五年级数学下册教案
作为一名人民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写才好呢?下面是小编收集整理的五年级数学下册教案,欢迎阅读,希望大家能够喜欢。
五年级数学下册教案1
一、教学目标
结合解决实际问题,通过具体操作和交流活动,认识公因数和最大公因数,学好求两个数的公因数和最大公因数的方法。
在探索公因数和最大公因数意义的过程中,经历观察、猜测、验证、归纳等数学活动,进一步发展初步的推理能力。
学会用公因数和最大公因数的知识解决简单的实际问题,体验数学与生活的密切联系。
二、课时安排
1课时
三、教学重点
找两个数最大公因数的方法。
四、教学难点
找两个数最大公因数的方法。
五、教学过程
(一)导入新课
出示信息窗1:这张纸长24厘米,宽18厘米。把它剪成边长是整厘米的正方形,要想剪完后没有剩余,正方形的边长可以是几厘米呢?
你从中能读出哪些数学信息?
讲授新课
师生交流数学信息,你能提出什么问题?
学生讨论交流。
正方形的边长可以是几厘米?最长是几厘米?
探究问题:正方形的边长可以是几厘米?最长是几厘米?
分别用边长是1厘米、2厘米、3厘米的正方形纸片摆一摆。
学生探究后交流。
①我用边长是2厘米的正方形纸片摆,正好摆满。
②我用边长是4厘米的正方形纸片摆,有剩余。
③我不用摆,算一算就知道了:24÷3=8 ,18÷3=6 。因此,用边长3厘米的正方形纸片摆,正好可以摆满,没有剩余。
你有什么发现吗?
学生探究后交流。
用边长1厘米、2厘米、3厘米、6厘米的正方形纸片摆,都正好摆满,没有剩余;用边长4厘米、5厘米 的正方形纸片摆,有剩余。
交流后小结:正方形的边长可以是1厘米、2厘米、3厘米、6厘米。最长是6厘米。
重难点精讲:
探究问题:1、2、3、6与24、18有什么关系呢?
学生讨论后交流:
我发现它们既是24的因数,也是18的因数。
也可以用下图表示:
师启发:我们来总结一下。
1、2、3、6既是24的因数,也是18的因数,它们是24和18的公因数。其中6是最大的,是24和18的最大公因数。
探究问题:怎样找12和18的公因数和最大公因数?
学生讨论后交流:
①先分别写出12和18的因数
12的因数:1、2、3、4、6、12。
18的因数:1、2、3、6、9、18。
12和18的公因数:1、2、3、6。
12和18的最大公因数:6。
②先找出12的因数,再从这些因数中找出18的因数。
12的因数:1、2、3、4、6、12。
12和18的公因数:1、2、3、6。
12和18的最大公因数:6。
师讲解:还可以用短除法求12和18的最大公因数。
通过上面的活动,你有什么发现吗?
几个数公有的因数,叫做这几个数的公因数。
其中最大的一个叫做它们的最大公因数。
画图和操作能帮助我们发现规律。
归纳小结
通过刚才的探究,你能说说你的收获吗?
师生交流后小结:
几个数公有的因数,叫做这几个数的公因数。
其中最大的一个叫做它们的最大公因数。
画图和操作能帮助我们发现规律。
课堂检测
1、15的因数有__________________。
40的'因数有__________________。
15和40的公因数有________________,最大公因数是____。
2、
16和28的最大公因数是( )。 36和42的最大公因数是( )。
用短除法求下列每组数的最大公因数。
36和54 60和18 45和75
20和30 64和32 52和78
3、
用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?
先分别找出每组数的最大公因数,再仔细观察。你发现了什么?
6 和 12
24 和 96
18 和 54
8 和 9
17 和 28
15 和 32
板书设计
公因数和最大公因数
几个数公有的因数,叫做这几个数的公因数。
其中最大的一个叫做它们的最大公因数。
画图和操作能帮助我们发现规律。
作业布置
1、实验小学用地板砖铺设长90分米、宽60分米的微机室地面(如图)。
(1)从不浪费材料的角度考虑(使用的地板砖都是整块),可以选择边长是多少分米的正方形地板砖?
(2)你认为选用边长是多少分米的地板砖比较合适?说说理由。
2、预习第33、34、35页的有关内容。
五年级数学下册教案2
教学目标:
1、通过动手操作,知道长方体、正方体的不同的展开图,加深对正方体、长方体特点的认识。
2、经历展开与折叠的活动过程,在想象、操作等活动中,初步感知平面图形与立体图形的关系,发展空间观念。
3、激发学习数学的兴趣,渗透一种转化的思想,及研究方法的学习,体会学科的价值。
教学过程:
一、创设情境,引入课题
1、(出示漂亮的大礼品盒,引发学生研究兴趣)想做漂亮的'礼品盒么?打算怎样研究?
2、提出研究的方法并揭示课题:展开与折叠
1、引发猜想,唤起思考:长方体、正方体展开后会得到什么形状的图形?
2、学生动手操作,初步探究;
(1)初步感知长方体、正方体的展开图。
教师提出“展开”的要求:
①沿棱剪开,不能剪散
②边剪边想,相对的面跑到哪里去了?
③把相对的面用相同的符号标出来。
教师巡堂,并与学生一起“展开”长方体和正方体。
(2)初步感知“展开”与“折叠”的关系。
四人小组交流,教师相机(展开活动)提问:“为什么把展开的图形又折叠回去呢?”
(3)请学生把长方体、正方体各种不同的形状的展开图展示在黑板上。
3、揭示概念,探究特征:
(1)揭示展开图的概念:
象这样由立体图形展开后得到的平面图形就叫做长方体(正方体)的展开图。
(2)探究长方体、正方体展开的特征:
观察黑板上的长方体和正方体的展开图,有什么特点?
引导学生感悟:
①长方体、正方体展开图各小图形的特点
②长方体、正方体展开图的不唯一的特点
1、(出示做一做1)下面哪些图形沿虚线对折后能围成正方体?
(1)学生独立思考,进行判断。
能围成正方体的在课本上打√,不能围成正方体的打×。
(2)反馈、辨析。
①把你认为不能围成正方体的找出来。说说自己的想法!(鼓励学生想象折叠的过程)
②找出能围成正方体的图形。
教师提出要求:能确定哪个图形能围成正方体的请想象一下它是怎样围成的;如果无法确认能否围成正方体的请拿出老师为大家提供的学具折一折,再想象一下。
2、出示做一做2:下面哪些图形沿虚线折叠后能围成长方体?
(1)学生独立思考判断。
(2)小组交流。
(3)反馈、辨析。
①哪些图形沿虚线折叠后能围成长方体?在脑子里想象你是怎样围的。
②引发争论:4号图形能围成长方体吗?
全班动手折叠验证,说明理由。
③哪些图形不能围成长方体?说明理由。
提升思维,深层探究
由上例引发的思考:(出示3号图形)
怎样变一变使3号图形能围成长方体?
相机点拨:摆放的规律
2、出示下图:
怎样移动两个小正方形可得到正方体的展开图?
