当前位置:壹学网>教案>数学教案>数学七年级上册教案

数学七年级上册教案

时间:2024-10-25 11:06:39 数学教案 我要投稿

数学七年级上册教案

  作为一名教学工作者,总归要编写教案,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?下面是小编为大家整理的数学七年级上册教案,希望对大家有所帮助。

数学七年级上册教案

数学七年级上册教案1

  【学习目标】

  1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。

  2、理解什么是一元一次方程。

  3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】

  体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。

  【导学指导】

  一、温故知新

  1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?

  答:叫做方程。

  一元一次方程复习

  注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果.对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧.

  解一元一次方程常用的技巧有:

  (1)有多重括号,去括号与合并同类项可交替进行

  (2)当括号内含有分数时,常由外向内先去括号,再去分母

  (3)当分母中含有小数时,可根据xx分数的基本性质xx把分母化成整数

  (4)运用整体思想,即把含有未知数的代数式看作整体进行变形

  (三)实际问题与一元一次方程

  1.用一元一次方程解决实际问题的一般步骤是:

  (1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)

  (2)根据数量关系与解题需要设出未知数,建立方程;

  (3)解方程;

  (4)检查和反思解题过程,检验答案的正确性以及是否符合题意,并作答.

  2.用一元一次方程解决实际问题的典型类型

  (1)数字问题:①数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为xx100a+10b+cxx(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9).

  ②用一个字母表示连续的自然数、奇数、偶数等规律数.

  (2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”

  《第三章一元一次方程》精编导学

  3.1从算式到方程

  【学习目标】

  1、知道什么是方程,什么是一元一次方程;

  2、在实际问题中,能够找到并利用题中的等量关系列出方程.

  【重点难点】

  重点1.归纳方程、一元一次方程的概念;

  2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

  难点:能够用方程解决一些实际问题。

  【学法指导】

自主探究、合作学习

  【自主学习,基础过关】

  1. (1)3+b=2b+1 (2)4+x=7

  (3) 0.7x=1400 (4)2x-2=6

  请大家观察上面4个式子有什么共同特点?

  从而得到:xxxxxxxxxxxxxxx的等式叫做方程。

  2.阅读课本78页问题,你能用算术方法解答吗?试一试。

  若设A,B两地间的路程是x km?则从A地到B地,卡车用了小时,客车用了小时。根据题意,可列出等式吗?

  还有其他的解法吗?试着改变一种设法。

  我的疑惑

  【合作探究,释疑解惑】

  1.根据下面实际问题中的数量关系,设未知数列出方程:

  ①用一根长为48cm的铁丝围成一个正方形,正方形的边长为多少?

  ②某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

  ③练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元。问:小明买了几本练习本?

  小结:像上面①、②、③中列出的方程,它们都含有xxxxx个未知数(元),未知数的次数都是xxxxxxx,这样的`方程叫做一元一次方程。

  (即方程的一边或两边含有未知数)

  【检测反馈,学以致用】

  1.根据条件列出等式:

  ①比a大5的数等于8:

  ②某数的30%比它的2倍少34:

  ③27与x的差的一半等于x的4倍:xxxxxxxxx

  ④比a的3倍小2的数等于a与b的和:

  2.列方程解决实际问题

  (1)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长,宽各应是多少?

  (2)小芳种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到1米?

  【总结提炼,知识升华】

  1、学习收获

  2、需要注意的问题

  【课后训练,巩固拓展】

  1、必做题:教科书80页练习1,2,3,4题;

  2、悬赏题(2个优)

  鸡兔同笼,上有20头,下有52足,请问鸡兔各有多少只?

数学七年级上册教案2

  一、内容及其分析

  1、教学内容:整式的有关概念,即能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

  2、内容分析:本节课要学的内容整式的有关概念指的是理解并掌握整式的有关概念,能够对一些整式进行分析,其核心是整式的有关概念,理解它关键就是要能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感。学生已经学过有理数的运算,本节课的内容整式的有关概念就是在此基础上的发展。由于它还与根式的运算有直接的联系,所以在本学科有重要的地位,并有不可忽视的作用,是本学科的核心内容。教学的重点是单项式的系数、次数,多项式的项数、次数等概念。解决重点的关键是通过对问题的解决使学生对单项式有个初步的理解,并归纳总结出单项式的次数和系数等概念。

  二、目标及其解析

  1、目标定位:理解并掌握整式的有关概念,能够对一些整式进行分析;

  2、目标解析:理解并掌握整式的有关概念,就是指能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

  三、问题诊断与分析

  在本节课的教学中,学生可能遇到的`问题是多项式的项数、次数等概念难以理解,产生这一问题的原因是单项式的项数、次数的影响。要解决这一问题,就要先分清单项式与多项式的区别,其中关键是能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

  四、教学支持条件分析

  五、教学过程设计:

  (一)。创设问题情境,激发学生兴趣,引出本节内容

  问题1:填空,观察所填式子的特点:

  (1)边长为x的长方形的周长是__________;

  (2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;

  (3)若正方体的的边长是a,则它的表面积是_______,体积是________;

  (4)设n是一个数,则它的相反数是________.

