- 《比例》六年级数学教案 推荐度:
- 相关推荐
《比例》六年级数学教案通用(15篇)
作为一无名无私奉献的教育工作者,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。怎样写教案才更能起到其作用呢?以下是小编为大家收集的《比例》六年级数学教案,仅供参考,欢迎大家阅读。
《比例》六年级数学教案1
教材分析
本课教学内容是课程标准人教版六年级32、33页的“比例的基本性质”。这部分内容是在学生初步理解比例意义的基础上教学的,通过教学,使学生认识比例的“项”以及“内项”和“外项”,理解并掌握比例的基本性质;让学生在尝试探索的过程中进一步培养比较、概括的能力,发展符号意识。
学情分析
本班学生基础能力中等,平时上课发言的学生不是很多,对于这个比例的基本性质的学习是第一次的接触,但本节课难度不是很大,学生领会的能力相信还是可以的。
教学目标
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
教学重点和难点
理解并掌握比例的基本性质;引导观察,自主探究发现比例的.基本性质
教学过程
(一)、复习导入
1、我们已经认识了比例,谁能说一下什么叫比例?
2、应用比例的意义判断下面的比能否组成比例。
0.5:0.25和0.2:0.4∶和12∶91∶5和0.8∶4;
7∶4和5∶380∶2和200∶5
(一是看两个比的比值是否相同,二是看他们化成最简比是否相同)
3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)
板书:比例的基本性质
(二)、探究新知
1、教学比例各部分的名称.
同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第34页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,
板书:
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
外项内项学生认一认,说一说比例中的外项和内项。
如:
2、教学比例的基本性质。
(1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质)
学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:
两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
(2)教师:你发现了什么,
两个外项的积等于两个内项的积
是不是所有的比例都存在这样的特点呢?
学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)
(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。
(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?
指名学生改写2.4:1.6=60:40(=)
这个比例的外项是哪两个数呢?内项呢?
当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积
怎么样?(边问边画出交叉线)
(6)强调:如果把比例写成分数的形式,比例的基本性质就是等号两端分子和分母分别交叉相乘的积相等。以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。
(三)、课堂作业设计
1、应用比例的基本性质判断3:4和6:8能不能组成比例。
2、先应用比例的意义,再用比例的基本性质来判断下面哪组中的两个比可以组成比例。
6:9和9:12
0.5:0.2和:
1.4:2和7:10
(四)、拓展练习
下面的四个数可以组成比例吗?把组成的比例写下来。(能写成几组就写几组)
5、8、15和24
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?通过以上学习,大家一定进一步了解比例了吧?
《比例》六年级数学教案2
教学过程:
一、揭示课题
提问;我们这一单元学习了什么内容?
说明:我们已经学习了比例的知识,这节课复习比例的意义和性质以及比例
二、整理比和比例的意义
(1)提问:什么叫做比?请举一个比的例子?(两个数相除又叫做两个数的比)
(2)提问:什么叫做比例?请举一个比例的例子?(表示两个比相等的式子叫做比例)
比和比例有什么不同?(比表示两个数的关系,比例表示两个比的相等的关系)
(3)比的基本性质是什么?比例的基本性质是什么?
比
比例
意义
两个数相除又叫做两个数的比
表示两个比相等的式子叫做比例
各部分名称
基本性质
比的前项和后项都乘以或除以相同的数(0除外),比值不变。例如:3:4=12:16
两个内项的积等于两个外项的积。例如:3:4=9:12
4×9=3×12
2、练习
(1)下面每组里两个比能不能组成比例?为什么?
1:2和2.5:5(2.5:5=1:2成比例)
1.2:0.3和6:1.5(1.2:0.3=4:16:1.5=4:1成比例)
3:1/3和2:1/2(不成比例)
小结:判断两组比是否成比例,我们可以分别求比值,比较比值是否相等;还可以根据比例的性质:两个内项的积和两个外项的积相等来判断。
3、解比例
75:16=25:XX/8=0.3/2X:5/12=60:103/4:1/10=X/12
小结:解整数和小数的比例,先约分再移项计算;解分数的'比例先移项后约分
4、复习比例尺
提问:什么叫做比例尺?(把图上距离和实际距离的比叫做这幅图的比例尺)
板书:图上距离:实际距离=比例尺
图上距离/实际距离=比例尺
(1)说说下面各比例尺的意义
1:40001/360
(2)求比例尺
在某城市的旅游图上,用15厘米表示实际距离60千米,这幅图的比例尺是多少?
60千米=60000000厘米15/6000000=1/400000
在电子显微镜拍摄的细胞照片上量得一细胞长1.5厘米,已知该细胞实际长0.5毫米,求这幅照片的比例尺是多少?
1.5厘米=15毫米15:0.5=30:1
(5)比例尺是1:3000的平面图上,量得一座大桥的长度是7厘米,这座大桥的实际长度是多少米?
倍数解:7×3000=21000厘米=210米
解比例:7/X=1/3000X=2100021000厘米=210米(学生不讲可以不提)
板书:实际距离=图上距离÷比例尺7÷1/3000=21000厘米
(6)在比例尺200:1的手表图纸上,量得一个圆形零件的直径为3厘米,求该零件的实际直径是多少毫米?
