(热)《比例》六年级数学教案
作为一名优秀的教育工作者,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案要怎么写呢?以下是小编整理的《比例》六年级数学教案,欢迎大家分享。
《比例》六年级数学教案1
教学内容:教科书第50页例3,练习十一3~6题。
教学目标
1.使学生理解解比例的意义。
2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。
3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:建立解比例和解方程之间的联系。
教学准备:课件。
教学过程
一、复习准备
(1)什么叫比例?什么叫做比例的基本性质?
(2)下面哪一组中的两个比可以组成比例?用比例的基本性质判断。
18∶20和7.2∶8,100∶0.2和10∶0.002
学生独立完成后,抽取个别学生的答案在视频展示台上展示。
二、导入新课
教师:谁能很快说出下面比例中缺少的项各是几?(学生试说)
14∶21=2∶() ,1.25∶()=2.5∶4
教师:在一个比例式中,共有四项,如果已知其中的任何三项,要能很快求出这个比例中的另外一个未知项,就要用我们今天学的知识——解比例。
板书课题:解比例。
三、探究新知
1、教学例3
教师:像这样知道比例中的任意三项,求另外一个未知项叫做解比例。同学们能用以前学过的知识求出34∶12=x∶49中x的值吗?
引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。例如,把比看做除法,那么34∶12=x∶49就可以转化成34÷12=x÷49,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把34∶12=x∶49转化成12x=34×49来解。
教师:同学们真聪明,想出了这么多解决问题的方法。下面请一个同学回答,你把34∶12=x∶49转化成12x=34×49来解,根据是什么?(根据比例的基本性质。)
2、巩固练习
教师:你能根据比例的基本性质,把下面的比例改写成含有未知数的乘法等式来解吗?在黑板上出示:
3∶4=x∶21 4∶13=9∶x x∶8=12∶32
学生解答,抽取几个学生的作业在视频展示台上展示,并集体订正。
3、教学"试一试"
出示9/6=x/4
教师:这个比例和前面几个比例有什么不同?(这个比例是分数形式。)
指出它的内项和外项。像这样的分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?
学生讨论并解答,完成后,请学生说一说是怎样求出x的值。
教师:解分数形式的比例时要注意什么?
引导学生说出要注意用交叉法找出比例中的'两个内项和两个外项。
教师指导学生进行验算,注意书写格式的规范性。
四、巩固练习
(1)学生独立完成练习十一的第3题和第5题。
(2)讨论完成练习十一的第4题。
教师先引导学生做:这道题需要逆用比例的基本性质。在比例里,两个内项的积等于两个外项的积。这道题是知道两个积相等,如果我们把左边的两个数当作比例的内项,那么右边两个数就应当作为比例的外项,这样就可以写出比例式了。如果我们把左边的两个数当作比例的外项,那么右边两个数就应当作为比例的内项,也可以写出比例式。
学生自己写出比例式,课件显示:
如果把6,1.2作为外项,有下面这些比例式:
6∶x=3.6∶1.2 ,6∶3.6=x∶1.2
1.2∶x=3.6∶6 ,1.2∶3.6=x∶6
如果把6,1.2作为内项,有下面这些比例式:
x∶6=1.2∶3,6 x∶1.2=6∶3.6
3.6∶6=1.2∶x ,3.6∶1.2=6∶x
教师:写比例时,我们要按照一定的顺序来写才能写出所有的比例式,即不重复又不遗漏。
(3)学生独立完成练习十一的第6题,然后教师讲评。
五、全课总结
(1)什么叫解比例?
(2)用比例的基本性质解比例的一般方法。
①根据比例的基本性质把比例改写成方程。
②根据以前学过的解方程的方法求解。
(3)这节课你运用了哪些学习的方法?还有哪些问题?
《比例》六年级数学教案2
教学内容:补充:用比例方法解决实际问题
教学目标:1、进一步巩固正比例与反比例的意义,能正确判断两个量是否成比例。
2、能用比例的知识解决实际问题,提高学生灵活解决实际问题的能力。
教学设计:
一、复习
谈话导入:如何判断两个量是否成正比例?或反比例?