(设计意图:由上例不能围成长方体的图形引发的探究活动,变不能围为能围、变静为动、变特殊为一般,有效激活学生的思维。更进一步发展学生的空间观念。)
四、课后延伸,拓展探究
简单的展开与折叠让我们进一步认识了长方体和正方体,其实这样的方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一定会有了不起的发现。
五年级数学下册教案3
一、本学期教学目标和总要求:
1、使学生理解分数乘、除法的意义和计算方法,较熟练地进行计算。让学生掌握分数混合运算的计算方法,能正确进行计算。掌握分数乘、除法的数量关系,并能运用其解决简单的数学问题。
2、使学生理解百分数的意义,知道它在实际生活中的应用,会正确地读、写百分数。掌握小数、分数和百分数的互化。正确地解答百分数应用题。
3、使学生掌握长方体和正方体的特征;能辨认长方体和正方体展开图的形状;认识常用的体积单位;理解体积和容积概念;理解、掌握长方体和正方体的.表面积、体积含义,并能正确计算长方体和正方体的表面积和体积;会运用表面积和体积知识解决实际生活问题。
4、使学生进一步认识条形统计图、折线统计图和扇形统计图的特点,并学会选择运用。懂得中位数、众数的意义,会从一组数据中找出中位数和众数,并能针对具体问题选择使用。
5、通过实践活动,体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。
二、教材分析:
本册教材的教学内容有:
(1)分数乘法;
(2)长方体(一);
(3)分数除法;
(4)长方体(二);
(5)分数混合运算;
(6)百分数;
(7)统计;
(8)总复习。
三、学生情况分析
五年级同学由于平时对自己要求不严,没有形成良好的学习习惯,作业马虎,字迹潦草,但他们思维活跃。有一部分学生因学习态度不端正,导致学习成绩不理想。全班整体呈现两极分化现象。
因此,备课时应注意优等生与差生的具体的情况,做到有的放矢。另外更要注意面向全体,让学生学得扎实,既要掌握基础知识,也要学会学习方法,更要养成各种优良的习惯。特别要注意思维能力、创新意识、实践能力的培养。
四、全册教学内容及教时安排(以单元为单位)
(1)分数乘法;13课时
(2)长方体(一); 15课时
(3)分数除法; 18课时
(4)长方体(二); 15课时
(5)分数混合运算; 15课时
(6)百分数; 17课时
(7)统计; 7课时
(8)总复习。 4课时
五、提高教学质量措施
在本学期中,要提高教学质量,我想应从以下几个方面入手加以解决:
1、注重因材施教,进一步做好提优补差工作。让学优生和学困生结对,达到手拉手同进步的目的。
2、注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验理解数学。
3、踏踏实实做好教学常规工作,以自己认真负责的工作态度,满腔热情的工作作风,虚心向同事学习,同时争取家长的配合,共同做好对学生的培养。
4、根据我校的实际情况,多媒体教学的优势十分明显。因此,对重点教学内容进行科学合理的课件设计,从而吸引学生主动参与课堂教学实践,提高教学的效率。
六、辅导计划
1、上课时对学困生多加注意,有针对性地提问,找到他们学习上的难点,予以解决。
2、为了做好抓好两头,保住中间的工作要点,努力设计让优生吃得饱,中等生吃得好,差生吃得消的教学手段。设计提问,设计练习,分析内容注意选择性问题。同时明确练习题的难度的层次性,使学生有的放矢。能在较短的时间里,较好的全面的完成练习题。
3、重视差生的错题订正,不厌其烦的反复地帮助差生完成基础性作业,直至学生真正弄懂为止;对差生的作业保证做到面批面改。
4、加强与家长的配合,帮助潜能生从态度到习惯,从上课到家庭作业的指导形成合力。
五年级数学下册教案4
一、教学内容
有趣的测量。(教材第46页)
二、教学目标
1.结合具体活动情境,经历测量石块体积的过程,探索不规则物体体积的测量方法。
2.在实践与探究的过程中,尝试用不同方法解决问题,提高解决问题的能力。
三、重点难点
重点:掌握不规则物体体积的测量方法。
难点:尝试用多种方法解决实际问题。
四、教学准备
教师准备:长方体容器、水、不规则石块、烧杯、量杯、水槽、课件PPT。
教学过程:
一、情境引入
师:前面我们学习了计算长方体和正方体的体积,但在我们的周围还有许多物体的形状并不是规则的正方体或长方体,如苹果、乒乓球、鸡蛋等。那像这样的物体还能直接用公式计算出它们的体积吗?应该怎样求呢?(小组讨论,交流方法)
师:今天我们就一起来探究不规则物体体积的测量方法。(板书课题:有趣的测量)
二、学习新课
探究测量石块体积的方法。
教师拿出石块,让学生观察。
引导学生理解石块的形状是不规则的,不容易测量出它的体积。
师:你们能想到用什么方法来测量它的体积?能不能运用我们以前学过的知识来解答?
教师组织学生利用工具设计实验自主探究石块的体积。(教师巡视并指导)
(1)液面升高法。
师:淘气是这样测量的,你看懂了吗?与同伴说一说。(单位: cm)(课件出示教材第46页淘气的测量方法)
学生思考、讨论,教师巡视。
教师指导学生按以下方法进行操作:
先在长方体水槽里放上合适的'水,测量出长方体水槽的长、宽及水面的高度,再把石块沉入长方体水槽里,此时水面上升,测量出这时水面的高度。(课件出示)
师:通过上面的操作,你知道石块的体积与什么相等吗?(学生小组讨论,教师指名汇报)
使学生明确:放入石块后,用水和石块的总体积减去放入石块前水的体积,就是石块的体积,即上升的水的体积就是石块的体积。
教师归纳:淘气这种测量石块体积的方法叫作液面升高法。
石块的体积=容器的底面积×水面上升的高度。(板书)
按照上述方法,以小组为单位再次测量石块的体积。
学生按要求操作,教师巡视指导。
师:说一说,在测量时应注意什么?(学生小组讨论,指派代表汇报)
教师总结:用液面升高法测量不规则物体的体积时,一定要保证让不规则物体完全浸没在水中,且水没有溢出,这样水面升高部分水的体积才相当于不规则物体的体积。
(2)溢水法。
师:下面是另一种测量石块体积的方法。按照图示的步骤说一说,怎样能知道石块的体积?(课件出示教材第46页测量石块体积的第二种方法)
学生思考、讨论,教师巡视。
组织全班交流,整理汇报结果。
教师指导学生按以下方法进行操作:
先将烧杯倒满水,放在水槽中,再把石块放入盛满水的烧杯里,水会溢出流到水槽里,最后把水槽里的水倒在量杯里,记录下此时量杯的刻度。(课件出示)
师:通过上面的操作,你知道石块的体积与什么相等吗?(学生小组讨论,教师指名汇报)
使学生明确:量杯里水的体积就是石块的体积。
教师归纳:这种测量石块体积的方法叫作溢水法。
石块的体积=溢出的水的体积。(板书)
按照上述方法,以小组为单位再次测量石块的体积。
学生按要求操作,教师巡视指导。
师:说一说,在测量时应注意什么?(学生小组讨论,指派代表汇报)
师生共同总结:用溢水法测量不规则物体的体积时,如果被测物体是浮在水面上的,要用细棒把被测物体压进水中,使水刚刚没过被测物体,这样溢出的水的体积才相当于被测物体的体积。
三、巩固反馈
1.完成教材第47页“练一练”第1题。(学生独立思考,计算得出石头的体积)
72-55=17(mL) 17 mL=17 cm3
2.完成教材第47页“练一练”第2~3题。(学生独立思考,回顾“液面升高法”测量不规则物体体积的方法,集体订正)
第2题:2×1.5×0.2=0.6(dm3)
第3题:(600-250)÷2=175(mL)
175 mL=175 cm3
3.完成教材第47页“练一练”第4题。(小组讨论,指派代表汇报)
答案不唯一,例如:数出100粒黄豆,放入一个盛有一定量水的量杯中,先根据水面升高的情况,测量出100粒黄豆的体积,再除以100算出一粒黄豆的体积。
四、课堂小结
1.怎样测量不规则物体的体积?
