确定并描述物体所在的方向
教学目标:
1.经历读平面示意图,用角度描述物体所在的方向的过程。
2.能读懂简单的平面示意图,会测量角并用角度描述物体所在的方向。
3.体会用平面图表示事物和用角度描述物体方向的作用,发展学生的空间观念。
教学重难点:
能读懂简单的平面示意图,会测量角并用角度描述物体所在的方向。
教学过程:
一、读示意图
1.让学生看书上的示意图。
观察火车站广场周围主要有哪些服务设施?并交流
2."以中心花坛为观测点,你了解到哪些信息?"提出这个问题让学生自己去思考
同桌之间交流
3.教师提出:怎样描述出站口、托运处的方向才更准确呢?
鼓励学生大胆发表自己的意见
二、描述方向
1.让学生看18页的含有角度的示意图,让学生用角度描述出站口、托运处在花坛的什么方向?给学生充分表达不同描述方法的机会。
2.看19页示意图,鼓励学生描述其他设施所在的方向。
三、练一练
第1题:指导学生先用量角器测量出每个同学家玉栋、南、西、北构成的'角各是多少度,然后再填空。
第2题:先让学生说一说怎样确定某地所在的方向。
教学后记:
给学生充分的观察图、表述自己意见的机会,使学生体会用角度描述物体所在方向的作用。
(二)认识简单路线图
教学目标:
1.结合具体事例,经历读线路图、用语言描述行走路线的过程。
2.会看简单的线路图,能根据线路图说出行走的方向和路线。
3.感受线路图与现实生活的密切联系,体会线路图在表达和交流问题中的作用。
教学重难点:
会看简单的线路图,能根据线路图说出行走的方向和路线。
教学过程:
一、读示意图
1.让学生看书上的示意图。
指导学生认识图例和1号、2号线路。
2.从上面的线路图中,你了解到哪些信息?
让学生观察、思考。
3.交流观察的结果。
二、模拟出行
1.从北京站到天安门怎样乘车?
让学生先思考,再交流。
2.你想去什么地方?如何乘车?
鼓励学生提出问题,并交流乘车路线。
三、练一练
教学后记:
让学生在观察、交流,说一说中,了解线路图的知识,提高学生适应现实生活的能力,使学生学会怎样出行和适应生活。
五年级数学下册教案6
一、复习铺垫,导入新课
师:今天上新课之前老师照例要来考考你们对以前的知识掌握的如何?愿意接受考验吗?
1.口答下面每组数的最小公倍数。
9和27 8和9 6和8
先独立思考一下,然后举手回答,并说说你是怎么求的?
指名学生口答。
师:看来大家对最小公倍数的求法掌握不错。下面请看:小黑板出示。
2.在()里填上合适的数。
2/5= ()/10=6/() = ( )/( )
同桌互相说一说,并说出思考过程。指名口答时再说说这么做的依据是什么?
3.把下面分数约分。
14/16 15/27 36/24
独立完成,指名口答。并讨论约分时的分子和分母发生了怎样的变化?在约分的过程中什么没有发生改变?
过渡:今天我们将继续运用分数的基本性质来学习新的知识。
二、自主探索,建构新知
1.教学例题
(1) 出示例题4:把3/4和5/6改写成分母相同而大小不变的`分数。
师:你会运用以前学过的知识进行改写吗?试试看。做完之后和同桌讨论以下问题。同时出示讨论题:A把这两个分数改写成分母相同的分数,首先要确定什么?B在改写的过程中,什么发生了变化?什么没有发生变化?改写的依据是什么?
学生在自己本子上独立尝试完成,师巡视,发现不同方法者请板演。
(2) 讲评板演时围绕2个讨论题展开。指名说说改写时首先确定的是什么?