二、拓展练习
(一)填空:
1、下面两个量“成正比例?”“成反比例?”“不成比例?”
如果3A=4÷1/B,那么A与B( )
引导学生将这个算式改成A与B的比,计算比值后再判断。
2、(1)8/X=Y;(2)X/8= Y;(3)X- Y=8( )式中的X与Y成反比例,( )式中的X与Y成正比例。
3、(1)比的前项一定,比的后项和比值。(2)比例尺一定,分母和分数值。(3)正方形的边长和面积。( )成正比例,( )成反比例,( )不成比例。
引导学生将以上3个表达式进行变式,如能变成两个字母的比值或积,即成正或反比例。
4、a和b成正比例,并且在a=1.5时,b的对应值是0.15.
(1) a和b关系式是a/b=( ).
(2)当a=2.5时,b的对应值是( )
(3)当b=9.2时,a的`对应值是( )
引导学生理解每题要求,独立完成,指名交流。
三、解决实际问题
1、一批煤原计划每天烧4吨,可以烧72天,由于改成节能炉灶,实际每天只烧2.4吨,这堆煤可以烧几天?
学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?
2、一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行了5小时,那么甲、乙两地之间的公路长多少千米?
学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?
3、一个筑路队修筑一条公路,3天修了75米,照这样计算,再修15天就可完成任务。这条公路全长有多少米?
用算术方法如何解答?用比例任何解答?引导学生用多种比例方法解答。
4、拓展练习:在标有0 40 80 120千米的地图上,量得甲、乙两地之间相距9厘米,一列客车与一列货车从甲、乙两地同时相向而行,2小时后相遇。已知客车与货车的速度比是5:4,求客车的速度。
《比例》六年级数学教案3
教学内容
教科书第48~50页例1、例2,课堂活动及练习十一1,2题。
教学目标
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点
理解比例的意义和基本性质。
教学难点
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学准备
课件,扑克牌10张(2~10以及A),圆规一个。
教学过程
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26
影子长39
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的'基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
《比例》六年级数学教案4
教学内容:教科书第35页的第45题,练习九的第46题。
教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。
教具准备:小黑板。
教学过程:
一、复习用比例解答应用题
教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。
1,用小黑板出示第35页第4题:
我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时?
教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的'。
提问:
这道题有几个相关联的量?它们成什么关系?为什么?(有两个相关联的量,因图为 =速度,而速度是一定的,所以转的周数同时间成正比例关系。)
指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:
解:设运行14周要用X小时。
6:10.6=14:X
6x=10.614
X=
x 24、7
答:运行14周要用24.7小时。
2.用小黑板出示第35页第5题:
一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷?
指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。
3.总结。
教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。
二、课堂练习
完成练习九的第46题。
1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。
2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。
3.第6题,让学生独立完成,集体订正时,说说解答思路。
《比例》六年级数学教案5
教学目标:
在巩固正反比例的意义和正方比例的判断方法上,通过比较观察,理解并掌握正、反比例的意义和判断方法的差异,明确在同一组数量关系中,什么量一定时,另外两种量成正比例关系;什么量一定时,另外两种量成反比例关系,并能正确地判断。
教学重点、难点:
区分正反比例的差异
教学过程:
一、复习
1、前面一段时间我们学习哪两种比例关系?说说你的理解!
板书:正比例、反比例(学生回顾正反比例)
2、出示小黑板:
表一、
总价(元)
8
16
40
80
160
数量(件)
1
2
5
10
20
( )和()是两种相关联的量,()随着()而变化,()一定。所以()和()成()关系。
表二、
单价(元)
80
40
20
10
5
数量(件)
1
2
4
8
16
让学生先完成表一的问题,在让学生如同表一的问题完成表二,书写在作业作上,请两名学生说一说。
3、想一想:单价、数量、总价这三种量、每两种之间存在怎么样的比例关系?它们的条件是什么?