2.测量不规则物体的体积时,有哪些需要注意或不太懂的地方?
板书设计:
有趣的测量:
1.液面升高法:石块的体积=容器的底面积×水面上升的高度。
2.溢水法:石块的体积=溢出的水的体积。
教学反思:
1.让学生经历观察、猜想、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等量替换的数学方法。学生在汇报过程中互相学到了多种不规则物体体积的测量方法,为学生解决生活中的实际问题打下了基础。
2.本节课为学生营造了一个自主探究、自主创新的学习空间,学生感受到数学就在身边,在生活中学数学、做数学、用数学,从而培养学生热爱生活、热爱数学的积极情感,达到了预期效果。
3.我的补充:________________________________________________________________________
典型例题准备:
【例题】在一个长15 dm、宽12 dm的长方体水箱中,有10 dm深的水。如果在水中沉入一个棱长为30 cm的正方体铁块,那么此时水箱中水深多少分米?
分析:把这样一个铁块沉入水中,此时它被完全浸没,水面会自然上升,则用水和铁块的总体积除以长方体水箱的底面积,便可知此时水面的高度。
解答:30 cm=3 dm
(15×12×10+3×3×3)÷(15×12)=10.15(dm)
答:此时水箱中水深10.15 dm。
解法归纳:在盛有水的长方体容器中放入物体(完全浸没)后,容器中的水深等于水和物体的总体积除以长方体容器的底面积。
五年级数学下册教案5
教学内容:人教版小学数学五年级下册第二单元“因数与倍数”P5例1
教学目标:
1.通过动手操作,认识和理解因数和倍数,体会一个数的倍数与因数之间相互依存的关系。
2.经历“活动建构”和“自主探索”的过程,发展学生的数感。
3.在交流、互动中培养学生的分析能力以及说理的能力。
教学重点:理解因数与倍数的意义。
教学难点:区分“倍数”与“几倍”,进一步清晰因数和倍数的概念。
教学准备:学习单、课件
教学流程:
课前热身:
师:同学们,今天我们是第一次见面吧。我先自我介绍一下,我来自群惠小学,你们可以叫我陈老师。
师:老师也来认识你们一下,你叫(张三),今天老师给大家上课,你是我的(学生)。
师:你在班上的好朋友是谁?(李四),那么你是(李四)的朋友。
师:(面向张三)咦,同样是你,(面向全班问)怎么一会是朋友,一会是学生呢?
师:是的,对象一改变,身份就不同。
师:其它同学也来介绍一下,可以介绍你的好朋友,也可以介绍你的同桌。
师:是的,生活中,人与人之间存在着这样或那样的关系。数学上,数与数之间也存在着这样或那样的关系。这节课,我们一起来研究数与数之间的一种关系。
一、依托原有认知,操作中建构概念
1.同桌合作,操作体验
师:我们一起做个活动--摆图形。
将不同数量的■摆成2行或3行,可以先在脑中摆一摆。请看具体要求:
(1)判断:判断是否能摆成一个长方形(可以在方格图中画草图)并列式计算。
(2)分类:根据摆的结果分分类。
师:明确要求了吗?好,同桌两个同学拿出学习单合作,利用老师提供的彩笔进行操作。
2.利用白板,展示分类
师:老师将部分同学的学习单上传到电脑中,请看。(在电子白板中出示5张图片)
师:根据摆的结果,你们能把它们分分类吗?(请学生上台来在电子白板上拖动分类)
你是怎么想的?(根据学生回答课件动态形成分成2类,如图)
3.由旧引新,感知概念
问题1:请同学们想一想,比一比,为什么这类能摆成一个长方形?
师:请同学们观察每组的数据,想一想,比一比。
预设:
因为
12是2的6倍。
8是2的4倍。
6是3的2倍。
所以,它们都可以摆成一个长方形。
师:你们同意吗?谁还能这样说一说?
师:刚才说了谁是谁的几倍,在这个算式中,(指着12÷2=6),数与数之间还有一种新的关系,你们想知道吗?
12是2的倍数,12是6的倍数,合起来,可以我们还可以说12是2和6的倍数。
请2个说→全班说→PPT出示:12是2和6的倍数
板书:倍数
师:(指着12÷2=6),谁能推测一下,这个算式里,谁是谁的因数呢?
2个生说之后出示:2和6是12的因数
板书:因数
8÷2=4 6÷3=2,谁也能像这样说一说。
师小结:大家观察算式,发现如果被除数与除数和商有因数、倍数的`关系,就能摆成一个长方形。
4.加强对比,明晰概念
问题2:第二类为什么不能摆成一个长方形呢?
师:说说你的想法。
预设:(指着7÷2=3.5,8÷3=2…2)因为这里的商有的有余数,有的有小数。这里能说谁是谁的倍数吗?
师追问:你们认为,商应该是什么数呢?(板书:商→整数)
师:只要商是整数的,就有因数倍数的关系,是还是不是?
师:大家都说是,我们来看一个商是整数的算式。
出示:2.7÷0.9=3
师:之前的学习我们可以说2.7是0.9的3倍,对吧?但能不能说2.7是0.9和3的倍数呢?
师:(指着可摆成长方形的算式)师:我们一起来看一下刚才可以摆成长方形的这几个算式。你们有什么发现?
师:大家发现这里都是整数。
师:是的,今天研究的因数和倍数是规定在整数范围内。
追问:“整数范围”什么意思?
师总结:是的,整数范围说明:除了商是整数,被除数和除数也是整数!
(补充板书:被除数、除数)
师:回过头来看2.7÷0.9=3,不能说2.7是0.9的倍数,因为它的被除数和除数都不是整数,不是整数除法。
(补充板书:整数除法)
师:看来之前认识的倍和今天的倍数还是不一样,请同学们看一段微视频。
微视频内容:二年级时,我们认识了“倍”,结果可能是是“整数倍”;五年级时,我们还学习了求一个小数是另一个小数的几倍,结果可能是“小数倍”。而我们今天学习的“倍数”,指的是数与数之间的关系,被除数、除数、商必须都是整数(0除外)。
师:这下,“倍”和“倍数”的区别明白了吧?
5.概括特点,揭示概念
师:(指着微课)这里的倍数指的是数与数之间的关系。数与数之间的这种关系,在数学上有专门的名称,就是因数和倍数。(补充完整板书:因数和倍数)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
完整板书:因数和倍数
我们一起听:(微视频)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,我们就说12是2和6的倍数,2和6是12的倍数。
师:今天我们学习的“因数和倍数”的内容就在课本第页上,请同学们翻开书看看,你认为是重点词句的请用笔画出来。
6.举例说明,理解概念
(1)学生举例说明
师:像这样的除法算式还有吗?你能再举个例子吗?
师:根据学生举例板书3个算式。
(2)理解因数倍数相互依存的关系
捕捉资源:错例呈现如:36÷18=2,2是因数,36是倍数。
学生分析说理:为什么错?
板书:相互依存
师:老师也来举个例子:4×6=24。
师:乘除法是互逆的,除法算式中可以找到因数倍数的关系,乘法算式也可以找到这样的关系。
(3)用字母抽象概括
师:大家说,像这样的算式多不多?说得完吗?