  设计意图:通过此问题让学生知道可以用字母表示数,从实际问题中列出式子,体会数学来源于生活,从而体会整式的实际意义。

  师生活动:

  1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念。所填式子是4x、vt、6a2、a3、-n,特点是都是数字或字母的乘积。

  2、、引导学生在观察的基础上归纳单项式的定义:

  单项式:由数字或字母乘积组成的式子是单项式。

  分析式子4x、vt、6a2、a3、-n得出:

  单项式中的数字因数叫作单项式的系数(4x、vt、6a2、a3、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、6a2、a3、-n的次数分别是1、2、2、3、1)。

  例1:用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有___________册;

  (2)底边长为a,高为h的三角形的面积是_________;

  (3)一个长方体的长、宽都是a,高是h,它的体积是________;

  (4)一台电视机原价是a元,现按原价的9折出售,那么这台电视机现在的售价为______元;

  (5)一个长方形的长是0.9,宽是a,这个长方形的面积是_________.

  解:(1)12n,它的系数为12,次数是1;

  (2),它的系数是,次数是2;

  (3),它的系数是1,次数是3;

  (4)0.9a,它的系数是0.9,次数是1;

  (5)0.9a,它的系数是0.9,次数是1.

  问题2:根据对单项式的理解,解决下列问题。小明房间的窗户如图(1)所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)。

  图(1)装饰物所占的面积是______.

  (2)某校学生总数为x,其中男生人数占总数的,男生人数为;

  (3)一个长方体的底面是边长为a的正方形,高是h,体积是。

  设计意图:通过上面单项式的了解让学生再一次在实际问题中列出式子,对比看是不是与单项式相似,加深对概念的理解。

  师生活动:

  1、学生独立思考,分析第(1)个问题中装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为,所以装饰物所占的面积恰好是半径为的一个圆的面积即;(2)中男生人数为x;(3)中这个长方体的体积是a2h.

  2、引导学生在解决问题后,分析各个单项式的系数和次数,并进行交流,在交流中纠正一些不正确的想法。

  (二)问题引申、探索多项式的有关概念

  问题3:

  填空,然后分析所填式子的特点:

  1、温度由t°C下降5°C后是________°C;

数学七年级上册教案3

  教学目标:

  1、了解正数与负数是实际生活的需要。

  2、会判断一个数是正数还是负数。

  3、会用正负数表示互为相反意义的量。

  教学重点:

  会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

  教学难点:

  负数的引入。

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

  想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“—”(读作负)号来表示(零除外)。

  活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

  讨论 什么样的数是负数?什么样的'数是正数?0是正数还是负数?自己列举正数、负数。

  总结 正数是大于0的数,负数是在正数前面加“—”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示。

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么—00.3 g表示什么?

  【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。例如,9:15记为—1,10:45记为1等等。依此类推,上午7:45应记为(  )

  A.3  B.—3  C.—2.5  D.—7.45

  【点拨】读懂题意是解决本题的关键。7:45与10:00相差135分钟。

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的数,在正数前加上“—”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

  1、下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期 日 一 二 三 四 五 六

  (元) +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

  2、数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4。用“+”表示“站”,“—”(负号)表示“蹲”。

  (1)由一个同学大声喊:+1,—2,—3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:—1,—2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

  (五)课堂跟踪反馈

  夯实基础

  1、填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为xxx吨。

  (2)如果4年后记作+4年,那么8年前记作xxx年。

  (3)如果运出货物7吨记作—7吨,那么+100吨表示xxx。

  (4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了xxx。

  2、中午12时,水位低于标准水位0。5米,记作—0。5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0。5米。

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3、粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

  (六)课时小结

  1、与以前相比,0的意义又多了哪些内容?

  2、怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

数学七年级上册教案4

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的`运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

数学七年级上册教案5

  【学习目标】:

  1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:正数和负数概念

  【教学过程】:

  一、知识链接:

  1、小学里学过哪些数请写出来:

  2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

  (2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P2的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的数叫做 。

  2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第1,2题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ????????????????( )

  A.0既是正数,又是负数

  C.0是最大的'负数

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

  其中最高处为_______地,最低处为_______地.

  3.“甲比乙大-3岁”表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【课后作业】P5第1、2题

数学七年级上册教案6

  【学习目标】

  1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化.

  2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点.

  【导学提纲】

  梳理本知识:

  1. 基本概念

  2.位置关系 .

  3.相关图形的性质.

  (1)线段和直线的有关性质:

  (2)余角、补角、对顶角的有关性质:

  (3)平行和垂直的有关性质:

  4.基本作图.(尺规作图)

  (1)作一条线段AB等于线段a;

  (2)作 等于 .

  5.分类思想.

  【反馈矫正】

  1.完成本p172页复习题第1、2、3、4、5、7、8题

  2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.

  3.如果 与 互补, 与 互余,则 与 的关系是( )

  A. = B.

  C. D. 与 互余

  4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分.