师:对呀,要想改写成分母相同的分数首先应该确定用几来做分母。那请同学们说说这几位同学分别是用什么做他们的分母的?(指名口答)那有没有更大的数分母呢?(指名举例)
师:哦,看来可以用来做他们分母的数还真不少!那么谁来说说在改写的过程中什么发生了变化?什么没有发生变化呢?(指名口答)师引导并强调分数的分子和分母都变大了,但分数的大小没变。是根据分数的基本性质来做的。
(3)师:其实呀刚才大家在尝试解题的过程中已经不知不觉地学会了一样新知识,就是通分。(板书:通分)像刚才大家把3/4和5/6这两个原本分母不一样的分数,分别改写成了分母一样,而又大小不变的分数,这个过程就可以说是通分。书上是怎么说的呢?我们不妨打开书本来读一读。
(4)生自学书本65页,然后指名说说什么是通分?什么是异分母分数?什么是同分母分数?(根据学生回答是板书:异分母分数——同分母分数)问:那异分母分数化成同分母分数有什么条件吗?(引导回答和原来分数相等,并板书在横线上)
(5)师:这个相同的分母我们也给它取个名字,叫公分母。(指板演题)谁来说说这几位同学各取什么为他们的公分母?(学生口答)
师:那为什么不取10或者20呢?一定要取12、24、48、?它们和原来这两个分母有什么关系?(引导回答出是原来两个分母的公倍数)
师:比较一下,用哪个数做公倍数比较简单?那12和4、6有什么关系呢?那么你们认为通分时我们一般用什么做公分母比较简单呢?(引导归纳:通分时一般用两个分母的最小公倍数做公分母。)
(6)把3/4化成分母是12的分数分子和分母都乘3,那为什么5/6的分子和分母都乘2呢?
(7)小结:现在你能告诉老师通分时要注意点什么呢?(学生自由说)那现在我们马上来试一把,看看大家能不能顺利的完成。
2.教学“试一试”
(1)学生独立完成在书本65页,一人上黑板板演。师巡视发现问题,个别辅导。
(2)全班讲评。师:1/6和4/9的公分母18是怎样确定的?那你认为要完成通分需要几步走呢?
结合学生回答板书:1.确定公分母(两原分母的最小公倍数)
2.化成同分母分数。
三、组织练习,巩固新知
1.完成“练一练”
上下齐练,3人板演。师巡视辅差,发现错误。
集体讲评时强调:有没有用每组中两个分母的最小公倍数做公分母;是不是规范得书写通分过程。
2.练习十二第1题
学生独立完成后指名说说通分的方法,以及通分后的分数在图中如何表示?
3.练习十二第2题
先同桌互相说一说,再开火车回答。并要求说出是怎么找到每组分数的公分母的?
4.练习十二第3题
学生独立检查,做出判断。指名说出看法,共同评议。
讨论:通分时容易出现什么问题?你认为要使通分既正确有简单的关键是什么?
5.练习十二第4题(看时间而定)
学生分组练习,全班大比拼。最快的同学上黑板展示。集体评议,再次强调通分的关键。
四、全课总结
通过这节课的学习你又有什么新收获呢?
五、布置作业:补充习题
五年级数学下册教案7
教材分析:
通过上一节课的学习,学生已经能能够对一个物体从不同角度进行了观察,在此基础上学习从不同角度观察两个物体有了一定的方法,但还学要给出足够的时间让学生去观察,探究。
教学内容:教材39页例2,从不同角度观察两个物体。
教学要求:
1、学会辨认从不同方向观察到的两个物体的形状和相对位置。
2、培养学生从不同角观察分析事物的能力。进一步培养学生的空间想象能力。
教学重难点:使学生从形象构建抽象的想象能力。
教具学具:
一个球体、一个圆柱体、正方体等。
教学过程:
一、设疑自探:(8分钟)
(一)导入新课
上节课我们对一个物体从不同角度进行了观察,也发现了从中的奥秘和乐趣,今天我们将两上物体从不同角度进行观察,体验从不同角度看世界。
板书课题:从不同角度观察两个物体
(二)根据课题提问题
教师:看到这个课题你最想知道什么?
(对学生提出的'问题进行评价、规范、整理后说明:为了更好的学习本节新知识老师根据同学们提出的问题,结合学习内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白大家刚才提出的问题。大家有信心吗?)
