- 相关推荐
数学《反比例函数》教案
作为一名老师,通常需要用到教案来辅助教学,教案是备课向课堂教学转化的关节点。那要怎么写好教案呢?以下是小编收集整理的数学《反比例函数》教案,欢迎大家借鉴与参考,希望对大家有所帮助。
数学《反比例函数》教案1
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2、通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:理解和领会反比例函数的概念.
教学难点:领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1)
;(2)
;(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的'反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1、只有xy=123是反比例函数.
2、分析:因为y是x的反比例函数,所以
,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设
,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
三、巩固提高
活动5
1、已知y是x的反比例函数,并且当x=3时,y=8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
数学《反比例函数》教案2
教学目标
知识与技能。
1.从具体情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数概念。
过程与方法。
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式
情感态度与价值观。
结合实例引导学生了解讨论函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类的生活的密切联系及对人类历史发展的作用。
【教学重点】
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数概念。
【教学难点】
领会反比例函数的意义,理解反比例函数概念
教学过程设计:
一、创设情境,提出问题
同学们课余时间和自己的爸爸、妈妈逛过菜市场吧,下面老师带着你们到菜市场再去逛一逛,我们边逛边思考下列问题(大屏幕演示菜市场热闹场面):
问题1说一说你们都喜欢吃什么菜?
问题210元钱分别能买每种蔬菜的重量一样吗?为什么?
问题3设你买的一种蔬菜单价为x,相应的所能购买的重量为y,则y与x满足怎样的关系式呢?
问题4妈妈喜欢吃1.5元/斤的茄子,如果买n斤,所花钱数y应如何表示?
问题5妈妈买菜已经用了25元,还想买5元/斤的鱼a斤,则总的花费y与a的关系式如何表示?
问题6妈妈买完菜准备回家,如果菜市场离家1000米,则妈妈到家所用的时间t与平均速度v之间的关系式如何表示?
[教学形式]:学生独立思考完成问题3—问题6,学习小组成员达成共识后将每题得到的的表达式写在本组答题板上,所有学习小组完成后,各小组之间进行展示、交流
[设计意图]本着课程来源于生活的理念,选择学生所熟悉的菜市场购买蔬菜的场景,提出问题串,这些问题来自于学生生活圈子,符合学生最近发展区的认知规律,使学生感到亲切、自然,同时学生应用生活经验很容易能够解决这些问题.因此最大限度地激发学生的学习兴趣,提高学生思考问题的主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣.让学生真正体会到生活处处皆数学,生活处处有函数.学生在答题板上板演的过程,就是学生主动参与学习的过程,既提高了学生的参与度,又发挥了学生的自由度,变调动学为主动学。无论学习成绩好坏,学生都有自己的思维方式和解决问题的途径,通过板演能把这些情况展示出来,有利于教师对症下药,掌握学生思路上的偏差。反应迅速、解题工整自然会给所有学生留下直观的第一印象,同时,存在问题的学生亦给其他同学留下“误区”的提醒,无论好与坏都起到了榜样示范的作用。
问题7我们利用数学的表达式描述了上述几个生活中的例子,同学们观察这四个表达式,思考下面几个问题:
(1)每个表达式中有几个变量?
(2)(学生通过观察会发现有两个变量)两个变量之间有联系吗?能具体说一说它们之间的联系吗?研究两个变量之间的关系我们通常用的是哪类数学模型?(函数)每个表达式中出现的两个变量是函数关系吗?
(3)这里有你熟悉的函数吗?另外的两个函数认识吗?(通过问题串学生得到四个具体函数,有正比例函数、b不等于0的一次函数和反比例函数,其中有学生学习过的一次函数,即自变量x增大,因变量y增大的类型,另外两个函数学生通过比例关系能够得出随着自变量x增大,因变量y减小.)
问题8从这节课开始我们要研究的一类新的函数——反比例函数(教师板书第五章反比例函数),请同学们回忆八年级上学期我们研究一次函数是从哪几个方面进行的?我们研究反比例函数应该从哪些方面进行呢?(这一章中我们首先研究反比例函数的概念、其次研究它的图象和性质,最后研究它的应用,本节课我们先来研究反比例函数概念.)
二.循序渐进,学习新知
课件展示的两个问题
1我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V时,(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
【设计意图】开头提出一个物理上的问题,学生感到好奇,可以激发学生的学习积极性。为后续学习打下基础。语言表达放映灯光变化的录像,学生感到新鲜,容易让注意力进入课堂
2京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?学生回答,教师板书。
【设计意图】因为数学来源于生活,并服务于生活,因此这三个问题都与实际生活联系比较紧密。另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的问题比较简单,学生可以独立完成,(二)合作交流、抽象概念
问题12请同学们观察黑板上这4个表达式有什么共同的特点?
