当前位置:壹学网>教案>数学教案>初二数学教案

初二数学教案

时间:2024-12-19 07:53:40 数学教案 我要投稿

初二数学教案优选(5篇)

  作为一位杰出的老师,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?下面是小编精心整理的初二数学教案,欢迎阅读,希望大家能够喜欢。

初二数学教案优选(5篇)

初二数学教案1

  一、相交线:

  性质:两条直线相交,有且只有一个交点。

  二、对顶角、邻补角:

  1.对顶角:如图,直线AB和CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为反向延长线,这样的两个角叫做对顶角。

  说明:两个角是对顶角必需满足两个条件:

  (1)有公共顶点;

  (2)两边互为反向延长线。

  2.邻补角:如图,∠1和∠2有一条公共边OC,它们的另一条边OA、OB互为反向延长线,显然它们互补。具有这种关系的两个角叫做互为邻补角。

  3.性质:

  (1)对顶角相等;

  (2)互为邻补角的两个角的和等于。

  三、有关垂线的概念和性质:

  1.概念:如果两条直线相交所成的四个角中,有一角是直角,就说这两条直线互相垂直,其中的一条叫做另一条直线的垂线,它们的交点叫做垂足。

  说明:垂直是相交的一种特殊情况。

  2.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  说明:垂线是直线,而垂线段是一条线段,点到直线的距离不是指垂线段,而是指垂线段的长度。

  3.平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离。平行线间的距离处处相等。

  4.性质:

  (1)互相垂直的两条直线相交所成的四个角都是直角;

  (2)过直线上一点或直线外一点画已知直线的垂线,并且只能画出一条垂线;

  (3)连结直线外一点与直线上各点的所有线段中,垂线段最短。简单地说:垂线段最短;

  (4)平行线间的距离处处相等。

  四、同位角、内错角、同旁内角:

  如图,直线AB、CD被第三条直线EF所截,构成八个角,简称“三线八角”。

  1.同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,它们分别在AB、CD同侧,且在EF同侧。同位角呈“F”形;

  2.内错角:∠3与∠5,∠4与∠6,它们分夹在AB、CD之间,同时又各在EF两侧。内错角呈“Z”形;

  3.同旁内角:∠4与∠5,∠3与∠6,它们分别夹在AB、CD之间,同时又在EF同侧。同旁内角呈“U”形。

  说明:

  (1)同位角、内错角、同旁内角是指具有特殊位置关系的两个角;

  (2)这三类角都是由两条直线被第三条直线所截形成的;

  (3)同位角特征:截线同旁,被截两线的同方向;内错角特征:截线两旁,被截两线段之间;同旁内角特征:截线同旁,被截两线段之间;

  (4)两条直线被第三条直线所截成的八个角中,同位角4对,内错角2对,同旁内角2对。

  常见考法

  (1)对顶角、邻补角、同位角、内错角和同旁内角,在中考中必有所涉及,一般是综合其它知识一起考查;

  (2)垂线段最短的性质在生活中有广泛应用,在中考中一般以填空、作图出现,主是根据要求作出垂线段或用性质解释理由。

  误区提醒

  (1)对顶角、邻补角以及垂线的概念理解有误;

  (2)在复杂图形中辨认同位角、内错角、同旁内角时产生遗漏或错认。

  典型例题如图,∠BAC=90°,AD⊥BC,则下面的结论中,正确的个数是()个。

  ①点B到AC的垂线段是线段AB;

  ②线段AC是点C到AB的垂线段;

  ③线段AD是点D到BC的垂线段;

  ④线段BD是点B到AD的垂线段;

  A.1B.2C.3D.4

  解析③是错误的,其余的均是正确的,故本题选C

  一、目标与要求

  1.理解对顶角和邻补角的概念,能在图形中辨认;

  2.掌握对顶角相等的性质和它的推证过程;

  3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

  二、重点

  在较复杂的图形中准确辨认对顶角和邻补角;

  两条直线互相垂直的概念、性质和画法;

  同位角、内错角、同旁内角的概念与识别。

  三、难点

  在较复杂的图形中准确辨认对顶角和邻补角;

  对点到直线的距离的概念的理解;

  对平行线本质属性的理解,用几何语言描述图形的性质;