师:说不完,那你能不能用一个式子表示这样的除法算式呢?(a÷b=c)在这里,a、b、c必须是什么数?
师:这是一个非常重要的前提条件。
注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
师:自然数(不包括0)就是指非0自然数。(板书:非0自然数)
师:在这里,谁是谁的倍数?谁是谁的因数?
a是b和c的倍数,b和c是a的因数。
二、分析说理,加深理解
(1)24是倍数,8是倍数。
师:(强调:研究数与数之间的关系,必须说谁是谁的因数,谁是谁的倍数,因数与倍数是相互依存的)
(2)7是22的因数吗?你是怎么想的?
师:那7是()的因数,你是怎么想的?
三、抢答比赛,巩固深化
师:老师还想看看咱班男生数感最好还是女生数感好,咱们来个男女生PK赛吧。
规则:男女生轮流答,答对1题记10分,得分高者获胜。
26和13 25和75 3和0.3 9和2 51、3、17 5、95
根据现场竞赛比分,问:()和()有因数倍数的关系吗?怎么想的?
四、课堂总结,提升认识
师:通过今天的学习,你有什么收获?
板书设计:
五年级数学下册教案6
教学内容:教材第117~118页第24—28题。
教学要求:
1.使学生进一步掌握用计算器进行计算的方法,能用计算器比较熟练地计算整数、小数的四则运算和四则混合运算。
2.使学生提高绘制条形统计图的能力,加深对条形统计图的认识,增强分析统计图的能力。
3.使学生进一步认识平均数问题的数量关系,进一步熟悉求平均数的思路和方法,能求数量关系稍复杂的平均数。
教学过程:
一、揭示课题
这节课,我们重点复习简单的统计,包括条形统计图和求平均数,(板书课题)同时复习用计算器计算。通过复习,要能比较熟练地用计算器计算整数、小数的四则运算和四则混合运算;进一步掌握绘制条形统计图的方法,加深认识条形统计图的特点和作用,并能进行简单的'分析;进一步掌握平均数问题的数量关系和解题方法,能解答数量关系稍复杂的平均数问题。
二、复习计算器计算
1.让学生用计算器计算期末复习第24题前四题。计算后交流每题的得数。
2.让学生用计算器计算期末复习第24题后两题。计算后学生说说每题是按怎样的顺序计算的,交流每题的结果。
三、复习条形统计图
1.这学期学过了什么统计图?条形统计图是怎样表示统计结果的?
2.做期末复习第25题。统计表里统计的是什么数据?统计的结果如何?你能在下面的横轴和纵轴上完成条形统计图,表示统计表里的数据吗?请大家在课本上完成条形统计图。
向学生提问题目下面的两个问题,指名回答。
提问:你认为条形统计图有什么特点和作用?(用直条表示数量的多少,可以直接看出数量的多少)
四、复习求平均数
1. 解答下列各题。
(1)前进号机帆船出海捕鱼。九月份共出海捕鱼25天,上半月共捕鱼676吨,下半月共捕鱼584吨。按这个月出海天数计算,平均每天捕鱼多少吨?
(2)前进号机帆船出海捕鱼。九月份上半月出海13天,共捕鱼676吨;下半月出海12天,共捕鱼584吨。按这个月出海天数计算,平均每月捕鱼多少天?
指名学生读题,比较两道题的相同点和不同点。
提问:解答这两题都是求怎样的数?求平均数都是用怎样的数量关系?(板书数量关系)。
指名两人板演,其余学生做在练习本上。
集体订正,让学生说一说每道题是怎样想的。
提问:这两题在解题方法上有什么相同的地方?列式时有什么不同的地方?为什么?
指出:这两题虽然条件不同,但都是求平均数。求平均数都要用总数量除以总份数。解答时要根据题里的具体条件来列式。
2.做期末复习第27题。
提问:这一题和前面的题又有什么不同的地方?求平均每天捕鱼多少吨要怎样想?
让学生口答列式,老师板书。让学生说一说每一步求的是什么。·
提问:这道题列式时和前两题有什么相同的地方?有什么不同?为什么要先求上半月的总数?
你认为求平均数要注意什么问题?(总数量和总份数的对应关系)
指出:求平均数要弄清题里的每个条件的意思,根据求平均数的数量关系列式。列式时要注意总数量和总份数之间的对应关系。
[评析:通过题组对比,可以帮助学生进一步认识和掌握求平均数的数量关系和解题思路,明确求平均数要注意的问题。]
五、课堂小结
这节课复习了哪些内容?通过复习你进一步明确了哪些问题?
六、课堂作业
期末复习第26、28题。
五年级数学下册教案7
【课时安排】
1课时
【预习导航】
预习要求
☆ 回顾课本的内容,进一步巩固求一个数的因数和倍数的方法。
☆温馨提醒:感觉数学知识之间的内在联系。
【新知探究】
基础练习
A档
1.填空。
(1)3的因数有( )个,20的因数有( )个,( )的因数只有1个。
(2)一个数的最小倍数减去它的最大因数,差是( )。
(3)一个数的最小倍数队以它的最大因数,商是( )。
(4)一个自然数比20小,它既是2的倍数,又有因数是7,这个自然数是( )。
2.猜猜我是谁。
(1)我是27的因数,又是3的倍数。我是( )
(2)我的最大因数和最小倍数都是60.我是( )
(3)它是33的因数,又是11的因数,它不是1哦,那它是( )
3.一个数是63的因数,同时也是9的倍数,这个数可能是多少?
4.小明想在钉子板上围一个面积是24cm2的长方形(钉子板上每格的面积是1 cm2)。想一想,他有多少种不同的围法?长、宽各是多少?
【精炼反馈】
B档
1.老师的年龄在20岁和40岁之间,既是6的倍数,又是9的倍数,请猜猜老师今年几岁?
2.用96个完全相同的正方形拼成一个长方形,一共有多少咱不同的拼法?
3.五年级一班在一次数学测试中,平均分为90分,总分为4680分,则该班有学生多少人?
4.把55个橘子分给甲、乙、丙三人,甲得到的橘子数是乙的.2倍,且甲、乙得到橘子数都比丙多,丙得到的橘子数比10多,则甲、乙、丙三人各得多少个?
【学习小结】
课堂总结
通过这节课学习,你收获了什么?还有什么疑问吗?
【拓展延伸】
2的倍数的故事
在古老的印度,连年征战,屡战屡败。国王为此事伤透脑筋,国臣建议宴请地方有名的术士,来为国王解忧。国王见到术士,大为欢喜,言明战胜之后必有重赏,术士却跟国王说,我不要金银珠宝,我只要米就好了。国王很纳闷,米这事太简单了,就爽快地答应了。术士跟国王说,我要在棋盘上第一格放一粒米,第二格放两粒,第三格放四粒,第四格放八粒,第五格放十六粒……以此类推,放到格子用完为止。国王一想,这还不简单,米多的是,于是答应地很干脆。
结果,战事果然为之逆转,术士凯旋归来,国王依约给米,才发现不得了了,若依约给米,整个粮仓,包括国库都不够给的。
这就是倍数增加的威力。
易错收集
五年级数学下册教案8
一、开门见山,直奔主题。
1、 了解新知。
看大屏幕,问:今天我们学习的内容是什么?(板:长方体体积的计算)长方体体积应该怎样计算呢?
(板:长方体体积=长×宽×高)你是怎么知道的?对于长方体的体积你还知道哪些知识?