[教学形式]:先独立思考,然后学习小组内互相交流想法,组内达成一致后将找到的特点分别写在本组答题板上,所有学习小组完成后,教师将每小组的答题板同时放到黑板上,学生再次将所有同学的智慧进行归纳总结
1.引导学生归纳总结共同特点.
每个表达式中都有2个变量(因变量随自变量变化而变化)1个常数;
表达式右面是分式形式且常数在分子位置、分母位置只有一个自变量;
常数为正数且自变量增加因变量随之减小.(因为都是由实际问题得出的表达式)
[设计意图:学生通过观察、比较、归纳发现四个具体的反比例函数共同特点,顺理成章地从对反比例函数的感性认识上升到理性认识,也自然的运用从特殊到一般的思维方法抽象归纳概括出反比例函数概念.从创设情景的问题串,到学生运用类比、比较等思想方法从多个函数中辨别出正比例函数、一次函数和反比例函数,再到从4个具体的反比函数中归纳出它们共同的.特点,抽象出反比例函数的定义的过程,有效地突出重点,使学生领会了反比例函数的意义.]
2.由特例抽象概括定义
问题13这些具有相同特征的函数是一类函数叫做反比例函数,你能根据上述分析的特点类比着正比例函数的定义给反比例函数下一个定义吗?
(数学教学的目的和实质是对学生进行思维能力的培养,以提高他们分析和解决问题的能力。本环节通过对若干实际问题的分析抽象出函数模型,再类比一次函数的定义归纳出反比例函数的定义,渗透了归纳与类比的数学思想)
问题14我们再认真分析反比例函数的定义中,定义中都告诉我们哪些本质的东西?或者说你是怎样理解反比例函数概念的?
教师引导学生归纳总结(剖析概念)
等价形式:;
利用概念出一道有关参数的题目,考察概念掌握的情况,
3完成教材上的做一做
(二)小组竞赛,巩固新知
[活动4]
将学生分成三组,接下来我们三个组的同学来一场智慧大比拼,比赛分三个环节:抢答题、必答题、选答题,总分最多的组获胜,请同学们听好比赛规则……
[设计意图:让学生在“赛中学”、“学中赛”,既巩固了所学的新知,提高了学习效率,又扩大学生的知识面,调动学习的积极性.小组竞赛的学习形式,把学生个体之间的竞争转化为集体之间的对抗,这样的设计既培养了学生集体主义观念,竞争意识,又避免了学生形成狭隘、自私的学习心理.]
1.抢答题:
判断下列函数中y是否为x的反比例函数,若是指出k的值;若不是,请说明理由.
[学生总结:解决此类判断题的依据是反比例函数的定义,体会数学定义的形式化思想;其中第小题适时向学生渗透整体的数学思想]
[设计意图:进一步巩固反比例函数的概念,区分反比例函数与其它函数的不同之处.]
2.必答题:
一组:一个游泳池蓄水60立方米,设放完池中的水所需时间为y小时,而每小时放水量为x立方米,写出y与x之间的函数关系式,并指出y是x的什么函数?
二组:北京市的总面积为平方千米,写出人均占有土地面积s(平方千米/人)与全市总人口n(人)的函数关系式,并指出s是n的什么函数?
三组:一个直角三角形两直角边长分别为x和y,其面积为2,请写出y与x之间的函数关系式,并指出y是x的什么函数?
[设计意图:突出反比例函数与现实世界的密切的联系,加深理解反比例函数是刻画现实世界的重要数学模型.一方面使学生感受现实世界反比例函数大量存在,另一方面体会用反比例函数的知识可以分析和解决实际问题,渗透数学函数建模的思想.]
四、课时小结、总结收获
(1)对于这节课大家还有什么疑问吗?
(2)通过这节课学习,同学们有什么收获?
[设计意图:在独立思考和合作交流中引导学生梳理本节课在知识和数学思想方法方面的收获,形成知识网络,提升对数学思想方法的理性认识.在总结的同时让学生体验收获知识的快乐,培养敢于展示自我,敢说、敢问、自信的学习品质.]
结束语:本节课我们从实际问题中抽象出反比例函数,要进一步研究反比例函数的性质我们还要借助于图像,这也是下节课我们即将要学习的内容.同学们,数学是自然科学的灵魂,函数又是数学的皇后,是描述现实世界变化规律的重要数学模型,它以简洁而著称,犹如音乐,与物理化学等学科共舞.老师希望同学们能分清每个函数的特征,并灵活运用它们解决你身边的问题.