  能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  四、知识框架

  五、知识点、概念总结

  1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  3.对顶角和邻补角的。关系

  4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

  7.垂线性质

  (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

  (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

  (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的'距离。

  8.同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

  10.平行线:在同一平面内,不相交的两条直线叫做平行线。

  11.命题:判断一件事情的语句叫命题。

  12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

  13.假命题:条件和结果相矛盾的命题是假命题。

  14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  16.定理与性质

  对顶角的性质:对顶角相等。

  17.垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  19.平行线的性质:

  性质1:两直线平行,同位角相等。

  性质2:两直线平行,内错角相等。

  性质3:两直线平行,同旁内角互补。

  20.平行线的判定:

  判定1:同位角相等,两直线平行。

  判定2:内错角相等,两直线平行。

  判定3:同旁内角相等,两直线平行。充要条件。

初二数学教案2

  图案设计

  利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案。

  通过复习轴对称、平移、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案。

  1、设计图案。

  2、如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案。

  一、复习引入

  1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系。

  2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?

  3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?

  与CD平行且相等;

  2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求。

  CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.

  3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.

  二、探索新知

  请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计。

  例1 (学生活动)学生亲自动手操作题。

  按下面的'步骤,请每一位同学完成一个别致的图案。

  (1)准备一张正三角形纸片(课前准备)(如图a);

  (2)把纸片任意撕成两部分(如图b,如图c);

  (3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;

  (4)将(3)得到的图形以正三角形的一个顶?

  老师必要时可以给予一定的指导。

  三、课堂小结

  本节课应掌握:

  利用平移、轴对称和旋转的图形变换中的一种或组合设计图案。

初二数学教案3

  一、创设情境

  1、一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象)。

  2、正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线)。

  3、平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4、在平面直角坐标系中,画出函数的图象。我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1、在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点。

  2、求直线y=-2x-3与x轴和y轴的交点,并画出这条直线。

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值。

  解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-,点(-,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点。

  过点(-,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时。所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的.交点坐标是。

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式。

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值。

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积。

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

初二数学教案4

  一、学习目标

  1.经历探索平方差公式的过程。

  2.会推导平方差公式,并能运用公式进行简单的运算。

  二、重点难点

  重点:平方差公式的推导和应用;

  难点:理解平方差公式的结构特征,灵活应用平方差公式。

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)20xx×1999

  (2)998×1002

  导入新课:计算下列多项式的.积。

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

  (4)(x+5y)(x—5y)。

  结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x—2);

  (2)(b+2a)(2a—b);

  (3)(—x+2y)(—x—2y)。

  例2:计算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  随堂练习

  计算:

  (1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

  (4)(a5—b2)(a5+b2);

  (5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小结

  (a+b)(a—b)=a2—b2

初二数学教案5

  教学目标

  1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

  2、会用配方法解二次项系数为1的一元二次方程。

  重点难点

  重点:会用配方法解二次项系数为1的一元二次方程。

  难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。

  教学过程

  (一)复习引入

  1、a2±2ab+b2=?

  2、用两种方法解方程(x+3)2-5=0。

  如何解方程x2+6x+4=0呢?

  (二)创设情境

  如何解方程x2+6x+4=0呢?

  (三)探究新知

  1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

  2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方。将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的.方法叫作配方法。

  (四)讲解例题

  例1(课本,例5)

  [解](1)x2+2x-3(观察二次项系数是否为“l”)

  =x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等)

  =(x+1)2-4。(使含未知数的项在一个完全平方式里)

  用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

  例2引导学生完成~例6的填空。

  (五)应用新知

  1、课本,练习。

  2、学生相互交流解题经验。

  (六)课堂小结

  1、怎样将二次项系数为“1”的一元二次方程配方?

  2、用配方法解一元二次方程的基本步骤是什么?

  (七)思考与拓展

  解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

  说一说一元二次方程解的情况。

  [解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

  (2)用配方法可解得x1=x2=-。

  (3)用配方法可解得x1=,x2=

  一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

  课后作业

  课本习题

  教学后记:

【初二数学教案】相关文章:

初二数学教案05-31

(推荐)初二数学教案05-31

初二数学教案15篇【荐】10-25

初二作文-初二作文04-05

初二作文04-02

初二的日记04-07

初二的作文02-05

初二活动总结01-06

初二英语作文04-13

节日初二作文04-29