二、总结问题、比较正反比例
1、
单价一定,数量和总价成正比例关系。
数量一定,单价和总价成正比例关系。
总价一定、单价和数量呈反比例关系。
小练笔:请学生举几个数量关系说一说,同桌交流,汇报
2、正反比例比较
观察表一和表二以及正反比例的知识,比较正反比例
正比例
反比例
相同点
两种相关联的量
不同点
变化方向一致
两种量相对应的两个数的比值一定
变化方向相反
两种量相对应的两个数的乘积一定
三、巩固练习
练一练1、2、3
4、A、B、C三种量的关系是:
如果A一定,那么B和C成()比例;
如果B一定,那么A和C成()比例;
如果C一定,那么A和B成()比例。
在此基础上拓展:
1、,那么和成()关系;
2、,那么和成()关系;
3、,那么和成()关系;
判断:
(1),圆周率一定,圆的周长和相应的直径成正比例;
(2),圆的直径一定,圆周率和相应的周长成正比例;
(3),圆的周长一定,圆周率和相应的直径成反比例;
练一练5、判断成不成比例?成什么比例?
四、小结
正反比例的区别与判断
课后反思:
本堂课是在学生学习了正比例和反比例的基础上进行的一堂正反比例的比较的综合课,整堂课主要是让学生通过一定的练习比较观察使得学生自主的归纳出正反比例的异同,使得学生能够更好的明确正反比例的意义和判断。因此整堂课学生的参与的积极性比较高,基本上的学生都能够参与到课堂的教学中来。
在整个备课过程中,根据教学内容的要求,载客后的练习中补充了带有未知数的三道练习让学生判断成不成比例,成什么比例,提高学生对数学的积极性和杰却问题的能力。与此同时还安排了一个判断题,由于前面都遇到有一个数量关系可以得出一种量一定,另外两种量的`比例关系,可是这个问题就存在有这样的问题,因为圆周率是一定的,通过这个题的练习使得学生更好的理解正反比例的条件,两种相关联的量,一种量变化另一种量也随着变化。
再602班上课的时候,在出示小黑板的时候,没有先让学生回顾正反比例的知识,学生的课堂注意力没有及时地吸引过来,于是在第二堂课的时候,求安排了这样一个环节,让学生回顾知识,并吸引学生注意。还有就是表意于表二的利用,在第二堂课上比第一堂提高了,消除了学生再次整理信息所消耗的时间,提高了课堂效率。
《比例》六年级数学教案6
【教学内容】
解比例。(教材第42页例2、例3及练习八的习题)。
【教学目标】
1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。
3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
【重点难点】
1、使学生掌握解比例的方法,学会解比例。
2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。
【教学准备】
多媒体课件。
【情景导入】
上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
学生在小组中议一议,再汇报。
师:这节课,我们还要继续学习有关比例的知识,就是解比例。
板书课题:解比例。
【新课讲授】
1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?
学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。
师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。
2、教学例2。
教师用多媒体课件出示例2。
指名读题,根据题意,描述两个相等的比。
=110或模型高度:实际高度=1∶10。
让学生列出比例,指出这个比例的`外项、内项,并说明知道哪三项,求哪一项?
教师板书∶320=1∶10,你能试着计算出来吗?
请一名学生板演,其余的学生在练习本上做。
做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。
师:怎样解这个方程?
生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。
小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。
3、教学例3。
解比例:
过程要求:学生独立练习,求出未知项。
同学之间互相交流,发现问题,及时解决。请一位学生上台板演。
解:2、4x=1、5×6
x=
x=3、75
提问:还可以用其他的知识解比例吗?
学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。
4、总结解比例的方法。
教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?
学生回忆解比例的过程。
教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?
学生:根据比例的基本性质把比例转化成方程。
【课堂作业】
1、完成教材第42页“做一做”第1题。
学生独立练习,教师指名板演,集体订正。
2、完成教材第43~44页第6、7、8、9、10、11、12、13题。
答案:1、x=7、5x=x=0、6
2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。
第7题:组织学生独立练习。指名板演,集体订正。
第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。
第9题:组织学生阅读题目,理解题意,并独立练习。
第10题:组织学生小组合作完成,指名汇报。
第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。
第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。
第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。
【课堂小结】
通过这节课的学习,你在哪些方面得到了提高?