2、 引发矛盾。
引:知道真不少,那你知道长方体的体积为什么等于长×宽×高吗?看来我们对长方体体积的学习还不太全面,还有些问题。所以对于学习老师想送给大家一句名言,我们一起来看。
3、 渗透学习态度一(出示“学贵有疑,小疑则小进,大疑则大进。——陈宪章”)引:快速地小声读一读,这是清代学者陈宪章的一句话,老师觉得我们学习数学也应该像这句话说的那样勤于思考,经常问自己一个为什么,时常拥有一双发现问题的眼睛。课前没有做到,老师希望接下来我们探索长方体体积由来时能做到,好不好?
设计意图:让学生借助预习(或自学)的力量,直接揭示课题,既符合学生的认知规律,又充分了解到学生学情底数,同时调动了学生学习积极性,为学习新知作好铺垫。最后,在“学贵有疑”的学习态度渗透中,自然的引出下一环节。
二、引导探究,获得新知。
课件(或教具)演示
1、一排一层的长方体。(出示:1立方厘米的小正方体。)
问:这是一个棱长1厘米的小正方体,一起告诉我,它的体积是多少?2个这样的小正方体的体积是多少?3个呢?4个呢?
小结:也就是说由几个1立方厘米的小正方体组成的长方体体积就是几,是这样吗?
2、3排1层的长方体。
再问:我们再来,1排4个1立方厘米的小正方体,2排多少个?3排呢?这么快,你是是怎么做的?
小结:也就是说用每排的个数4×排数3就可以求出这个长方体含有多少个1立方厘米的小正方体,是这样吗?(板:小正方体个数=每排的个数×排数)
3、3排2层的长方体。
再问:这个长方体含有多少个1立方厘米的小正方体,所以它的体积是多少?好我们再来,一层12个1立方厘米的小正方体,2层多少个?这次你是怎么做的?
小结:也就是说在前面的基础上再乘层数2就可以求出这个大长方体含有多少个1立方厘米的小正方体,是这样吗?
4、释疑辅垫。
引:学贵有疑,这里有问题了,为什么前面没有乘层数就求出了1立方厘米的小正方体呢?(引导出前面两个长方体的层数都是1,第一个长方体的排数是1)(板:小正方体个数=每排的个数×排数×层数)
5、数个数验证。
再引:数学是严谨的,用每排的个数×排数×层数求小正方体个数这个方法是否真的可行,下面我们一起来数一数,(课件或教具演示)结果相同吗?说明这个长方体的体积是多少?
6、引导发现。
引:学贵有疑,小疑则小进,大疑则大进,做到这里,对于长方体体积的由来你想到了什么?(注意评价
学生回答:他说的好不好?好在哪?)引导出每排个数相当于长方体的长,排数相当于宽,层数相当于高。
小结:现在大家知道长方体体积为什么等于长乘宽乘高了吗?由公式可以知道求长方体的体积只要知道什么就可以了?
设计意图:借助教具、学具,通过老师的引领,让学生的多种感官都参与到教学活动,在操作中发现规律,为学生创设了良好的思维情境,在头脑中建立长主体体积由来的表象,促使学生形成新的认知结构,突破教学难点,顺利地抽象出长方体体积公式。
过渡:知道了长方体体积公式的由来,老师觉得学习还不能停止,在这里,老师还想送同学们一句名言,一起来看。
三、操作验证、巩固练习。
1、学习态度二。(出示:纸上得来终觉浅,绝知此事要躬行)
引:也来快速地小声读一读,这是宋代诗人陆游的一句诗,它告诉我们从书本上或从别处得来的知识,还需要我们亲自动手实践一下,才能记得牢,理解得透。
2、拼摆计算。
引:现在老师就给大家这个机会,利用1立方厘米的小正方体用计算的方法自已来算一算长方体体积是不是真的等于长×宽×高,请同学们注意要求:
1、以小组为单位来摆,注意分工协作。
2、请填好记录单,注意发现新的.问题。开始。
小结:还是那句话:数学是严谨的,通过自己来动手验证得到的知识才是最可信的。
3、学生汇报验证过程。
设计意图:通过学生熟知的陆游诗句,进一步体会数学学习的严谨性,充分相信学生,让学生自己动手,在小组合作中验证新知,再现长方体体积由来的过程,使学生加深“知其所以然”的理解,进而有效地培养学生操作及探究能力。
引:现在长方体体积公式可以确认了吗?它是什么?下面我们就用它来解决一道实际问题。
4、解决问题。(出示例题)先估算体积再独立计算。
5、巩固练习。
引:为了巩固新知,老师还准备了两个小题,还能不能做?
1、练一练第1题。
直接口答列式。
2、练一练第3题。
先谈注意问题再解答。最后拓展此题的古代解法。
3、拓展新知。
引:这是生活中一道典型的求体积的题,实际上它的解法早在20xx年前就已经有了,我们来看一看。
(出示:“方自乘,以高乘之既积尺”)这是20xx年前我国古代一本数学专著〈九章算术〉的解法,和我们现在的解法一样吗?你觉得我国古代的数学家怎么样?
设计意图:通过不同形式的练习既深化了知识,又培养了学生综合运用所学知识解决简单的实际问题的能力,同时也拓展了学生对古代数学的了解,升华了认知。
四、总结回顾,深化体验。
问:通过这节课学习,你有什么收获?有什么感受?
总结:老师也想通过这节课告诉大家,我们学习,不光要记住知识,还需要经常问问为什么,更需要自己动手验证新知的正确性。最后,我还想送大家一句名言,一起看(出示:天下事有难易乎,为之,则难者亦易矣;不为,则易者亦难矣。人之为学有难易乎?学之,则难者亦易矣;不学,则易者亦难矣。——彭端叔)无论学习还是做事,是没有难和易之分的,只要你去学,你去做,再困难的事也会变得很容易。知难而进是我们的学习态度。
设计意图:“谈收获”是对所学知识部分的整理,“谈感受”是学生情感方面的升华,尤其是“名言”的总结,进一步使学生对今后的生活学习有了概括性引领和提升。
五年级数学下册教案9
教学目标:
1.通过自主整理,熟练掌握列方程解应用题的一般步骤及如何分析等量关系。
2.沟通知识之间的联系,提高综合运用知识、解决实际问题的能力。
教学重点:
抓住关键句,找等量关系。
教学难点:
正确理解关键句所叙述的等量关系。
教具学具:
课件。
教学过程:
一、问题回顾,再现新知。
引入:前面我们复习了方程的意义和根据等式关系解方程,现在我们继续来复习用方程来解决实际问题。
1.自主分析,解决范例。
出示教材第101页的第10题:
“银虎”牌西装每套价格是800元,裤子的价格相当于上衣的3/5。上衣和裤子各是多少元?
(1)出示自主探究提纲:
①你怎样理解这个“各”字?
②题目中的关键句有两句,你认为这两句的作用各是什么?
③题目中的等量关系你认为应该是怎样的?
④方程怎样列?
(2)互动交流,展示学习成果。
小组汇报交流,说说探究题纲的研究内容。
预设:其中的第②个研究内容,小结一下:第二个关键句是用来解设未知数
的,第一个关键句是用来找等量关系并列方程的。
(3)展示小组解决问题方案,并要求学生说出列方程的数量关系。
(4)学生自主尝试解方程,并口头检验方程的解。
2.共同整理列方程解应用题的一般步骤。
(1)提出问题:想一想在做列方程解应用题时,应该先做什么?再做什么?学生回答、交流。
小结:列方程解应用题的步骤,并板书:
①审题,设未知数X;
②找出等量关系、列方程;
③解方程;
④检验、写答句。
(2)追问:其中哪一步是列方程解应用题的关键?(第2步,找出等量关系列出方程。)根据你的做题经验,你有什么好办法找到等量关系?