3÷200/1=0.015厘米=0.15毫米
(7)从北京到上海实际距离大约是1050千米,画在1:25000000的地图上,应画多少厘米?
1050千米=105000000厘米
板书:图上距离=实际距离×比例尺105000000×1/25000000=4.2厘米
用解比例:X/105000000=1/25000000X=4.2
(8)一手机实际长10厘米,在比例尺30:1的该手机海报上,手机长多少米?
10×30/1=300厘米=3米
(9)一幅地图上比例尺如下:
①换成数值比例尺怎样表示?
②量得杭州到北京的距离为10厘米,求杭州到北京的实际距离是多少?10×150
③北京到上海的距离是1050千米,在这幅地图上该画多少厘米?1050÷150
三、巩固提高
(10)一块操场实际长200米,图上量得该操场长5厘米,宽3厘米,求该幅图的比例尺是多少?这块操场的实际面积是多少?
比例尺:1/4000
面积:3÷1/4000=12000厘米=120米120×200=24000平方米
(11)在比例尺1:1000的图上量得一座大桥长14厘米,那么在比例尺是1:500的图上该桥长多少厘米?
14÷1/1000=14000厘米
14000×1/500=28厘米
四、完成复习第1题
五、作业
P552、3
《比例》六年级数学教案3
教材分析
《比例尺》是九年义务教育北师大版小学数学第十二册第二单元《正比例和反比例》一章的最后一个内容。对于比例尺,学生可能在地图上都曾见到过,也许并不陌生,尽管如此,比例尺的意义及应用对于学生来说还是比较抽象的,教材结合具体的活动和实例,贴近学生的生活经验,让学感受到比例尺的广泛应用。这课内容是在学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识和乘除法意义的综合应用。在整个教材的编排中,体现了新教材,以学生探究为主,通过自我的实践过程,感受到知识的广泛应用,体验到数学的价值。值得关注的是:北师大版删除了比例和解比例知识,本课有关计算不能用解比例方法解答,这就要求学生要充分理解和掌握比的意义,根据乘除法的意义来求比例尺、图上距离、实际距离。教过老教材的教师一定感触最深,本节课新旧教材在编排的过程中差异是非常大的。老教材将本节课融入正反比例应用之中,完全按正、反比例知识的解题方法来解决比例尺问题,要求学生列方程解答,有时一题中要设X、Y两个未知数,使比例尺问题相当的繁锁,而新教材注重了知识的形成过程,实践过程,同时提倡灵活,多样的解决比例尺问题,拓宽了学生的思维,深刻的体验到比例尺的应用和价值。《新课标》指出;“数学教学应联系生活实际,让学生亲身经历知识产生、形成的必要性,感受数学的力量,激发学习数学兴趣。”
学情分析
根据教材内容特点,为了更好的突出重点、突破难点,更好的让学生了解比例尺,应用比例尺,本节课的设计中我做了以下几点尝试:
第一、现代教育家认为:“课堂教学,不应把学生当作“收音机”,只接收信息。而应为学生创设一个宽松氛围。提供“舞台”,让学生亲身去体会、去观察、去发现、去探索、去交流。这才是学生获取知识的真谛”。本节课努力为学生创设各种情景,提高学生的参与率和学习兴趣。课前通过问题情景引入,课中创设购房、装修等一系列情景,注重了与生活的相结合,从生活中感受比例尺,从动手操作中认识比例尺,从自主探究中总结比例尺,再去体验应用解决生活中的实际问题,使整堂课知识点紧密衔接,环环相扣、一气呵成。
第二、学生方面注重学生从体验中学习,在体验中自我构建新知识,在体验中掌握学习方法。本节课主要采取“引导-----发现-------自主探究”的教学形式。先利用小蚂蚁为什么5秒钟从宝鸡到达西安这一问题引出图上距离与实际距离,之日后让学生动手操作想办法把1米长的线段画到练习本上,实际上是引导学生用不同的比例尺表示1米,让学生在自我探究中构建出比例尺的概念。
第三、抓住要点、强调重点、突破难点。由于在本节课中要认识数值比例尺和线段比例尺,区别放大比例尺和缩小比例尺,知识点多,容量大。抓住重点,个个击破是我主要思考的问题。因此在引入数值比例尺时重点抓住比例尺的意义让学生说,介绍线段比例尺时重点强调线段比例尺只看第一格对应的实际距离即可,强调千米和厘米之间的单位换算,重点强调无论是放大比例尺还是缩小比例尺前项永远是图上距离等等,注重了细节的强调及学生易出错问题的强调,化繁为简,化难为易,水到渠成。
第四、灵活运用多媒体教学,增大了课堂容量,提高了课堂效率。各类地图的出示快捷、直观,探索、观察各种电子元件,生物图谱拓宽了学生的视野,激发了学生的兴趣。最后多种习题的出示,节约了时间提高了效率。
教学目标
知识目标:理解比例尺的含义,掌握求比例尺、图上距离和实际距离的方法。