【课后作业】
完成练习册中本课时的练习。
《比例》六年级数学教案7
教学内容:练习八的第59题。
教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的
方法。
教学过程:
一、复习
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。
二、课堂练习
教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。
1.做练习八的第6题。
指名读题,让学生自己解答。集体订正时,请一个同学讲一讲,自己是怎样想的?教师板书; =
教师:如果把这道题的第三个条件和问题改成要晒17550吨盐,需要多少吨海水?该怎样解答?
让学生口头列出比例式,教师板书出来。
教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的盐和海水的吨数成正比例关系,解答这样的应用题的'关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:
2.做练习八的第7、8题。
集体订正后,指名讲一讲是怎样想的。
3.做练习八的第9题。
做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。
《比例》六年级数学教案8
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的.基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
《比例》六年级数学教案9
教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:理解并掌握比例的基本性质。
教学难点:引导观察,自主探究发现比例的基本性质
教学过程:
一、复习导入
1、昨天学习了什么内容?(比例)什么叫比例?
2、判断下面每组中两个比能否组成比例?把组成的比例写出来。
⑴ 3:5和18:30 ⑵ 0。4:0。2和1。8:0。9
⑶ 5/8:1/4和7。5:3 ⑷ 2:8和9:27
学生独立完成,说说判断过程。
你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
二、教学新课
1、教学比例各部分的名称
(1)课件出示:3:5
前项后项
(2)课件出示:3:5 = 18:30
内项
外项
(3)如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
谈话过渡:现在我们已经知道了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、出示例4
1、提问:你能根据图中的'数据写出比例吗?
(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
2、学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
3、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成
(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
4、思考3/6=2/4是那些数的乘积相等。课件显示:交*相乘。
5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
6、比例的基本性质的应用
(1)比例的基本性质有什么应用?
(2)做“试一试”
a先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
C、根据比例的基本性质判断组成的比例是否正确。
三、巩固练习
1、做“练一练”
(1)学生尝试练习。
(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
1.5:3=():4
12:()=():5
先让学生尝试填写,再交流明确思考方法。
3、做练习十第1、2题
四、全课小结。
通过今天的学习,你又有了哪些长进?
五、作业
练习十3、4题
《比例》六年级数学教案10
一、教学内容:
课本第75页的例5及相应的“试一试”“练一练”、练习十四的第1~4题。
二、教学重难点、生长点:
1.重点:教学按比例分配的实际问题。
2.难点:理解三个数量连比的意义,正确计算按比例分配的实际问题。
3.生长点:学习了比的意义、理解部分与整体的比及分数乘法的意义基础上教学本课时。
三、教材地位分析:
本课教学,重在引导学生应用比的意义解答有关按比例分配的实际问题。学生在学习的过程中,进一步体会数学知识间的内在联系,建立合理的认知结构。
四、教学目标:
1.让学生认识按比例分配的实际问题,探索并掌握这类实际问题的解答方法,认识连比。
2.让学生进一步体会数学知识之间的内在联系,培养思维的灵活性,增强分析问题、解决问题的能力。
3.让学生进一步体会数学与现实生活的联系,增强数学应用意识,增强学好数学的信心。
五、教学过程:
(一)复习
六(3)班男、女生人数的比是13:7。
()人数是()人数的()/()。
让学生填出不同的答案。
(二)教学例5
1.出示例5:给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3:2。
问:你是如何理解3:2的?(估计学生能说出红色与黄色的比是3:2,黄色与红色的比是2:3;红色与格子总数的比是3:5,黄色与格子总数的比是2:5)
当学生说到红色(黄色)与格子总数的比时,问:格子总数是多少?那你能算出红色的有多少格、黄色的有多少格吗?
学生做题,交流解答方法。
说明:在实际生活中,很多情况下并不只是把一个数量平均分,使每部分都一样多,而是在平均分的基础上按一定的比进行分配。这道题就是把30个方格按3:2进行分配。
2.验证。你做出的`结果是不是正确呢?我们可以把得数放到题目中去检验一下。与同桌说说你的检验方法。
板书检验方法:18+12=30(格)18:12=3:2
3.教学“试一试”。
学生读题后,说说是如何理解1:2:3的?(引导学生说出是把30格按照红色1份、黄色2份、绿色3份来涂色)
谈话:三个数或更多个数组成的比叫连比,它只表示三个量或更多个量各占几份,而不能理解为连除,这与两个数的比是不同的。根据红、黄、绿的比是1:2:3,你能想到格子总数被平均分成几份了吗?每种颜色的格子数各有几格?