(三)出示自探提示,组织学生自探。
自探提示:
请同学们自学课本第39页内容,思考以下问题。
1、从不同角度观察例2的两个物体,你发现了什么?
2、试着把从正面上面左面右面四个方向观察到的形状画出来。
二、解疑合探(15分钟)
1、学生自探后,在小组内交流自探结果,然后师生互动,解疑答难。
2、多媒体演示验证。
3、教师将一个球体和一个圆柱体按例2摆放在讲台上,让学生以小组为单位上台观察,从正面上面左面右面四个方向观察,再回到位置上把从四个面观察到的画出来,并进行交流。
教师把学生画出的图形展示出来,集体评议。
三、质疑再探(5分钟)
1、学生质疑。
教师:通过本节的学习,谁还有什么不明白的地方请提出来,大家共同探讨。
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(12分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、将两个完全一样的正方体并排放,要求生想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
2、将一个正方体和圆柱体并排放,要求生想象画出从不同角度看到的样子。
(三)全课总结:
1、学生谈学习收获。
教师:学习了本节内容你有什么收获?
2、教师总结强调。
学生充分发表意见后,教师强调重点内容,并引导学生对本节内容进行归纳整理,形成系统的知识。
板书设计:
从不同角度观察两个物体
五年级数学下册教案8
一、教学目标
通过这个综合应用,让学生进一步体会数学与生活的密 切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
二、编排思想
1.探索最优方案(每个人都不空闲)。
2.发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的学生总数加1(老师),前n分钟接到电话的.学生总数是2的n次方减1)。
3.应用规律。
三、教学建议
1.小组合作学习,教师指导,全班汇报交流。
2.提示学生利用画图表的直观形式解决问题。
3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。
五年级数学下册教案9
教学目标
1.进一步提高应用百分数知识解答实际问题的能力,复习单位间的换算和长方体的表面积和体积计算。
2.能用自己喜欢的方式对所学知识进行整理。
3.提高同学们应用知识解决实际问题的能力和空间想象能力。
教学重点、难点
弄清各知识间的联系。
教学策略
小组整理学习内容,交流所学习的知识及学习方法。
教学准备
写有试题的小黑板。
教学过程
一、整理学习内容
1.小组合作,回顾所学的百分数知识,说出分数应用题和百分数应用题的区别和联系。
2.对整理的内容在班内交流。表彰表现优秀的学生。
二、练习
1.第9题。本题是利用方程解决有关百分数的问题,如果让学生用算术方法解决这个问题,应让学生说清自己的思路,教师也应给予肯定,但不做基本要求。
答案:
解:设全国农村居民人均年收入是x元。
80%x=2800
x=2800÷80%
x=3500
答:全国农村居民人均年收入约是3500元。
2.第10题。教学时,先让学生理解题意,说说覆盖率是什么意思。在此基础上,让学生独立完成,小组交流后,全班交流。同时,教师可让学生检阅有关绿化问题的资料,了解绿化的意义及作用。
答案:175÷960=18%。
3.第11题。主要应用百分数的知识解决实际问题。教学时,可让学生独立解决,然后进行交流,注意了解学生的解题思路。
答案:
科技馆:30000×10%=3000(平方米)
教学楼:30000×25%=7500(平方米)
操 场:30000×20%=6000(平方米)
食 堂:30000×2.5%=750(平方米)
花 坛:30000×0.03%=9(平方米)
空 地:30000-(30000+7500+6000+750+9)=12741(平方米)
第四课时
教学目标
1.巩固和复习统计知识,沟通长方体的表面积和体积的内在联系。
2.能用自己喜欢的方式对所学知识进行整理。
3.提高同学们应用知识解决实际问题的能力。
教学重点、难点
弄清题目中的单位统一问题。
教学策略
小组整理学习内容,交流所学习的知识及学习方法。借助实物演示帮助同学们理解题意。
教学准备
写有试题的小黑板。
教学过程
一、整理学习内容
1.小组合作,整理体积单位间的换算方法,复习统计知识。
2.对整理的内容在班内交流。针对出现的'问题及时讲解。
二、练习
1.第12题。本题主要是考查学生相关计量单位的换算。教学时,教师应组织学生回顾相关的知识,然后让学生独立完成后全班交流,要注意帮助学习有困难的学生。
2.第13题。本题主要考查有关长方体体积和表面积的相关知识。教学时,让学生独立完成后小组交流,然后进行全班交流。对于逆向思维的题目,教师要注意指导学习有困难的学生,同时了解学生的思维过程。
3.第14题。本题主要是考查学生对体积(容积)单位实际意义的理解。教学时,先让学生独立思考,然后让学生说说自己的想法,体会数学在生活中的作用。
4.第15题。
第(1)题,教学时,教师要引导学生用各种策略解决问题,理解领奖台底部是不需要涂漆的。学生的思路可能有:可以先数出一共有15个面需要涂漆,再用15×50×50=37500(平方厘米);也可以先求四个正方体表面积之和,再减去不涂漆面的面积。学生可能还有其他的方法,只要合理,就给予肯定。