技能目标:通过测量,绘画,估算、计算等活动,学会解决生活中的一些实际问题。增强学生的观察、动手操作和计算能力。
情感目标:体会数学与日常生活的密切联系,进一步激发学生学习数学的兴趣,感受数学的魅力。
教学重点和难点
理解比例尺的含义,学会根据比例尺求图上距离和实际距离。
教学过程
本节课共分四个环节:
(一)、问题情景引入,认识实际距离、图上距离
师:同学们,你们去过西安吗?宝鸡到西安的动力车坐过吗?动车美观、舒适,尤其是速度非常快,现在从宝鸡到西安只需要70分钟,比以前快了很多。可是有一只小蚂蚁很厉害,它只用5秒钟就从宝鸡到达了西安,你知道是为什么吗?(设计这个问题目的有二,一是激发兴趣,活跃课堂。二是认识图上距离和实际距离,这里恰好引出了小蚂蚁在地图上爬行的便图上距离,而我们坐动车所走过的路程就实际距离,非常直观形象的区分了两个概念,为新课做好铺垫。)
(二)、动手操作,认识比例尺:
1、师:下面我们共同作一个小研究,你能把1米长的线段画到自己的练习本吗?有什么好办法吗?(出示这个小研究为学生创设思考的空间,学生不能按实际大小画,只能想办法缩小,从而引出比例尺,让学生亲身体会“比例尺”产生的必要性。)
2、师:你打算画多长的线段代表1米呢,那就把自己的想法和设计表达出来,完成下面的表格。(电脑出示,教师强调单位统一并化简)
图上距离 实际距离 图上距离和实际距离的比
结束了探究,汇总了答案,教师小结:这里我们把图上距离与实际距离进行了比较,写出了比,这些比 1:10 1:100 1:50……就是比例尺,总结出比例尺的意义,即图上距离与实际距离的比叫做比例尺,(揭示了课题并板书课题)。
要求学生能很准确的说出每个比例尺表示什么。
3、问:认识了比例尺,你在哪里见过比例尺呢?(地图上)
电脑出示两幅地图:①数值比例尺1:40000表示什么?(这是一幅宝鸡周边地图,学生可以清楚的看到自己熟悉的地方,甚至自己的家,从而增强了学生的兴趣,切身感受到数学无处不在。)
②线段比例尺:0 800 1600km
告诉学生线段比例尺1格就是图上的(1cm),对应的实际距离是800km, 2格就是图上的(2cm),对应的实际距离是1600km
你能把线段比例尺转化成数值比例尺吗?即求比例尺要知道谁?
(板书)1cm:800Km=1cm:80000000cm=1:80000000(8千万)
强调:①线段比例尺只看第一格对应的实际距离即可。
②注意千米和厘米的单位换算。(添5个0,去5个0)
(这里利用两幅地图,自然而然的认识了线段比例尺和数值比例尺,并使学生学会了相互转化)
4、(接下来我说)看到了这么多的比例尺,刚才说的比例尺都是把实际比较大的距离,缩小一定的倍数,也可说按一定比例缩小画在图纸上,所以它们有共同点你发现了吗?(前项比后项小,,而且一般前项为1)那么在应用比例尺过程中还请同学们注意以下几点:
?1、比例尺与一般的尺不同,它是一个比,不应带有计量单位。
?2、求比例尺时,前、后项的单位长度一定要化成同级单位。
?3、比例尺的前项一般应化简成“1”。
(这里注重了细节的强调,加深了学生对比例尺意义的.理解。)
(三)、运用比例尺,解决问题:
这一环节是我精心设计的,在区分放大,缩小例尺的同时练习求实际距离和图上距离,也是本节课的最重最难的一环节。
我是这样引入的:最近老师想购买一套房子,在售楼中心给我推荐了两套住房,我想要面积大些的,你们建议我买哪套?
(这里电脑出示两个房屋平面图来挑选,一个实际是图上的200倍,一个是100倍,选定面积大的第一套房屋,接着要求学生独立计算实际面积。)
(在计算住房实际面积这一环节中,学生首先要思考的是实际距离应怎样求?它等于生么?从而导出实际距离=图上距离÷比例尺这一数量关系,另外学生最易出错的是先转化实际距离再求面积,还是先求面积再转化实际距离,在这里我创设条件,大胆放手,让学生独立面对困难和问题,从错误、失败中总结经验教训。这里出现了多种方法,尤其是部分学生先算出图上的面积后再利用比例尺这一错误做法,以往学生也经常在这里出错,我便有意识创设了这个出错的机会,让学生犯错,出现在黑板上,及时的讲评并修改,相信学生今后再不会犯类似的错误。最终利用购买房屋这一情景总结出了求实际距离=图上距离÷比例尺。)
接着我进一步引深:对于同学们为我选的房子,老师非常满意,有了新房间,就要装饰一番,这是老师家的一张全家福照片,这样的照片挂在墙上显小了些,所以我们需要把它(放大)。其实在实际生活中还有许多要用到这种放大的情况呢?请看屏幕:这是老师收集的一些电子元件图、生物图……(电脑出示)
(这里利用多媒体展示各种电子元件和生物图片,再一次吸引了学生的注意力,并增长了见识,适时的引出一道利用放大比例尺求图上距离的题)
绘制一张精密零件图纸,它的实际长度6毫米,比例尺20 ︰1,求图上的长度是多少厘米?