学生做题,交流算法。
引导学生认识:都是把总数按照一定的比分成几部分,求每部分是多少,解答时都可以把比看成各占多少份,先求出每份是多少,再分别求几份是多少,也可以把比转化成分数,即各部分占总数的几分之几,再用分数乘法计算。
4,做“练一练”。
做第1小题。本题较为简单,让学生独立解答。
做第2小题。
本题稍有难度,先让学生读题。
问:你觉得怎样分配这些巧克力比较公平?(估计大部分学生会说按人数平均分;可能会有极少数人说按班级平均分)
问:“按班级人数”平均分,也就是按怎样的比进行分配?再让学生算一下每个班各分到多少巧克力。
问:如果按班级平均分,又该怎样分?口算出结果。能不能把平均分也看作按比分?按什么样的比分?(1:1:1)可见平均分是按比分的一种特殊情况。
(三)巩固、拓展练习
1.做练习十三第2题。
《比例》六年级数学教案11
教学目标
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点
能按给定的比例尺求相应的实际距离或图上距离。
教学难点
感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学过程
一、复习导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、教学新课
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的'线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
2、做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
三、巩固练习。
1、做“练一练”先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?04080120千米
(3)在一幅比例尺为
的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
四、全课小结。
通过本课的学习,你又掌握了什么新的本领?
《比例》六年级数学教案12
课前准备:
教师准备:PPT课件
教学过程:
⊙谈话揭题
1.谈话。
师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)
预设
生1:比的意义。
生2:比和分数、除法的关系。
生3:比的基本性质。
生4:求比值和化简比。
生5:比例尺。
生6:按比分配。
2.揭题。
同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]
⊙回顾与整理
1.比的意义。
(1)什么叫比?比的各部分名称是怎样规定的?
①两个数相除又叫做两个数的比。
②“∶”是比号,读作“比”。比号前面的数叫做比的.前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(2)比和分数、除法有怎样的关系?
预设
生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。
生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。
生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。
2.比的基本性质。
比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3.求比值和化简比。
(1)求比值的方法。
用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。
(2)化简比的方法。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。
(3)求比值与化简比的不同点。
学生讨论后汇报:
预设
生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。
生2:求比值的结果是一个数;化简比的结果是一个最简比。
4.按比分配。
(1)按比分配的意义。
把一个数量按照一定的比分成几部分,叫做按比分配。
(2)按比分配的方法。
首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。
⊙典型例题解析
1.课件出示例1。
求下面各比的比值。
(1)24∶36(2)0.25∶(3)2吨∶450千克
解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。
解答(1)24∶36=24÷36=
(2)0.25∶=÷=
(3)2吨∶450千克=20xx千克∶450千克=20xx÷450=4
《比例》六年级数学教案13
教学内容:
用比例知识解答应用题。
教学目标:
1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。
2.培养学生的判断能力、灵活运用知识的能力。
3.培养学生认真审题、认真思考的良好学习习惯。
教学过程:
1.基础知识训练。
判断下面各题中的两种量成不成比例?成什么比例?(口答。)
(1)工作总量一定,工作效率和工作时间。
(2)速度一定,路程和时间。
(3)绳子的长度不变,剪下的米数和剩下的米数。
(4)单价一定,总价和数量。
(5)煤的总量一定,每天烧煤量和能够烧的天数。
(6)圆的半径和它的面积。
学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。
[订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]
2.对比练习,加深理解。
教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的`知识解答应用题。
(1)教师提问:用正、反比例知识解答应用题的步骤是什么?关键是什么?
先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。
(2)基本练习,区分比较。
出示复习题。(全班同学动笔完成,指名板演。)
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?
[订正:
①解:设修完这条路共用x天。
答:修完这条路共用24天。
②解:设实际x天修完。
答:实际20天完成。]
订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?
[相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]
(3)变式练习,加深理解。
出示复习题。
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?