第(2)题,50×50×50×4=500000(立方厘米)。
5.第16题。引导学生理解不规则铁块的体积相当于底面积是48平方厘米、高是0.5厘米的长方体的体积,所以是48×0.5=24(立方厘米)。
6.第17题。此题是一个很有现实意义的问题,教师要利用此情景对学生进行环保教育。
答案:(1)18×20×30×1.5=16200(立方厘米)=0.0162(立方米)≈0.02(立方米)
(2)0.02×40=0.8(立方米)
(3)0.8×365=292(立方米)
7.第18题。教学时,教师要注意指导学生的读图能力,从统计图中获取相关的数学信息,提出问题并尝试解决问题,培养学生的问题意识。
(1)只要学生说的合理,教师应给予肯定。
(2)根据题目的条件,学生可以求出彤彤家10月份每项开支花了多少钱。教学时,教师可让学生提出问题,交流自己的解题思路。
8.第19题。根据从大到小排列,中间的那个数即中位数,运用中位数表示这9个省(自治区、直辖市)人口的平均水平比较合适。
答案:1925万人。
五年级数学下册教案10
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的',老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
五年级数学下册教案11
【教学内容】
教科书第58页综合应用:设计长方体的包装方案。
【教学目标】
1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。
2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。
3、培养学生的创新意识、策略意识、实践能力和空间观念。
【教学重点】
让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。
【教具学具】
为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。
【教学过程】
一、课前引入
师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?
生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。
师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)
二、设想与摆放
1、设想与摆放
设想:
(1)要将这些长方体的.盒子包装起来,在包装的过程中要考虑哪些问题呢?
(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。
(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。
2、记录与计算
(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)
生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。
(2)究竟哪种摆法会更节约包装纸呢?
师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。
(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。
为什么这种方案的用纸量会最少?在全班进行交流。
三、交流与比较
比一比谁的方案用纸少,并分析出用纸量不同的原因。
重点思考并讨论:
为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。
四、发现与思考
通过本次包装设计,你有什么发现?
1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。
2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。
五、知识拓展
师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。
师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?
六、课堂小结
这节课我们学习了什么?你有什么收获?说一说。
五年级数学下册教案12
第七单元统计
第一课时 复式折线统计图
教学目标:
1、使学生经历用复式折线统计图描述数据的过程,了解复式折线统计图的特点和作用;能看懂复式折线统计图所表示的信息,能根据要求完成复式折线统计图。
2.使学生能根据复式折线统计图中的信息,进行简单的分析、比较和判断、推理,进一步增强统计观念,提高统计能力。
3.使学生进一步体会统计与现实生活的联系,增强参与统计活动的兴趣,以及与他人合作交流的意识。
教学重、难点:让学生形成初步的统计意识,能运用复式折线统计图解决问题,会分析统计图中的信息
教学过程:
一、回忆铺垫
1.分别出示表示青岛市和昆明市XX年各月降水量的单式条形统计图。
从图中你知道了什么?如果把这两张统计图合并成一张,那是怎样的呢?