(在这里先让学生观察20 ︰1,与先前见到的比例尺不一样,它后项为1,从而区分了放大比例尺和缩小比例尺,之后总结出图上距离=实际距离×比例尺,这一环节可以说知识点多,有一定难度,但我抓住要点,强调了无论是放大比例尺还是缩小例尺前项永远是图上距离,后项永远是实际距离这一关键,使知识云开雾散,透彻明了。)
最后进行全课总结:学习了比例尺的知识,你还有什么不清楚的?谈一谈,学习了这节的课的收获。
(通过质疑,培养学生发现问题的能力。梳理与回归,让学生把知识系统化,培养其学习的能力。)
(四)、巩固应用,拓展延伸:
由于本课涉及知识点多,容量大,为使学生得以巩固,我设计了一系列练习,由浅入深,层层深入,
(电脑出示):1、比例尺是( )与( )的比。
2、把千米数化成厘米数,要在千米数后面添上( )个0;把厘米数化成千米数,要在厘米数后面去掉( )个0。
3、把线段比例尺改为数值比例尺。 0 40 80 120km
4、这幅地图中,量得西安到北京的距离是 4.5cm,你能根据这张图的比例尺计算出实际距离约是多少千米吗? 200千米
5、小丽家到学校约900米,画在比例尺为1:30000的图上应是( )。
6、一种零件长8mm,画在图纸上长4cm,这张图纸的比例尺是( )
(通过练习,加深学生对比例尺的理解,进一步巩固求比例尺、图上距离和实际距离的方法。)
尤其最后设计了实践活动,量一量自己的卧室的长和宽,及一些家具的长和宽,按1:100的比例尺画出自己卧室的平面图。
(让学生从身边学习数学,感受数学与生活实际的密切联系。从而提高学习有关比例尺的计算能力,激发学习数学的乐趣。也体现了本节课的主旨,数学来源于生活服务于生活。)
《比例》六年级数学教案4
教学内容:
教材第111、112页的内容复习比例的意义和基本性质,以及解比例、比例尺,完成练习二十一中的其余习题。
教学要求:
1、使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。
2、使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。
教学过程:
一、提示课题
1、说出下面比的的比值。
4:5 1:2 8:10 0。2:
学生口答时老师书出比值。
2、引入课题。
在复习了比的知识后,这节课复习比例的知识和给与比例尺的计算。
二、复习比例知识
1、复习比例的意义。
⑴提问:上面的比能组成哪些比例?为什么?
什么叫比例?
你能说出比例里各部分的名称吗?
⑵学生练习。
让学生在练习本上任意写一个比和一个比例。
指名一人口答所写的'比和比例,老师板书。
提问:比和比例有什么区别?
说明:比和比例的意义不同,比表示两个数相除的关系,比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。
2、复习比例的基本性质。
⑴提问:比例的基本性质是什么?
请同学们按照比例的基本性质,在课本第111页上根据0。4:3=2:15,写出内项积等于外项积的式子。
追问:比例的基本性质和比的基本性质有什么不同?
⑵解比例。
学习比例的基本性质有什么作用?
做“练一练”第2题。
指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。
集体订正,选择两题让学生说一说第一步的依据。
提问:大家总结一下解比例的过程。
指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。
三、复习比例尺计算
请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。
提问:什么是比例尺?
比例尺有哪几种形式?
谁来举一个数值比例尺的例子,并且说明它实际表示什么意思?
课本上的线段比例尺表示怎样的实际意义?
让学生把课本上的线段比例尺改写数值比例尺。
学生改写后口答,老师板书。
3、做“练一练”第3题。
请同学们应用解比例的方法做“练一练”第3题。
指名一人板演,其余学生做在练习本上。
集体订正,让学生说说是怎样想的。
指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果。
四、综合练习
1、归纳复习内容
让学生说一说本节课复习的具体内容。
2、做练习二十一第9题。
学生先自己思考,然后指名口答。
3、做练习二十一第11题。
让学生写在练习本上。
指名口答,老师板书。说说应怎样想。
4、做练习二十一第13题。
⑴做第①题。
指名板演,其余学生做在练习本上。
集体订正。
提问:怎样求一幅图的比例尺?
⑵讨论第②、③题。
提问:求出这幅图的比例尺后,下面两题可以怎样解答?
5、讨论练习二十一第14题。
让学生读题。
这两题有什么相同和不同的地方?
想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)
五、讲解思考题
让学生读题。
提问:如果照按比例分配问题思考,还需要知道什么条件?
现在已知的比的条件怎样。
你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?