指导学生审题,并与前面的基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的解法:
①解法一:
解:设修完这条路还要x天。
解法二:
解:设修完这条路一共用x天。
答:修完这条路一共用21天。
②解:设实际x天可以修完。
(0.5+0.1)x=0.5×24
0.6x=12
x=20
答:实际20天可以完成。
订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)
(4)多种解法,培养能力。
教师谈话:以上两题你们可以用其它方法解答吗?试一试。
学生独立解答,指名板演。
[订正:
①(12-1.5)÷(1.5÷3)=21(天)
或:12÷(1.5÷3)-3=21(天)
②24×0.5÷(0.5+0.1)=20(天)]
订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。
3.巩固练习,灵活运用。
(1)用比例知识解答。(全班动笔完成。)
①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?
②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?
[订正:
①解:设行完全程用x小时。
50x=40×7.5
x=6
②解:设20xx克蜂蜜含有x克葡萄糖。
解:设x克蜂蜜里含有207克葡萄糖。
(2)选择合适的方法解答。(全班动笔完成。)
①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?
②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?
[订正:①(135-9)÷(9÷5)=70(根)
或:135÷(9÷5)-5=70(根)
订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。
(3)用多种方法解。(全班动笔完成。)
大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?
(4)思考题。(供学有余力的学生解答)
一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?
[提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:
解:设需用x块瓷砖。
如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:
解:设要用x块瓷砖。
0.152×768=0.22×x
x=432]
4.布置作业。(略)
《比例》六年级数学教案14
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”
4.介绍放大比例尺
出示图例2
“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“
学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1
比较这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5、总结
比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1/5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
6、比例尺的化简和转化
“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”
说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作
“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。
“现在单位统一了,是多少比多少,怎样化简?”
图上距离:实际距离=1:5000000
教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
三、巩固练习
1、做一做。
过程要求
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。
四、课堂小结
(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的.换算就是扩大或缩小100000倍的关系。)
教学目标:
1、理解比例的意义,会根据比例的意义组成比例。
2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。
3、感受生活中处处有数学,激发学习数学的兴趣。
教学重、难点:理解比例的意义。
教学方法:自主合作,讨论交流。
教学过程:
一、复习旧知,目标展示。
1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。
2、今天,我们要在比的基础上学习一个新知识(板书:比例)。
3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?
【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】
4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。
二、合作交流,探究新知。
〈一〉教学比例的意义。
1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)
2、自主探究,初步形成印象。
(1)两个比相等可以用等号连接吗?
(2)你能在练习本上写出两个可以有用等号连接的比吗?
(3)和你小组内同学交流你写出的式子,并说明理由。
(4)学生汇报。
3、形成概念。
(1)像黑板上我们所列出的这些式子叫做比例。
(2)你能用自己的话说说什么是比例吗?
(3)老师小结:表示两个比相等的式子叫做比例。
4、深化概念,巩固练习。
(1)你认为组成比例的关键是什么吗?(两个比的比值相等)
(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)
〈二〉教学比例各部分的名称。
1、比例各部分有自己的名称?你知道吗?
(预设:学生如果不清楚的话,教师说明比例各部分的名称)
2、找出黑板上这几个比例的内、外项。
3、比可以写成分数的形式,比例也可以写成分数形式。
(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)
(2)找出它们的内、外项。
(3)你发现什么规律了吗?
〈三〉比和比例的区别。
1、小组讨论、交流。
2、全班交流。
3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。
三、巩固练习。
1、填空。
(1)、表示()的式子叫做比例。
(2)、判断两个比能否组成比例,要看它们的()是不是相等。
(3)、写出比值是的两个比():()和():(),写成比例是()。
(4)、选取48的4个因数组成一个比例是()。
2、课本32页国旗尺寸成比例吗?