2、出示表示青岛市和昆明市XX年各月降水量的复式条形统计图。
说说从图中你又能知道什么?重点引导学生对两个城市的降水量进行比较。说说复式条形统计图的特点。
3、我们还学过什么统计图呢?
揭题:我们已经学习过折线统计图。今天这节课,我们要继续学习折线统计图。(板书:折线统计图)
二、学习例题
1、分别出示表示青岛市和昆明市XX年各月降水量的单式折线统计图。
提问:根据第一幅统计图,你能知道些什么信息?你能根据图中折线的整体形态,说说青岛市XX年各月降水量的变化情况吗?根据第二幅统计图,你又能知道些什么?指名口答。
如果要比较这两个城市XX年哪个月的降水量最接近,哪个月的降水量相差最多,你打算怎么办?
引导:以前我们曾经学习过复式条形统计图,那么这两幅统计图是不是也能合在一起而成为复式折线统计图呢?
小结:正如同学们所说,这两幅统计图确实可以合在一起而成为复式折线统计图。(在板书的“折线统计图”前添上“复式”,完成课题板书)
3.出示表示青岛市和昆明市XX年各月降水量的复式折线统计图
提问:你能看懂这幅统计图吗?表示青岛市、昆明市各月降水量的分别是哪条折线?你是怎么看出来的?明确图例表示的意思
启发:从这幅统计图上,你能很快看出这两个城市哪个月降水量最接近,哪个月降水量相差最多吗?
追问:你是怎么想的?表示七月份降水量的两个点距离最小,说明了什么?表示四月份降水量的两个点距离最大,又说明了什么?
指出:从复式折线统计图中,不仅能看出数量增、减变化的情况,而且便于对两组相关数据进行比较。
进一步讨论:从图中你还能获得哪些信息?
引导学生分别从每个城市各月降水量的变化情况以及两个城市全年降水情况的共同点和差异等方面进行观察、交流。
三、巩固练习
(一)完成“练一练”
1.学生分别看图,并根据图下的问题在小组里交流。
2.组织全班交流。
(1)图中哪条折线表示男生平均身高的变化情况?哪条折线表示女生平均身高的变化情况?
(2)这里男生或女生平均身高的变化情况是指某一个男生或某一个女生吗?
(3)从图上看,从几岁到几岁之间男生平均身高比女生高?从几岁开始,女生平均身高超过了男生?
(4)你现在的身高是多少厘米?与同龄男生(或女生)的平均身高比,怎么样?
(5)从图中你还获得哪些信息?
(二)、完成练习十三的第1题
1、学生自主审题。提问:这道题让我们做什么?你有信心按要求完成下面的统计图吗?
2.讨论:你打算先画表示哪组数据的折线?表示“最高气温”的这条折线应画成实线,还是虚线?
3.学生各自在教材上画出表示两组数据的折线。
提醒学生,先要认真细心地确定表示每天最高气温数据的点的位置,用实线连接各点;再认真细致地确定表示每天最低气温数据的点的位置,用虚线连接各点,画好折线后,不要忘记填写制图日期。
4、展示学生的作业,引导互相评价,肯定优点,指出不足;再让学生根据交流的情况,进一步修改或完善所画的统计图。
5.引导学生看图回答教材提出的问题,使学生进一步体会复式折线统计图的特点和作用。
四、全课小结
这节课你学会了哪些知识和本领?有哪些收获?
你认为复式折线统计图有什么特点?根据要求完成复式折线统计图时要注意些什么?
第二课时 练习课
教学目标:
1、使学生进一步提高识图和用图的'能力,感受复式折线统计图的特点。
2、使学生在绘制复式折线统计图的过程中进一步发展统计观念。
3、使学生进一步体会统计在现实生活中的运用,进一步感受统计方法对于分析问题、解决问题的价值,增强参与统计活动的兴趣。
教学重、难点:会利用统计图里的信息进行分析比较和判断。
教学过程:
一、谈话揭题
上节课我们学习了复式折线统计图,谁来说说复式折线统计图有什么特点?
指名回答。这节课我们继续来学习复式折线统计图。(板书课题)
二、综合练习
1、出示p77第2题
(1)学生看图后独立思考:1999年哪种电话的用户多?XX年呢?