学生汇报后小结:找关键句子进而分析等量关系。
3.依据关键句子分析等量关系。
导入:生活中处处有数学,水果店也有我们学过的数学问题。请看这些水果多新鲜呀!小玲的妈妈买了三种水果,它们的价钱有什么关系呢?根据妈妈给出的信息,同桌说一说它们的等量关系。
(1)出示关键句子,说等量关系。
①买来4千克苹果和2千克的橙子共用34元。
②2千克的橙子比4千克苹果便宜6元。
③买苹果和桃子各1千克共用11元,每千克桃子的价钱是苹果的1.2倍。 ④1千克的桃子比苹果贵1元,每千克桃子的价钱是苹果的1.2倍。
⑤买橙子的价钱比苹果的3倍多5元。
⑥3千克的桃子比6千克的香蕉贵9元
(2)小结:列方程解决问题时,可以利用这些关系,很快地找出等量关系,从而列出方程。
二、分层练习,巩固提高。
(一)基本练习,巩固新知。
很快写出数量关系,并列方程不解答。
1.一只蜜蜂每小时飞行19.2千米,是一只蝴蝶飞行速度的2.4倍,这只蝴蝶每小时飞行多少千米?
2.妈妈和小东年龄相差26岁,妈妈的年龄是小东的3倍,小东和妈妈两人各多少岁?
3.王师傅要生产195个零件,已经生产了3天,还剩15个没生产。王师傅平均每天生产多少个零件?
4.海龟能活180年,比大象存活的年数的2倍还多20年,大象能活多少年?
(二)综合练习,应用新知。
1.做第101页的第4题。
先让学生读题,并设想解决这一问题的`方法和步骤,然后让学生独立完成并交流。交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。
启发思考:用方程解决问题,比用算术法解决问题有什么优点?
小结:用方程解决问题,能使较复杂的思考过程变得简单。
2.做第5题。
先让学生说说这道题的等量关系是什么?然后让学生独立完成。反馈时,要在关注方程法的同时,用算术法加以对比,使学生看出用方程法解决问题时,思考过程是顺向的。
3.做第7题。
学生独立完成后,再要求说说学生是如何确定这道题的单位“1”的。
4.做第11题。
生独立完成后,指名说说自己的思考过程,进一步突出要根据题中等量关系列方程。
(三)拓展练习,发展新知。
1.小红和小阳同时从学校背向而行,30分钟后,两人相距3960米,小红每分钟走60米,小阳每分钟走多少米?
2.师徒两人共同加工630个零件,师傅每小时加工54个,7小时后完成任务,徒弟每小时加工多少个?
先让学生设想解决这两个问题的方法和步骤,然后让学生独立完成并交流。交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程。
三、梳理总结,提升认知。
今天你有什么收获?你觉得你在哪个方面表现最棒?
小结:我们在做题时要根据题认真审题,根据题目中关键句子所表示的意思,找准等量关系,从而准确的列出方程解答。
板书设计:
列方程解应用题的步骤:
①审题,设未知数X;
②找出等量关系、列方程;
③解方程;
④检验、写答句。
五年级数学下册教案10
教学内容:
教材第76~77页的练习与应用第8—13题。“探索与实践”第14—16题,“评价与反思”。
教学目标:
1、使学生进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法,建立合理的认知结构。
2、使学生通过探索与实践,发展数学思考与实践能力,感受数学活动的魅力。
教学重点:
进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法
教学难点:
运用所学的知识解决简单的实际问题。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
这一单元,我们学习了分数的意义和性质,通过这个单元的学习,你学会了什么?
组织学生进行小组讨论:出示讨论题:
1、什么是分数的基本性质?它与整数除法中商不变的规律有什么联系?你能举例说明吗?2、约分、通分有什么区别?约分、通分的一般方法各是什么?3、你会怎样比较两个分数的大小?学生进行讨论后,进行交流。
二、练习与应用
1、教学第8题
2、教学第9题:
先圈出最简分数,再把其余的分数约分。学生先独立完成,再指名汇报。
3、第10题
引导:前3题可直接根据小数意义,改写成小数,最后1题要根据分数与除法的关系,通过计算改写成小数。
4、第11题比较较分数的`大小。
讨论:我们学习了多种分数的大小比较的方法。大家讨论交流后,教师再进行归类。
5、指导第13题
先让学生做,再让学生说出理由。
三、探索与实践
第14题各自记录后计算交流。
第15题要鼓励学生根据要求自主设计图案,再用分数和知识进行描述交流。
要通过展示学生设计的图案,让学生体验成功的乐趣,感受创造之美。
第16题游戏之前要让学生照书上的样子分别做一个转盘,游戏时要帮助理解活动的方法和规则。
要引导学生在游戏中积累比较分数大小的经验,反思比较分数大小的策略。
四、评价与反思
组织学生进行评价与反思时,可以先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,再慎重地给五角星涂色,对自己作出公正、合理的评价。
五、作业
第12、13题
五年级数学下册教案11
教学内容:
教材第2页例1,完成教材第3页练习一第1、2、4、5题 第 1 课时 课型 新授
教学目标 :
1.结合现实生活,通过具体观察活动,使学生能体验从正面看到的平面图形,它的实物图可以有多种摆放方式。
2.学生能通过从正面看到的平面图形画出不同摆放方式的小正方体。
3.通过观察、操作等活动,培养学生的观察能力、动手能力,发展空间观念,初步学会欣赏生活中的数学美。
4.在活动中培养数学学习热情以及良好的交流、合作习惯。
教学重点:
能从正面看到的平面图形画出不同摆放方式的小正方体
教学难点:
能从正面看到的平面图形画出不同摆放方式的小正方体
教具准备:
课件,小正方体积木
教学过程:
一、复习导入
师:同学们都喜欢玩积木吗?下面我们来玩一个搭积木的游戏。请用手中的4块积木搭一个你喜欢的形状。谁来展示一下你的摆法?
生展示不同的摆法。
师:通过刚才的游戏,老师发现同学们越来越喜欢动脑筋了,大家探索出了这么多有趣的摆法。老师真为你们高兴!这一节课希望大家积极动手动脑,我们来继续探索《观察物体》中的奥秘,好吗?(板书课题)
二、新课讲授
1.出示教材第2页例1
(1)师:看同学们刚才学得真好,我又给大家提供了一个玩积木的机会(出示课件):现在有四块积木,如果我想摆出从正面看是这一形状(如图),
应该怎样摆?有几种摆法?
请同学们以小组为单位,合作解决这一问题。
教师巡视指导。
师:刚才老师发现好多小组都在积极尝试多种不同的摆放方法,这种探索精神非常好,有谁愿意到讲台上,向大家介绍一下你们小组集体的智慧成果?