五、布置作业,深化知识.
(书后练习题)
数学《反比例函数》教案3
教学设计思路
由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。
教学目标
知识与技能
1.从现实情境和已有的.知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。
过程与方法
1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。
2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。
情感态度与价值观
1.认识到数学知识是有联系的,逐步感受数学内容的系统性;
2.通过分组讨论,培养合作交流意识和探索精神。
教学重点和难点
理解和领会反比例函数的概念。
教学难点
领悟反比例函数的概念。
教学方法
启发引导、分组讨论
课时安排
1课时
教学媒体
课件
教学过程设计
复习引入
1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?
2.在上一学段,我们研究了现实生活中成反比例的两个量
数学《反比例函数》教案4
一、情景导入
在一个平面直角坐标系中,根据所提供的两组数据描绘出相应的反比例函数图象.
x-6-3-2-11236
y-1-2-3-66321
x-6-3-2-11236
y1266-6-3-2-1
观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系?
二、合作探究
探究点一:反比例函数图象的性质
【类型一】利用反比例函数的性质确定字母的取值范围
在反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()
A.-1B.0C.1D.2
解析:反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,根据反比例函数的性质可知,该图象的两个分支分别在第二、四象限内,所以该函数的比例系数1-k<0,解得k>1.故只有D项符合题意.故选D.
方法总结:反比例函数图象的位置和函数的增减性,都是由比例系数k的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k的符号.
【类型二】比较函数值的大小
在反比例函数y=-1x的图象上有三点(x1,y1),(x2,y2),(x3,y3),若x1>x2>0>x3,则下列各式正确的是()
A.y3>y1>y2B.y3>y2>y1
C.y1>y2>y3D.y1>y3>y2
解析:本题方法较多,一是根据x1,x2,x3的大小即可比较;二是画出草图,根据反比例函数图象的性质比较;三是利用特殊值法.
(方法一)比较法:由题意,得y1=-1x1,y2=-1x2,y3=-1x3,因为x1>x2>0>x3,所以y3>y1>y2.
(方法二)图象法:
如图,在直角坐标系中作出y=-1x的草图,描出符合条件的.三个点,观察图象直接得到y3>y1>y2.
(方法三)特殊值法:设x1=2,x2=1,x3=-1,则y1=-12,y2=-1,y3=1,所以y3>y1>y2.故选A.方法总结:此题的三种解法中,图象法形象直观,具有一般性;特殊值法最简单,这种方法对于解答许多选择题都很有效,要注意学会使用.
探究点二:反比例函数图象中比例系数k的几何意义
如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为.
解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.
方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.
三、板书设计
反比例函数的性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义
通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
【反思】
图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
体会:
通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。
数学《反比例函数》教案5
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的'讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
数学《反比例函数》教案6
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值.
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用.
教师应给“学困生”一点物理学知识的引导.
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的`值.
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 当I=0.5时,R=10I=100.5 =20(欧姆).
师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言.
师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子.
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×0.5.得F =600l
当l=1.5时,F=6001.5 =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,
l=600F .
当F=400×12 =200时,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,
∴设y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,
师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=1.1kg/m3根据V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
板书设计
17.2 实际问题与反比例函数(三)
1.
2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?
设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,
Fl=k 即F=kl (k>0且k为常数).
由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.
活动与探究
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
x(m) 10 20 30 40
y(m)
过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.
结果:(1)绿化带面积为10×40=400(m2)
设该反比例函数的表达式为y=kx ,
∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函数表达式为y=400x .
(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。
数学《反比例函数》教案7
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的`图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,
点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0
数学《反比例函数》教案8
教学过程设计
一、创设情境 引入课题
活动1
问题:
你们还记得一次函数图象与性质吗?
设计意图
通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:
教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。
二、类比联想 探究交流
活动2
问题:
例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)
设计意图:
通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:
学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:
1学生能否顺利进行三种表示方法的相互转换:
2是否熟悉作出函数图象的主要步骤,会作反比例函数的'图象;
3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?
(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)
设计意图:
学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:
学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较 发现规律
活动3
问题:
观察反比例函数y= 与y=- 的图象。
你能发现它们的共同特征以及不同点吗?
每个函数的图象分别位于哪几个象限?
在每一个象限内,y随x的变化如何变化?
由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:
形状: 反比例函数的图象是由两支双曲线组成的因此称反比例函数的图象为双曲线;
位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;
任意一组变量的乘积是一个定值,即xy=k.