(2)哪种电话用户的增长速度快一些?你是怎么判断的?
(从折线的走势上来判断;计算每种电话用户XX年与1999年的差,进一步检验作出的判断是否正确)
(3)看这这张统计图,你还想到什么?学生交流。
2、我国的经济在持续稳定的发展,人民的生活水平日益提高。出示第3题。
(1)这张图统计的是什么?
(2)拥有电话的家庭户数哪两年增长幅度最快?计算机呢?学生独立思考后回答,追问:你是怎么知道的?让学生说说自己判断的方法。
(3)从上面的统计数据中,你还能想到什么?
三、联系生活应用统计知识
1、完成p78第4题
引导学生看懂统计图的横轴和纵轴,学生独立完成后和同学交流。
(根据统计图中的数据可以看出,水仙花根的生长速度要快一些。而芽的生长速度之所以比根慢,主要是因为开始发芽的时间比较晚。但从第8天起芽的生长速度就和根大体上是相当的)
我们在农学院里也有自己的盆栽植物,请你也来做个小科学家,坚持观察一种植物,并做好记载。
2、完成p78第5题
逐题讨论交流,注意引导学生比较两条折线中相应点的关系进行判断。
3、独立完成p79第6题,
(1)指导学生正确使用图例
(2)交流,互相评价,进一步掌握绘制的方法和技巧。
(3)讨论交流问题。结合“为什么气温变化正好相反?”一道学生自主阅读“你知道吗?再交流说说理由。
四、全课总结
1、引导学生评价自己的学习情况,小结所学的知识。
2、完成练习册上相关习题。
第八单元:分数加法和减法
五年级数学下册教案13
教学内容:
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习回顾与整理和练习与应用第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的`认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
整理、应用因数和倍数的知识。
教学难点:
应用概念正确判断、推理。
教学准备:
小黑板、准备12个同样大的正方形学具。
教学过程:
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识? 揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。 出示讨论题
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数? 让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
五年级数学下册教案14
一、走近科学、引出问题:
1、谈话:大家都参加过打篮球、踢足球等活动,在这些活动中,球弹离球场地面的性能相当重要,那么球的弹性有什么要求呢?
2、自学课本第73页“你知道吗?”
3、说说你知道了什么,还想知道什么?
4、揭示课题:球的反弹高度
二、经历实验,获取结论
1、同一种球的弹性实验
(1) 组织实验
A、明确实验方法
先阅读课本第72页的文字说明和示意图,然后说说实验的步骤,结合学生的说法进行补充说明,让学生明确:
第一、把球从指定高度下落时,要将球的上沿与高度标记齐平;
第二、要在球反弹的最高处及时做上标记,测量反弹高度时可保留整厘米数。
第三、及时记录实验中的数据。
B、认识实验表格
出示实验表格,学生阅读,然后解决以下两个问题:
第一、 让学生用自己的话说说什么是下落高度,什么是反弹高度,如何求反弹高度是下落高度的几分之几?
第二、 全班统一确定三次不同的下落高度。(提示高度相差大一些)
C、小组分工,确定各成员任务。
(2) 实施阶段
A、小组分场地实验
每组先标记三个不同高度,然后用篮球进行实验。
B、教师巡视实验情况
两个方面的指导:球的上沿与高度齐平时可以用平直的工具(三角尺、直尺)使球的上沿与高度标记平直;捕捉反弹高度时要仔细观察,及时标记、若看不清楚可以再重复一次。
(3) 整理反馈阶段:
A、把相关数据填写完整
B、观察数据,小组讨论:比较每次下落高度与反弹高度,你有什么发现?
比较反弹高度与下落高度关系的分数值的大小,有什么发现?