请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。
六、布置作业
课堂作业:练习二十一第12题⑴、⑶、⑸,第13题⑵、⑶,第14题。
家庭作业:练习二十一第12题⑵、⑷、⑹。
《比例》六年级数学教案5
【教学内容】
解比例。(教材第42页例2、例3及练习八的习题)。
【教学目标】
1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。
3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
【重点难点】
1、使学生掌握解比例的方法,学会解比例。
2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。
【教学准备】
多媒体课件。
【情景导入】
上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
学生在小组中议一议,再汇报。
师:这节课,我们还要继续学习有关比例的知识,就是解比例。
板书课题:解比例。
【新课讲授】
1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?
学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。
师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。
2、教学例2。
教师用多媒体课件出示例2。
指名读题,根据题意,描述两个相等的比。
=110或模型高度:实际高度=1∶10。
让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?
教师板书∶320=1∶10,你能试着计算出来吗?
请一名学生板演,其余的学生在练习本上做。
做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。
师:怎样解这个方程?
生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。
小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。
3、教学例3。
解比例:
过程要求:学生独立练习,求出未知项。
同学之间互相交流,发现问题,及时解决。请一位学生上台板演。
解:2、4x=1、5×6
x=
x=3、75
提问:还可以用其他的知识解比例吗?
学生交流后,可能会说出:根据比例的`意义,等号左边的比值是,要使等号右边的比值也是,x应等于。
4、总结解比例的方法。
教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?
学生回忆解比例的过程。
教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?
学生:根据比例的基本性质把比例转化成方程。
【课堂作业】
1、完成教材第42页“做一做”第1题。
学生独立练习,教师指名板演,集体订正。
2、完成教材第43~44页第6、7、8、9、10、11、12、13题。
答案:1、x=7、5x=x=0、6
2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。
第7题:组织学生独立练习。指名板演,集体订正。
第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。
第9题:组织学生阅读题目,理解题意,并独立练习。
第10题:组织学生小组合作完成,指名汇报。
第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。
第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。
第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。
【课堂小结】
通过这节课的学习,你在哪些方面得到了提高?
【课后作业】
完成练习册中本课时的练习。
《比例》六年级数学教案6
教学目标
知识目标:使学生在具体情境中理解比例尺的意义,能把比例尺应用到实际生活中。
能力目标:会把数值比例尺与线段比例尺进行转化,根据比例尺求图上距离或实际距离。
情感目标:培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学重难点
重点:根据比例尺求图上距离和实际距离。
难点:理解到设未知数时应统一长度单位。
教学过程
一、复习导入
谈话:前面我们学习了比例尺的求法,有同学能简单说一说吗?指名学生回答问题,教师板书:图上距离∶实际距离=比例尺
二、新课讲授
1、教学例2。
出示教材第54页例2。指名读题,并说出题目已知什么,要求什么?
学生:已知比例尺和地铁1号线的图上距离,求它的实际距离大约是多少。
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
2、学生思考并解答一下问题:
(1)这道题的图上距离是多少?
(2)实际距离不知道怎么办?(用x表示,在的下面板书x,并在它们中间画上分数线)
(3)因为图上距离和实际距离的`单位要统一,所设的x应用什么单位?(应用厘米)
(4)比例尺是多少?写成什么形式?(分数形式)
3、教师板书解答过程。
解:设苹果园站到四惠东站的实际距离为xcm。
指定一名学生板演x的值,其他学生在练习本上做。
教师强调单位互化的时候,注意0的个数不能写掉了。
师问:这道题还有其他的方法吗?学生思考后回答。(可以用算术方法:)
三、巩固应用
做教材第54页“做一做”。
先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站的距离,然后计算出实际距离。
集体订正时,要注意检查学生是否把实际距离化成了米。学有余力的学生要求他们用两种方法。
图上距离∶实际距离=1cm∶600m=1∶60000,量得图中河西村与汽车站的距离是2cm。
解:设河西村与汽车站两地的实际距离大约是xcm。
2∶x=1∶60000
x=120000
120000cm=1200m
四、总结
这节课你学会了什么?你有哪些收获和体会?利用比例尺求图上距离或实际距离时要注意什么?
五、作业布置
教材第57页第5、7、8题
板书设计
比例尺的意义
图上距离:实际距离=比例尺
未知数→统一单位
教学反思
第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要。
《比例》六年级数学教案7
教学内容:练习八的第59题。
教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的
方法。
教学过程:
一、复习
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。
二、课堂练习
教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。
1.做练习八的第6题。
指名读题,让学生自己解答。集体订正时,请一个同学讲一讲,自己是怎样想的?教师板书; =
教师:如果把这道题的第三个条件和问题改成要晒17550吨盐,需要多少吨海水?该怎样解答?
让学生口头列出比例式,教师板书出来。
教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的`盐和海水的吨数成正比例关系,解答这样的应用题的关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:
2.做练习八的第7、8题。
集体订正后,指名讲一讲是怎样想的。
3.做练习八的第9题。
做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。
《比例》六年级数学教案8
教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。
教学过程:
一、引入
教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?
二、课堂练习
1.分析、研究第3题。
让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的.关系,教师板书出来:长宽=面积
= 长 =宽
提问:
当面积一定时,长和宽成什么比例关系?
当长一定时,面积和宽成什么比例关系?
当宽一定时,面积和长成什么比例关系?