(注意:双曲线的两个分支都不会与x轴,y轴相交。)
学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.
四、 运用新知 拓展训练
设计意图:
拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的
师生形为:
学生独立思考完成。
教师巡视,引导学困生完成任务。
五、归纳总结 布置作业
问题:
本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?
数学《反比例函数》教案9
一、教学设计思路
1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2. 对教材的分析
(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3) 难点:探索并掌握反比例函数的主要性质。
二、教学过程
(一)作图象,试比较
1、提问:
(1)=4/x 是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作 =—4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。
(二)细观察,找规律
1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的'两条对称轴。
3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。
(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
(三)用规律,练一练
1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限
的有哪几个?在其图象所在象限内,的值随x的增大而增
大的有哪几个?
(四)想一想,作小结
(五)作业:课本137页第1题、141页第2题
数学《反比例函数》教案10
一、背景分析
1.对教材的分析
本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析
九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
二、教学过程
一、忆一忆
师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?
生:作一次函数的图象要采用以下几个步骤:
(1)列表
(2)描点
(3)连线。
生乙:一次函数的图象是一条直线。
师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数?
生:反比例函数。
师:你们能作出它的图象吗?
生:可以。
点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。
二、作图象,试比较
师:请填写电脑上的表格,并开始在坐标纸上描点,连线。
师:再按照上述方法作y=-4/x的图象。
(学生动手操作)
师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。
(学生讨论交流,教师参与)
师:讨论结束,下面哪个小组的同学说说你们的看法?
生1:它们的图象都是由两支曲线组成的'。
生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。
点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。
三、细观察,找规律
师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。
(展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)
师:请同学们谈一谈刚才讨论的结果。
生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。
师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。
(1)反比例函数y=k/x的图象是由两支曲线所组成的。
(2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。
(3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。
师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?
(由学生在电脑上进行操作)
生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。
师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。
题目:
(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。
师:大家的观察很仔细,总结得也很正确。
点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。
四、用规律,练一练
1、课本137页随堂练习1
生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。
2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个?
(1)y=1/(2x)
(2)y=0.3/x
(3)y=10/x
(4)y=-7/(100x)
生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。
五、想一想,谈收获
师:通过今天的学习,你有什么收获?
生甲:我今天知道了怎样画反比例函数的图象。
生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。
生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大
生丁:我还能用反比例函数的相关性质解题。
师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。
总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。
教学反思:
本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。
数学《反比例函数》教案11
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的'实际问题
难点:根据实际问题中的条件确定反比例函数的解析式
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
二、新授:
例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为 的长方形蓄水池。
(1)蓄水池的底部S 与其深度 有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
三、课堂练习
1、一定质量的氧气,它的密度 (kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,=1.43kg/m3. (1)求与V的函数关系式;(2)求当V=2m3时求氧气的密度.
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)(用电量)]
3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.
四、小结
五、作业
30.31、2、3
数学《反比例函数》教案12
教学任务分析
教学目标
知识技能
通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题
数学思考
通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念
解决问题
分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理
情感态度
利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣
重点
运用反比例函数解释生活中的一些规律、解决一些实际问题
难点
把实际问题利用反比例函数转化为数学问题加以解决
教学流程安排
活动流程图
活动内容和目的
活动1创设情境,引出问题
活动2分析解决问题
活动3从函数的观点进一步分析规律
活动4巩固练习
活动5课堂小结、布置作业
教师提出生活中遇到的难题,请学生帮助解决,激发学生的兴趣
与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题
引导学生追寻杠杆原理中蕴涵的规律,从反比例函数的图象、性质等角度挖掘
通过课堂练习,提高学生运用反比例函数解决实际问题的能力
归纳、总结所学,体会利用函数的观点解决实际问题
教学过程设计
问题与情境
师生行为
设计意图
活动1
如何打开这个未开封的奶粉桶呢?—
教师提出实际生活中的问题,学生提出解决办法,教师引出利用杠杆原理解决问题。
能否从数学角度探索杠杆原理中蕴涵的变量关系呢?
让学生了解到日常生活中存在着许多两个量之间具有反比例关系的例子,自然引入课题
活动2
展示问题1:
几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为。回答下列问题:
(1)动力F与动力臂有怎样的函数关系?
(2)小刚、小强、小健、小明分别选取了动力臂为为1米、1.5米、2米、3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?从上述的运算中我们观察出什么规律?
不妨列表描点画出图象
(图象在第三象限会有吗?)