C集体反馈,获得结论。(篮球下落的高度低,反弹的高度也低,不同高度下落,反弹高度也不一样。反弹高度与下落高度关系的分数大小基本不变,即同一种球的弹性是相同的。)
2、不同球的弹性实验,
(1) 研究足球、排球的反弹性能。(下落高度和篮球一样)
(2) 学生有序进行实验活动,教师巡视指导。
(3) 实验反馈。
A、观察足球实验的数据,说说发现了什么?(结论同篮球)
B、观察排球实验的数据,说说发现了什么?(结论同篮球)
(4)三种球的实验比较,观察:发现了什么?(不同的.球从相同的高度落下,其反弹高度不同;不同球的反弹高度是下落高度的几分之几的分数植是不同的,说明不同球的弹性是不一样的)
三、学以致用,感受应用。
1、计算比赛用的篮球的弹性
让学生根据“你知道吗”的数据算一算比赛用篮球反弹高度大约是下落高度的几分之几在哪个范围内?
3、比较检验,让学生把计算结果和实验数据比较,检查学校的篮球是否符合要求?
4、献计献策:学校购买篮球时可以采取怎样的检测策略?
四、回顾小结、拓展延伸
说说本节课你有什么新的认识?
课外可以上网了解有关影响球的反弹高度的其他因素。
板书设计:
球的反弹高度
篮球 : 下落的高度低,反弹的高度也低
足球:
排球: 下落的高度高,反弹的高度也高
结论:同一种球的弹性是相同的。
不同的球的弹性是不相同的。
五年级数学下册教案15
教学内容:教科书第62页,例1、练一练,练习十一第4~7题。
教学目标:
1、使学生进一步理解分数的基本性质,会运用分数的基本性质进行约分,掌握约分的含义和一般方法,认识最简分数。
2、使学生在探索合作交流过程中,体验成功的愉悦,在知识的运用中体现数字价值。
教学过程:
一、复习引入
1、在下面的括号里填商适当的数。
8/20=()/515/18=5/()21/27=()/9
独立完成,说说是怎么想的?每组中的分数一样大,哪个看起来更简单一些?为什么?
2、今天在学习了分数的基本性质的基础上,学习新的知识,看看应用分数的基本性质可以帮助我们干什么?
二、教学新课
1、教学例3。
(1)出示例3。
(2)你能写出和12/18相等,两分子、分母都比较小的分数吗?在小组中交流自己的想法。汇报交流。说说怎么得到这个分数的?还有分子比2还小,分母比3还小但是与12/18一样大的分数吗?也就是12/18=2/3。
(3)结合图说说,12/18与2/3为什么相等?
(4)你们知道刚才分子、分母同时除以的2、3、6与分子、分母有什么关系吗?(板书:分子、分母的公因数)
(5)把这个分数化成同它相等,而分子、分母都比较小的分数,叫做约分。板书课题:约分。
(6)演示一步一步约分的过程。依次除以分子、分母的公因数。强调:每次约分后得到的数写在分子、分母的正上方、正下方。2/3的分子、分母还有除了1以外的公因数吗?因为2/3的分子和分母只有公因数1,这样的分数叫最简分数。约分时一般要约分到最简分数为止。
(7)还有什么方法可以更快的约分呢?(直接除以分子、分母的`最大公因数)演示直接约分的过程。如果你不能直接找到最大公因数,可以一步一步约分。
(8)。在小组中互相说说约分的方法。你愿意采用什么方法来约分呢?
2、完成练一练。
(1)第1题。独立完成,汇报交流。6/4为什么不是最简分数?分子、分母还有公因数几?10/7为什么是最简分数?你是怎么想的?
(2)第2题。独立完成,展示作业。60/45怎样约分的?还有什么方法?(分子、分母直接除以15)为什么分子、分母可以直接除以15?说说约分时有什么要注意的?
三、巩固练习
1、完成练习十一第4题。读题,理解题意。怎样判断分子和分母有没有公因数2、3、5?汇报交流。
2、完成第5题。独立完成。你是怎么看出它们不是最简分数的?指出:有的分数的分子、分母的最大公因数较大,判断时要仔细。
3、完成第6题。怎样连线比较快?独立完成,集体核对。
4、完成第7题。独立完成,汇报交流。
四、课堂
今天学习了什么?你有哪些收获?互相说说什么是约分?什么是最简分数?约分的方法是什么?你愿意使用那种约分的方法?