生摆
师:谁还有不同的方法?生摆
师:电脑出示六种基本摆法,同时指出在这六种方法的基础上再进行移动,就延伸出了多种摆法。
(2)如果再加一个小正方体,要保证从正面看到的`形状不变,你可以怎样摆?同学们以小组为单位,合作解决。
教师巡视指导。
学生展示成果。
(3)同学们真棒!想出了这么多种摆法,你们能尝试着找到一个如何摆放的规律吗?可以讨论。
生讨论交流得出:先照图用三个小正方体摆好从正面看到的基本形状,然后余下的一个正方体可以摆在原来物体的前边或后边,都可让正视图保持不变。如果摆在前边,从正面能看到这个正方体,它必须与原来物体里的正方体对齐着摆;如果摆在后边,从正面不能看到这个正方体,它既可以与原来物体里的正方体对齐着摆,也可以不对齐着摆。
三、课堂作业
完成教材第3页练习一第1、2、4、5题。
四、课堂小结
这节课我们学习了从正面看到的平面图,它的实物图有多种摆放方式,你学会了吗?你还有什么收获呢?
五、课后作业
完成练习册中本课时练习。
板书设计:
观察物体
五年级数学下册教案12
教学目标:
1.认识数轴,知道数轴与数射线之间的关系。
2.会画数轴。
3.知道数与数轴上的点的关系及原点的含义。
教学重点和难点:
重点:
1、知道数轴的三要素。
2、会用数轴上的点表示数。
难点:会画数轴。
教学媒体:
教学平台
课前学生准备:
课堂练习本
教学过程:
课前准备:
直接写得数:
6.4÷4= 0.4×0.4= 0.35×0.2= 8.8÷0.11=
0.25×6×4= 7.2×4÷0.9= 15.48-(6.7+5.48)=
一、探究数射线与数轴之间的关系:
1.复习:数射线的概念:
数射线--
①什么是射线。
②在射线上标上刻度。
2.认识数轴:
①观察数射线与数轴两幅图有什么区别?
从数射线上的“0”点出发,向相反方向(左)延长,它就会变成一条“数轴”。
②谁能说说数轴的定义,并说说有哪些要素?(自学课本)
定义三要素规定了原点、方向、单位长度的直线叫数轴。原点、方向、单位长度。
二、数轴的画法:
1.画直线(一般画成水平的),定原点,标出原点“0”。
2.取原点向右方向为正方向,那么,向左方向为负方向,并标出箭头。
3.选适当的长度作为单位长度,(必须一样长短)并标出……,-3,-2,-3,1,2,3……各点。(所标的数可以是正数、也可以是分数、小数、)
练习:下面的直线中,哪些是数轴?(补充竖着画的数轴)
三、进一步认识数轴:
1、过渡:我们来进一步认识数轴!
2、探究:正负数是怎样一个一个地标示在数轴上的呢?
(1)组织学生交流或自学书本.
(2)汇报:
在原点的右边,离开原点1个单位长度的点就表示+1,……;
在原点的左边,离开原点1个单位长度的点就表示-1,……
(3) 小结:
用数轴上的点表示数,所有表示正数的点都在原点的右边,所有表示负数的点都在原点的左边;原点(表示0的点)是表示正数和负数的点的分界点.
3、学生尝试画一条数轴。
四、巩固练习:
1、填空:
表示+3的点在原点的()边,离开原点()个单位长度。
表示-5的点在原点的()边,离开原点()个单位长度。
2、在数轴上找出表示-4,+3,-1,+5,-5的点,并分别用字母A、B、C、D、E表示。
3、写出下面数轴上A、B、C、D、E各点分别表示什么数。
A表示()B表示()C表示()D表示()E表示()
4、选择题:
1)数轴上A表示()B表示()C表示()D表示()
A -1 B +2 C -5 D +5
2)数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点距离原点都是20,则这两个点所表示的数分别是()。
A +10和-10 B +20和-20 C +5和-5 D无法确定
五、总结:
1、作业:
看图填空
(1)表示-4的点是在原点的()边,离开原点()个单位长度.
(2)表示+2.5的点是在原点的()边,离开原点()个单位长度.
(3)表示-4.5的点是在原点的()边,离开原点()个单位长度.
(4)表示( )的.点是在原点的左边,离开原点3.8个单位长度.
(5)表示( )的点是在原点的右边,离开原点6个单位长度.
(6)表示( )的点是在原点的左边,离开原点2个单位长度.
(7)离开原点三个单位长度的数有()。
板书设计:
数轴:
数轴的画法:
1.画直线(一般画成水平的),定原点,标出原点“0”。
2.取原点向右方向为正方向,那么,向左方向为负方向,并标出箭头。
3.选适当的长度作为单位长度,(必须一样长短)并标出……,-3,-2,-3,1,2,3……各点。(所标的数可以是正数、也可以是分数、小数、)
五年级数学下册教案13
【教学目标】
知识目标:在解决实际问题的过程中,了解并选择合理的估算策略,发展估算意识。
能力目标:体会解问题的基本过程和方法。
情感目标:提高解决问题的能力
【教学重点】
选择合理的估算策略,发展估算意识。
【教学难点】
选择合理的估算策略进行合理估算
【教学准备】
课件
【教学过程】
一、创设情境引入课题
教师充分利用教材资源,创设一家人去超市购物的情境
电脑课件提供所购物品种的价格表
1提问:
估计花了多少钱?
二、思考交流
1.鼓励每一个学生独立思考,从不同角度进行思考
2.小组讨论分析
让学生分组对各种策略加以比较与分析,体会几种策的特点
3.全班展开讨论
交流各种不同的策略,分析每一种策略的思路和适用性
让学生说说它们之间的联系
三、开发思维
让学生说出自己的合理策略,鼓励学生尝试说明估算的思路
数学学科(五年级)教学设计
授课教师:
教学过程备注栏
四、练习
指导“试一试”
第1题
引导学生看懂情境,单价不到13元,2千克应不到26元,所以店主错了。
第二题
先让学生明白“八折”的意思,然后引导学生对打折后的价格进行估算。
五、总结
六、作业设计教科书第77页10题
【板书设计】
数学与购物
估计花了多少钱?
【教学反思】
“数学与购物”中的“估计费用”是生活中经常遇到的问题。教材创设了一家人去超市购物的情境,提供了所购物品的价格表,要求学生根据教材所提供的信息解决问题。这个问题实际上是让学生结合具体情境综合应用的知识,探索估算的方法,培养学生的`估算意识。教材中提供了5种不同的估算策略,其目的有二:一是对常见的估算策略进行总结;二是让学生根据解决问题的需要选择合理的估算策略。
教学时,在呈现问题情境后,我们要引导学生通过探索、交流等活动主动地进行学习,鼓励每一个学生独立思考,从不同的角度探索估算策略,并在小组内对各种策略加以比较与分析。
第一种策略是将最高位加起来,称为“去尾法”;第二种策略是将个位上的数字进一,称为“进一法”;运用这两种方法可以做出结果的范围。第三种策略是“四舍五入法”;第四种是“凑十法”第五种部分加数分别相加凑十法。教学时,要对这几种主法进行分析比较,体会这几种策略的特点。生活中能根据具体的情况选择不同的策略。如果学生还有其他的估算策略,只要合理,我们都应给予肯定。但要鼓励学生尝试说明估算的思路。教学时,我们既要鼓励学生探索多种估算策略,也要把握好度,不宜为了追求策略多样化而人为造出许多策略,需要使学生明确应根据实际问题选择合理的策略。
五年级数学下册教案14
人教版数学五年级下册
第二单元
因数与倍数
姓名:________
班级:________
成绩:________
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、仔细想,认真填。
(共17题;共43分)
1.(2分)写出一个既是奇数又是合数的数是_______;_______既是偶数又是质数。
2.(4分)在24,120,75,78,210,105中,2的倍数有_______,3的倍数有_______,5的倍数有_______,同时是2,3,5的倍数的数有_______。
3.(2分)在23、35、60、75这些数中,既是偶数又含有因数5的数是_______,既是奇数又是3的倍数的数是_______。
4.(4分)39÷13=3,_______是_______的倍数,_______是_______的因数。
5.(1分)最小质数是最大的两位偶数的_______。
6.(1分)在20以内的自然数中,既是奇数又是合数的数是_______。
7.(2分)两个质数,它们的和是20,积是91,这两个数分别是_______和_______。
8.(3分)里有_______个
;1
分数单位是_______,再增加_______个这样的分数单位就等于最小的质数.