分析问题中变量间的关系
分析动力F与动力臂的关系,将撬石头的实际问题转化为反比例函数问题。由抽象到具体,验证几个具体的数值通过验证几个数值,进行列表描点,作出图象观察规律,,进一步从图象的变化趋势上解释规律
在数学课上引用一个物理力学的实际问题,一下子抓住了学生的猎奇心理,激发了他们的学习兴趣;最后落实到运用数学来解决,学生可以体会到数学的基础性和重要性,激发学生求知的热情
教师按照学生的认知规律有层次、有步骤地引导学生分析解决问题
活动3
从函数的观点进一步分析规律
(3)用反比例函数的性质解释:开启桶盖时用长的.改锥还是短的改锥?在我们使用撬棍时,为什么动力臂越长就越省力?问题
(4)受条件限制,无法得知撬石头时的阻力,小刚选择了动力臂为1.2米的撬棍,用了500牛顿的力刚好撬动;小明身体瘦小,只有300牛顿的力量,他该选择动力臂为多少的撬棍才能撬动这块大石头呢?
(5)地球重量的近似值为(即为阻力),假设阿基米德有500牛顿的力量,阻力臂为20xx千米,请你帮助阿基米德设计该用动力臂为多长的杠杆才能把地球撬动?利用反比例函数的变化规律解释实际生活中一些问题深入挖掘动力臂与动力F又有怎样的函数关系呢?待定系数法解决函数问题公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:
阻力阻力臂=动力动力臂,他形象地说,“给我一个支点我可以把地球撬动”
从函数的角度深层次挖掘变量间的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变举一反三,函数模型未变,但两个量的角色发生变化,深入探究,体会其中的变与不变的函数思想激发学生学习兴趣,培养科学探索精神
活动4
展示练习
市政府计划建设一项水利工程,工程需要运送的土石方总量为米,某运输公司承办了该项工程运送土方的任务。
(1)运输公司平均每天的工作量(单位:米3/天)与完成运送任务所需的时间(单位:天)之间具有怎样的函数关系?
(2)这个运输公司有100辆卡车,每天一共可运送土石方立方米,则公司完成全部运输任务需要多长时间?
(3)当公司以问题(2)中的速度工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,公司至少需要再增加多少辆卡车才能按时完成任务?教师展示练习,学生认真审题、思考学生认真审题后自主探究学生建立了反比例函数关系后求值学生相互讨论,协作解决问题(3),请学生代表汇报他们讨论的结果,教师作适时、适当的引导和指导
提醒学生:应把较复杂的问题分解,将难点逐一击破,从不同的角度利用不同的方法解决问题
通过巩固练习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识
给学生足够的时间和空间,给他们创造展示他们能力和所学知识的机会可从不同角度入手,培养学生从多角度审视、解决问题的能力
活动6
归纳、总结
作业:教科书习题17.2第6题
教师引导学生回忆、总结,教师予以补充
通过小结,使学生把所学知识进一步内化、系统化
数学《反比例函数》教案13
从容说课
我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了
用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想
此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用
教学重点
用反比例函数的知识解决实际问题
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题
教学方法
教师引导学生探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用
[师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学
Ⅱ. 新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为 0.2 m2时.压强是多少?
(3)如果要求压强不超过6000 Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象
(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流
[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题
请大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数
(2)当S= 0.2 m2时, p==3000(Pa)
当木板面积为 0.2m2时,压强是3000Pa.
(3)当p=6000 Pa时,
S==0.1(m2)
如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围
[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在
[师]很好,那么在(1)中是不是应该有条件限制呢?
[生]是,应为p= (S>0).
做一做
1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36
∴表达式为I=
蓄电池的电压是36伏
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6
电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内
2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流
[师]要求这两个函数的表达式,只要把A点的`坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上
∴k1=2,2=
∴k1=2,k2=6
∴表达式分别为y=2x,y=
∴x2=3
∴x=±
当x= ?时,y= ?2
∴B(?,?2)
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式;
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容积是 48 m3
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.
(3)t与Q之间的关系式为t=
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)
(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.
Ⅳ、课时小结
节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.
Ⅴ课后作业
习题5.4.
板书设计
§ 5.3反比例函数的应用
一、1.例题讲解
2.做一做
二、课堂练习
三、课时小节
四、课后作业(习题5.4)
数学《反比例函数》教案14
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的'指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
【数学《反比例函数》教案】相关文章:
《反比例》数学教案07-20
《反比例》数学教案(经典15篇)07-20
二次函数数学教案03-01
二次函数数学教案06-30
二次函数数学教案范文03-01
二次函数数学教案【优秀】06-30
数学的教案07-07
小学数学数学教案03-05
数学贴画教案03-25
数学教育教案12-17