3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)
(1)学生独立思考后,小组交流。
(2)全班交流。
(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。
《比例》六年级数学教案15
教学内容:按比例分配相关练习题。
教学目标:进一步掌握按比例分配问题的特征与解题方法,能运用所学知识灵活解决一些生活中的实际问题。
学情分析:学生学完按比例分配问题一段时间后,部分基础较差的学生对这部分知识可能已经生疏或遗忘,非常有必要进行"温故"。
教学重点:掌握按比例分配问题的特征和基本解题思路。
教学难点:按比例分配问题的变形(总数和份数变化)练习。
教学过程:
一、复习导入
1、按比例分配问题的基本特征。
已知:总数量
各部分量的比
2、按比例分配问题的基本解题方法。
求总份数
求各部分占总数的几分之几
求各部分的量:总数×()()
二、基本练习
1、口答:
男生人数与女生人数的比是5:4
男生占总人数的几分之几?
女生占总人数的几分之几?
母鸡只数是公鸡只数的1.6倍
母鸡只数与公鸡只数的比是():()
母鸡只数占鸡总只数的几分之几?
公鸡只数占鸡总只数的几分之几?
2、解答下列各题:(集体练习)
果园里共有桃树和梨树360棵,桃树与梨树棵数的比是7:5。桃树和梨树各有多少棵?
小玲家共养了鸡鸭鹅三种家禽3600只,它们的只数比是18:11:7。三种家禽各有多少只?
三、变形练习
1、总数变化(板演讲评)
幼儿园买来5盒饼干,每盒60块。如果把这些饼干按2︰3分给小班和中班,中班和小班各分到多少块饼干?
李红期末考试语数英三门学科的平均分是90分,三门学科分数的比是11:9:10。李红同学语数英的成绩各是多少分?
六年级三个班共做好事180件,其中的是六(2)班做的,六(3)班和六(1)班做的好事件数比是4︰1,六(1)班和六(3)班各做多少件好事?
2、隐藏的比(独立完成、讲评)
等腰三角形的顶角与一个底角的度数比是3︰1,这个等腰三角形的三个内角各是多少度?
四、形体知识中的.按比例分配问题。
1、一个长方形的周长是40米,长与宽的比是3︰2,这个长方形的面积是多少?
2、一个长方体的棱总长是120厘米,长、宽、高的比是5:3:2,求这个长方体的体积。
五、善用份数
1、六(1)班小聪家养母鸡600只,公鸡与母鸡只数的比是3︰5,公鸡有多少只?
2、六(1)班小聪家养鸡600只,公鸡与母鸡只数的比是3︰5,公鸡和母鸡各有多少只?
3、小聪家养公鸡与母鸡只数的比是3︰5。已知公鸡比母鸡少600只,小聪家养的公鸡和母鸡各有多少只?六、溶液中的比
配制一种药液,药粉和水的质量(重量)比是1︰50。
①配制1020千克这种药液,需要药粉和水各多少千克?
②5千克药粉要加水多少千克?可配制成多少千克药液?
③500千克水中应加多少千克药粉?
七、练习巩固(独立完成)
1、小金看一本故事书,已经看了60页,这时已看的页数与剩下的的页数比是4:9。这本书一共有多少页?
2、一种三丁包的馅是由猪肉、笋干、豆腐干按5︰3︰2配制而成的。
①配制60千克这种馅,需要猪肉、笋干、豆腐干各多少千克?
②如果用18千克豆腐干配制这种馅,需要猪肉、笋干各多少千克?
③如果猪肉、笋干、豆腐干各有30千克。配制这种馅时,要使笋干正好用完,猪肉和豆腐干多了还是少了?多(少)多少千克?
八、巧思妙想(辅导讲解)
A:小春身上带的钱比小杰多10元,如果小杰的钱用掉50元后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?
B:小春身上带的钱比小杰多10元,如果小杰给40元钱小春后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?
C:甲乙两个自然数的和是473。如果甲数末尾去掉一个0,那么甲乙两数一样大。甲乙两数各是多少?
【《比例》六年级数学教案】相关文章:
《比和比例》数学教案12-12
《比例》六年级数学教案08-10
《反比例》数学教案07-20
《反比例》数学教案01-13
《比例》六年级数学教案[精品]08-12
[精选]《比例》六年级数学教案15篇08-11
《比例》六年级数学教案通用(15篇)08-11
《反比例》数学教案(经典15篇)07-20
六年级数学《正比例》教案04-02
六年级数学教案12-06