教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。
2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:
每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。
运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系
3.第5题,让学生独立做,教师巡视,注意个别辅导。
4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。
5.第7题,学生独立解答后,选一题说说是怎样解的。
6.学有余力的学生做第8题。
《比例》六年级数学教案9
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的`方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
《比例》六年级数学教案10
教学内容:
教材第35-36页的例4,以及“练一练”,练习七第1-3题。
教学要求:
1、使学生认识比例尺的意义,学会求一幅平面图的比例尺,能根据比例尺求一幅图的图上距离,或表示的实际距离。
2、使学生感受数学知识的用处,提高解决简单实际问题的能力。
教学过程:
一、复习引新
1、出示一张平面图。
说明:这是学校的平面图,它是按照我们所学的比例知识,按照一定比例缩小后画在图纸上的,图里所量出的长度叫做图上距离,图上对应的`地面上的长度是实际距离。
2、做35页复习题。
提问:这幅平面图图上距离是多少实际距离是多少?求什么问题?指名口答,老师板书,求出结果。
3、引入新课。
在我们的日常生活中处处都有数学,经常要用到数学,像上面这样的问题就是一个例子,这个例子里所用的知识,就是我们今天要学习的比例尺。
二、教学新课
1、比例尺的意义。
从上面的例子里可以看到,我们在绘制地图和其他平面图时,一般要把实际距离按比例缩小一定的倍数以后,再画在纸上,这时,就要确定图上距离与实际距离的比。一幅图的图上距离与实际距离的比,就叫做这幅图的比例尺。
根据黑板上这句话想一想,比例尺是怎样得到的?
强调:比例尺是一个比。说明为了简便计算,通常把比例尺写成前项为1的比。
2、教学例4
(1)出示例4。
提问:怎样求这幅图的比例心?为什么?解答这道题还需要注意什么问题?
让学生自己求出比例尺。
指名口答,老师板书。
(2)做“练一练”第1题。
指名口答。
(3)做“练一练”第2题。
指名学生板演,其余学生做在练习本上。
(4)做“练一练”第3题。
三、课堂小结
这节课学习了什么内容?你学到了些什么?
四、布置作业
课堂作业:复习七第2、3题。
家庭作业:练习七第1题。
《比例》六年级数学教案11
:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的.比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、 A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
板书设计: 整理和复习
比例的意义
比例 比例的性质
解比例
正反比例 正方比例的意义
正反比例的判断方法
比例应用题 正比例应用题
反比例应用体题
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
《比例》六年级数学教案12
一、教学内容
本单元在常见数量关系的基础上编排,教学正比例关系和反比例关系。与过去的《大纲》教材相比,本单元加强对正比例和反比例的理解,重视对正比例关系图像的认识与简单应用,不利用正比例、反比例解答应用题。
全单元编排3道例题、一个练习,教学内容分成两段。
例1、例2,正比例的意义、正比例的图像;
例3,反比例的意义。
二、教学注意点:
1.细致安排学生的首次感知。
正比例概念和反比例概念都要在充分的感知活动中形成,例1和例3分别是学生首次感知正比例关系与反比例关系,教材作了很细致的安排。例1把感知过程设计成四步。
路程
时间
写比、求比值、解释比值。例1呈现的表格里是一辆汽车行驶的时间和路程的数据,让学生从中选择几组相对应的路程和时间,分别写出比并求出比值,发现所有比的比值都是80,体会这个比值是汽车行驶的速度,这辆汽车的行驶速度始终不变。
用数量关系式表示比值一定。写出的各个比的数量关系相同,可以用式子“ =速度(一定)”表示它们的共同特征。学生对“路程比时间等于速度”很熟悉,而“速度(一定)”是例1数量关系的特点,首次感知正比例关系的要点就在这里。
体会相关联的量。正比例是两个相关联量的关系,教材指出路程和时间是两种相关联的量。说它们“相关联”,是因为时间变化,路程也随着变化。
揭示正比例意义。在前三步感知活动的基础上,告诉学生:当路程和相应的时间的比值总是一定时,就说行驶的路程和时间成正比例,行驶的路程和时间叫做成正比例的量。
例3首次感知反比例关系,也分四步进行。依次是:观察表格里的数据,笔记本的单价变化,购买的数量也变化,但总价始终不变;用数量关系式表示积一定;理解相关联的量;揭示反比例意义。
