当前位置:壹学网>教案>数学教案>高二数学教案

高二数学教案

时间:2024-12-17 09:29:17 数学教案 我要投稿

【精品】高二数学教案

  作为一位优秀的人民教师,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?以下是小编整理的高二数学教案,希望对大家有所帮助。

【精品】高二数学教案

高二数学教案1

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣、

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线xx解题

  六、教学过程设计

  【设计思路】

  开门见山,提出问题

  例题:

  (1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)线段(d)不存在

  (2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的`问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学教案2

  教学目标:

  1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

  2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

  教学重点:

  体会直角坐标系的作用。

  教学难点

  能够建立适当的直角坐标系,解决数学问题。

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学。

  教 具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

  情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的'。要出现正确的背景图案,需要缺点不同的画布所在的位置。

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  二、学生活动

  学生回顾

  刻画一个几何图形的位置,需要设定一个参照系

  1、数轴 它使直线上任一点P都可以由惟一的实数x确定

  2、平面直角坐标系

  在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

  3、空间直角坐标系

  在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

  三、讲解新课:

  1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

  任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

  2、确定点的位置就是求出这个点在设定的坐标系中的坐标

  四、数学运用

  例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

  变式训练

  如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

  例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?

  变式训练

  1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

  2在面积为1的中,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

  例3 已知Q(a,b),分别按下列条件求出P 的坐标

  (1)P是点Q 关于点M(m,n)的对称点

  (2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

  变式训练

  用两种以上的方法证明:三角形的三条高线交于一点。

  思考

  通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

  五、小 结:本节课学习了以下内容:

  1.平面直角坐标系的意义。

  2. 利用平面直角坐标系解决相应的数学问题。

  六、课后作业:

【高二数学教案】相关文章:

高二数学教案11-19

高二数学教案优秀10-24

高二学生作文11-18

理想高二作文01-16

高二作文范文05-15

高二励志作文01-15

高二优秀作文11-12

优秀数学教案11-12

数学教案大班11-06

位置数学教案11-09