9.(2分)_______只有1个因数,_______只有两个因数.
10.(2分)A=2×2×5×7,B=2×3×5×7,A与B的最大公因数是_______,最小公倍数是_______.
11.(5分)36的因数有_______,在这些因数中,质数有_______,合数有_______,奇数有_______,偶数有_______.
12.(7分)在0、、、3、4、17、30中,质数有_______、_______,合数有_______、_______,_______是_______的因数,同时是2、3、5的倍数的数是_______。
13.(1分)两个自然数的和与差的积是41,那么这两个自然数的和是_______。
14.(2分)一个两位数,既含有因数2和因数5,又是3的倍数,这个数最小是_______,最大是_______。
15.(1分)判断下列结果是奇数还是偶数。
2784+795的和是_______
16.(3分)三个连续偶数的和是30,这三个数分别是_______,_______,_______。
17.(1分)100以内15的`倍数有_______。
二、明辨是非。
(共10题;共20分)
18.(2分)一个数的倍数一定比原数大。()
19.(2分)若ab=12,那么a与b是12的因数,12是它们的倍数.()
20.(2分)凡是3的倍数都是奇数。()
21.(2分)判断对错.在自然数中,除了质数就是合数.
22.(2分)质数都是奇数。()
23.(2分)两个不同奇数的积可能是质数也可能是合数。
24.(2分)一个自然数不是质数,就是合数。
25.(2分)两个质数的积一定是合数。
26.(2分)自然数不是奇数就是偶数,不是质数就是合数.()
27.(2分)判断对错
两个数相除,商是5,那么其中一个数就是另一个数的倍数.
三、选一选
(共11题;共22分)
28.(2分)在算式15=3×5中,3和5是15的()。
A
.质数
B
.公约数
C
.质因数
29.(2分)一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有()。
A
.90个
B
.60个
C
.30个
30.(2分)48的全部因数共有()个。
A
.8
B
.9
C
.10
D
.无数
31.(2分)2不是()。
A
.合数
B
.质数
C
.偶数
D
.自然数
32.(2分)淘气最初面向东站立,听到第一声指令“向后转”就面向西站立,当他听到第17次这样的指令后,面向()站立.
A
.东
B
.南
C
.西
33.(2分)两个奇数的乘积一定是()
A
.质数
B
.合数
C
.偶数
D
.奇数
34.(2分)a,b和c是三个非零自然数,在a=b×c中,能够成立的说法是()
A
.b和c是互质数
B
.b和c都是a的质因数
C
.b和c都是a的约数
D
.b一定是的倍数
35.(2分)有1、2、3、4四张数字卡片,每次取3张组成一个三位数,可以组成()个奇数.
A
.2
B
.3
C
.4
D
.12
36.(2分)42÷3=14,我们可以说()。
A
.42是倍数
B
.42是3的倍数
C
.42是3的因数
37.(2分)421减去(),就能被2、3、5分别整除.
A
.1
B
.11
C
.21
38.(2分)一个数是合数,它的因数至少有()个。
A
.1
B
.2
C
.3
D
.4
四、按要求写一写:
(共4题;共20分)
39.(5分)在右面的6个
内填入不同的质数。使的和都等于30以内的同一个偶数,并把这个偶数填在中间的里。
40.(5分)下列各数哪些数是2的倍数,哪些数是5的倍数,哪些数是3的倍数。哪些数同时是2、3、5的倍数。54、35、48、72、99、27、108、9、126、91、120、1305、80、(5分)分一分。
1,2,11,18,23,45,73,87,128,20xx
42.(5分)如果一名同学的身份证号是xxxxxxxx0042,请给这名同学补全身份证号码。(她的生日是3月6号,出生于1999年。)
五、按要求组数。
(共1题;共5分)
43.(5分)笑笑和淘气用转盘玩游戏,如果转盘指针指向3的倍数就是笑笑胜,指向5的倍数就是淘气胜,如果是3和5的公倍数就是平局重新玩。你认为这个游戏对双方公平吗?请说明理由。
六、请你来解答。
(共6题;共45分)
44.(5分)求下列各组数的最大公因数和最小公倍数
5和7
18和54
29和58
45.(5分)请把下面的数填在相应的苹果里.
115
306
360
46.(20分)请你把5、4、0排成符合下面要求的三位数,你能想出几种排法?试一试。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
47.(5分)找出质数和合数(按题中数的顺序填写)
23,35,47,24,51,63,72,91,111
48.(5分)指出下列各题的错误,并加以改正.
49.(5分)请你写出100以内9的所有倍数
参考答案
一、仔细想,认真填。
(共17题;共43分)
1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、二、明辨是非。
(共10题;共20分)
18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、三、选一选
(共11题;共22分)
28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、36-1、37-1、38-1、四、按要求写一写:
(共4题;共20分)
39-1、40-1、41-1、42-1、五、按要求组数。
(共1题;共5分)
43-1、六、请你来解答。
(共6题;共45分)
44-1、45-1、46-1、46-2、46-3、46-4、47-1、48-1、49-1、
五年级数学下册教案15
教案设计
设计说明
1.以学生自主探究为主,引导学生发现分数与小数的互化方法。
学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。
2.在学生原有的认知水平上促进发展。
本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。
课前准备
教师准备 PPT课件
学生准备 两张完全一样的方格纸
教学过程
⊙创设情境,导入新课
师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。
(课件出示情境图)
师:“分数王国”里有哪些数呢?“小数王国”里呢?
(生汇报)
师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?
生:和0.06都说自己更大。
师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)
设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。
⊙自主探索,学习新知
1.解决问题。
(1)课件出示教材7页情境图。
师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?
(2)大胆猜测,探究比较方法。
方法一 把分数化成小数来比较。
=1÷20=0.05,因为0.060.05,所以0.06。
方法二 把小数化成分数来比较。
0.06=,=,因为,所以0.06。
课件展示学生没有想到的画图法,让学生在讨论中理解。
0.06>
师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。
2.“分数王国”和“小数王国”分别有不同的.尺子,你能帮助“翻译”吗?
(1)认真读题,明确题目中的“翻译”指什么。
(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。
(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。
3.归纳分数化成小数的方法。
(1)探究将分数化成小数的方法。
把下列分数化成小数:
练习,并思考转化方法。
(2)小组内交流方法。
(3)班内反馈。
要求学生说出转化方法,并讲明转化的原理。
师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。
4.归纳“小数化成分数”的方法。
把0.3,0.27,0.75,0.125化成分数。
练习,探究小数化成分数的方法。
师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。
设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。
【五年级数学下册教案】相关文章:
数学五年级下册教案10-31
五年级数学下册教案10-08
五年级数学下册教案05-24
五年级下册数学教案09-18
五年级下册数学教案10-19
苏教版五年级数学下册教案01-19
青岛版五年级数学下册教案11-06
五年级下册数学全册教案08-26
五年级下册《展开与折叠》数学教案11-03
【优选】五年级下册数学教案05-02