2.变换情境,让学生反复感知。
仅有例题的首次感知还不能形成正比例、反比例的概念,需要反复感知,积累充分的感性认识。P62“试一试”、练习十三第1题再次感知正比例关系,P65“试一试”、练习十三第6题再次感知反比例关系。
选择与例题不同的数量。P62“试一试”里购买铅笔的数量与总价是相关联的量,它们的比值(单价)保持不变。练习十三第1题里碾米机的工作时间与碾米数量是相关联的量,它们的比值(工作效率)保持不变。学生在感知正比例关系的同时,体会这种关系是生活中常见的。
提出问题,引导有序地思考。“试一试”和练习题分别设计四个和三个连续的问题,引导学生有条理地思考,独立、主动经历感知过程。
重温发现正比例关系的方法。几个连续问题里的学习活动依次是:找到相关联的两种量→写出几组对应数量的比并求比值→比较比值的大小,解释比值的意义→用数量关系式表达比值一定→作出成正比例的结论。这些活动与例题保持一致,重温了认识正比例关系的过程,为判断两种量成不成正比例打下了基础。
3.建立正比例、反比例的概念。
本单元教学要形成正比例和反比例的概念。概念是一类现象共同的本质特征的反映,形成概念要对感性认识进行抽象与概括。
提取共同特征。各个成正比例的实例中都有两个相关联的量,两种量相对应的数的比值总是一定的'。各个成反比例的实例里也有两种相关联的量,它们相对应的数的积是一定的。这些分别是正比例、反比例的本质特征,建立概念,要把这些共同特征提取出来。
用字母表示关系与特征。用字母x和y表示两种相关联的量,用k表示它们的比值或者表示它们的积,用字母组成的式子表示正比例和反比例关系,是认识的一次抽象,概念在抽象中形成。
4.应用概念,判断比例关系。
形成概念是为了更好地认识和把握客观世界,在现实生活中应用概念识别、判断和推理。正比例和反比例是常见的数量关系,判断比例关系还能初步体验函数思想,发展数学思考。
判断具体问题里的正比例、反比例。第63页“练一练”、第65页“练一练”分别判断两种量成不成正比例或反比例,并说出理由。要根据正、反比例的意义,利用表格里的数据,按照例题和“试一试”的方法与步骤进行思考。通过判断,进一步理解正比例、反比例的意义。练习十三第2、7两题也作出类似的安排。能够在具体问题里进行判断,是本单元的基本要求。
利用反例加强概念。第66页第3题通过画图、计算和填表,理解正方形面积与边长不成正比例。第68页第8题通过看图、填表,理解长方形周长一定,长和宽不成反比例。这些都是在具体问题里作出的判断,能使学生深刻体会正比例、反比例的特征,从而加强概念。
初步进行稍抽象的判断。第70页第12题没有提供具体的数据,判断两种量是不是成正比例或反比例,是较高的要求。虽然思维比较抽象,也要按照判断正比例、反比例的一般程序,先找到相关联的量,研究两个量是不是比值一定或者积一定,然后作出结论。其中的(2),一个人的年龄与体重不能看作相关联的量,而且它们的比或乘积都没有实际意义,更谈不上比值一定或积一定,因而既不成正比例,也不成反比例。
5.认识并简单应用正比例的图像。
正比例图像是一条射线(中学里是一条直线),反比例图像是曲线(中学里是双曲线)。本单元只教学正比例的图像,不教学反比例的图像。
正比例图像的教学要求有两点,一是联系画折线统计图的经验,在方格纸上描出表示各组对应数量的点,知道所描的点在同一条直线上。二是已知一组相对应的数量中的一个数量,在图像上估计另一个数量是多少。
《比例》六年级数学教案13
教学内容:按比例分配相关练习题。
教学目标:进一步掌握按比例分配问题的特征与解题方法,能运用所学知识灵活解决一些生活中的实际问题。
学情分析:学生学完按比例分配问题一段时间后,部分基础较差的学生对这部分知识可能已经生疏或遗忘,非常有必要进行"温故"。
教学重点:掌握按比例分配问题的特征和基本解题思路。
教学难点:按比例分配问题的变形(总数和份数变化)练习。
教学过程:
一、复习导入
1、按比例分配问题的基本特征。
已知:总数量
各部分量的比
2、按比例分配问题的基本解题方法。
求总份数
求各部分占总数的几分之几
求各部分的量:总数×()()
二、基本练习
1、口答:
男生人数与女生人数的比是5:4
男生占总人数的几分之几?
女生占总人数的`几分之几?
母鸡只数是公鸡只数的1.6倍
母鸡只数与公鸡只数的比是():()
母鸡只数占鸡总只数的几分之几?
公鸡只数占鸡总只数的几分之几?
2、解答下列各题:(集体练习)
果园里共有桃树和梨树360棵,桃树与梨树棵数的比是7:5。桃树和梨树各有多少棵?
小玲家共养了鸡鸭鹅三种家禽3600只,它们的只数比是18:11:7。三种家禽各有多少只?
三、变形练习
1、总数变化(板演讲评)
幼儿园买来5盒饼干,每盒60块。如果把这些饼干按2︰3分给小班和中班,中班和小班各分到多少块饼干?
李红期末考试语数英三门学科的平均分是90分,三门学科分数的比是11:9:10。李红同学语数英的成绩各是多少分?
六年级三个班共做好事180件,其中的是六(2)班做的,六(3)班和六(1)班做的好事件数比是4︰1,六(1)班和六(3)班各做多少件好事?
2、隐藏的比(独立完成、讲评)
等腰三角形的顶角与一个底角的度数比是3︰1,这个等腰三角形的三个内角各是多少度?
四、形体知识中的按比例分配问题。
1、一个长方形的周长是40米,长与宽的比是3︰2,这个长方形的面积是多少?
2、一个长方体的棱总长是120厘米,长、宽、高的比是5:3:2,求这个长方体的体积。
五、善用份数
1、六(1)班小聪家养母鸡600只,公鸡与母鸡只数的比是3︰5,公鸡有多少只?
2、六(1)班小聪家养鸡600只,公鸡与母鸡只数的比是3︰5,公鸡和母鸡各有多少只?
3、小聪家养公鸡与母鸡只数的比是3︰5。已知公鸡比母鸡少600只,小聪家养的公鸡和母鸡各有多少只?六、溶液中的比
配制一种药液,药粉和水的质量(重量)比是1︰50。
①配制1020千克这种药液,需要药粉和水各多少千克?
②5千克药粉要加水多少千克?可配制成多少千克药液?
③500千克水中应加多少千克药粉?
七、练习巩固(独立完成)
1、小金看一本故事书,已经看了60页,这时已看的页数与剩下的的页数比是4:9。这本书一共有多少页?
2、一种三丁包的馅是由猪肉、笋干、豆腐干按5︰3︰2配制而成的。
①配制60千克这种馅,需要猪肉、笋干、豆腐干各多少千克?
②如果用18千克豆腐干配制这种馅,需要猪肉、笋干各多少千克?
③如果猪肉、笋干、豆腐干各有30千克。配制这种馅时,要使笋干正好用完,猪肉和豆腐干多了还是少了?多(少)多少千克?
八、巧思妙想(辅导讲解)
A:小春身上带的钱比小杰多10元,如果小杰的钱用掉50元后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?
B:小春身上带的钱比小杰多10元,如果小杰给40元钱小春后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?
C:甲乙两个自然数的和是473。如果甲数末尾去掉一个0,那么甲乙两数一样大。甲乙两数各是多少?
《比例》六年级数学教案14
教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练.
43-27
5.65+0.5 4.80.4 1.25 1001%
0.25402-
二、归纳整理.
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件比和比例】
2.分组讨论:
比和分数、除法有什么联系?
比的'基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件比和比例】
比
前项
∶(比号)
后项
比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12 :x=8 :2
4.巩固练习.
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?
(3)解比例: ∶ =8∶2
《比例》六年级数学教案15
教学内容:
用比例知识解答应用题。
教学目标:
1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。
2.培养学生的判断能力、灵活运用知识的能力。
3.培养学生认真审题、认真思考的良好学习习惯。
教学过程:
1.基础知识训练。
判断下面各题中的两种量成不成比例?成什么比例?(口答。)
(1)工作总量一定,工作效率和工作时间。
(2)速度一定,路程和时间。
(3)绳子的长度不变,剪下的米数和剩下的米数。
(4)单价一定,总价和数量。
(5)煤的总量一定,每天烧煤量和能够烧的天数。
(6)圆的半径和它的面积。
学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。
[订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]
2.对比练习,加深理解。
教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的知识解答应用题。
(1)教师提问:用正、反比例知识解答应用题的`步骤是什么?关键是什么?
先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。
(2)基本练习,区分比较。
出示复习题。(全班同学动笔完成,指名板演。)
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?
[订正:
①解:设修完这条路共用x天。
答:修完这条路共用24天。
②解:设实际x天修完。
答:实际20天完成。]
订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?
[相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]
(3)变式练习,加深理解。
出示复习题。
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?
指导学生审题,并与前面的基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的解法:
①解法一:
解:设修完这条路还要x天。
解法二:
解:设修完这条路一共用x天。
答:修完这条路一共用21天。
②解:设实际x天可以修完。
(0.5+0.1)x=0.5×24
0.6x=12
x=20
答:实际20天可以完成。
订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)
(4)多种解法,培养能力。
教师谈话:以上两题你们可以用其它方法解答吗?试一试。
学生独立解答,指名板演。
[订正:
①(12-1.5)÷(1.5÷3)=21(天)
或:12÷(1.5÷3)-3=21(天)
②24×0.5÷(0.5+0.1)=20(天)]
订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。
3.巩固练习,灵活运用。
(1)用比例知识解答。(全班动笔完成。)
①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?
②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?
[订正:
①解:设行完全程用x小时。
50x=40×7.5
x=6
②解:设20xx克蜂蜜含有x克葡萄糖。
解:设x克蜂蜜里含有207克葡萄糖。
(2)选择合适的方法解答。(全班动笔完成。)
①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?
②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?
[订正:①(135-9)÷(9÷5)=70(根)
或:135÷(9÷5)-5=70(根)
订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。
(3)用多种方法解。(全班动笔完成。)
大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?
(4)思考题。(供学有余力的学生解答)
一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?
[提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:
解:设需用x块瓷砖。
如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:
解:设要用x块瓷砖。
0.152×768=0.22×x
x=432]
4.布置作业。(略)
【《比例》六年级数学教案】相关文章:
《比和比例》数学教案12-12
《比例》六年级数学教案08-10
《反比例》数学教案07-20
《反比例》数学教案01-13
《反比例》数学教案(经典15篇)07-20
六年级数学《正比例》教案04-02
六年级数学教案12-06
六年级趣味数学教案05-20
六年级数学教案01-09