  5.如图,OE是∠AOD的平分线,OF⊥OD,垂足为O,

  ∠EOF=19°,求∠AOD的度数.

  【迁移拓展】

  完成本p172页复习题第9、11、14题

  【堂作业】本p172页复习题第6、10题

  整式

  题2.1 整式时本学期

  第 时日期

  型新授主备人复备人审核人

  学习

  目标(1)了解单 项式 及单项式系数、次数的概念;

  (2)会准确迅速地确定一个单项式的系数和次数。

  重点

  难点重点:单项式及单 项式的系数、次数的概念;

  准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立

  流程师生活动时 间复备标注

  一、导入新

  回顾:先填空,再请说出你所列式子的运算含义。

  1、边长为x的正方形的周长是 。

  2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。

  3、 如图正方体的表面积为 ,体积为 。

  4、设n表示 一个数,则它的相反数是

  看前图,尝试回答3 个问题

  在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础

  二、新授

  1、自学第54--55页,回答下列问题

  完成思考的4个问题

  什么是单项式,单项式的'系数,次数?举例说明

  归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。

  注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。

  完成56页练习1

  2、自学第55页例题,回答 下列问题

  独立完成例题,后订正答案

  同一个式子表示的意义是否相同?

  归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。

  3、完成56页练习2

  三、堂达标练习

  59页习题1

  四、堂小结

  1、单项式、单项式系数、单项式次数的概念

  2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?

数学七年级上册教案7

  【知识与技能】

  1.了解无理数和实数的概念,会将实数按一定的标准进行分类.

  2.知道实数与数轴上的点一一对应.

  【过程与方法】

  1.了解无理数和实数的概念,适时拓展数的观念.

  2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.

  【情感态度】

  从分类、集合的思想中领悟数学的内涵,激发兴趣.

  【教学重点】

  正确理解实数的概念.

  【教学难点】

  对“实数与数轴上的点一一对应关系”的理解.

  一、情境导入,初步认识

  问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.

  引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?

  【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.

  二、思考探究,获取新知

  例1

  (1)试着写出几个无理数.

  (2)判断下列各数中,哪些是有理数?哪些是无理数?

  《实数》课时练习含答案

  1.(20xx?安徽模拟)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的`数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.下列集合为好的集合的是( )

  A. {1,2} B. {1,4,7} C. {1,7,8} D. {﹣2,6}

  答案:B

  知识点:实数.

  解析:根据题意,利用集合中的数,进一步计算8﹣a的值即可.

  解:A、{1,2}不是好的集合,因为8﹣1=7,不是集合中的数,故错误;

  B、{1,4,7}是好的集合,这是因为8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的数,正确;

  C、{1,7,8}不是好的集合,因为8﹣8=0,不是集合中的数,故错误;

  D、{﹣2,6}不是好的集合,因为8﹣(﹣2)=10,不是集合中的数,故错误;

  故选:B.

  本题考查了有理数的加减的应用,要读懂题意,根据有理数的减法按照题中给出的判断条件进行求解即可.

  《6.3实数》专项测试题

  1、下列说法正确的是( )

  A.单独的一个数或一个字母也是代数式

  B.任何有理数的绝对值都是正数

  C.如果两个数的绝对值相等,那么这两个数相等

  D.数轴上的任意一个点都可以表示一个有理数

  【答案】A

  【解析】解:数轴上的点可表示为有理数和无理数。

  两个数的绝对值相等,这两个数相等或者互为相反数。

  绝对值是()。

  2、下列说法正确是(   )

  A不存在最小的实数B有理数是有限小数

  C无限小数都是无理数D带根号的数都是无理数

数学七年级上册教案8

  单元教学内容

  1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

  2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系

  (2)数轴能反映数的性质、

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数

  (4)数轴可使有理数大小的比较形象化

  3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

  4、正确理解绝对值的概念是难点

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零

  (3)两个互为相反数的绝对值相等,即│a│=│-a│

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0

  三维目标

  1、知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

  (4)会利用数轴和绝对值比较有理数的大小

  2、过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

  3、情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

  重、难点与关键

  1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的.量,会求一个数的相反数和绝对值

  2、难点:准确理解负数、绝对值等概念

  3、关键:正确理解负数的意义和绝对值的意义

  课时划分

  1、1 正数和负数 2课时

  1、2 有理数 5课时

  1、3 有理数的加减法 4课时

  1、4 有理数的乘除法 5课时

  1、5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1、1正数和负数

  第一课时

  三维目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪、

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量。

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

  六、巩固练

  课本第3页,练习1、2、3、4题

数学七年级上册教案9

  【知识与技能】

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.

  2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.

  【过程与方法】

  通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.

  【情感态度】

  通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.

  【教学重点】

  理解算术平方根的概念.

  【教学难点】

  根据算术平方根的概念正确求出非负数的算术平方根.

  一、情境导入,初步认识

  教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.

  问题1求出下列各数的平方.

  1,0,(-1),-1/3,3,1/2.

  问题2下列各数分别是某实数的平方,请求出某实数.

  25,0,4,4/25,1/144,-1/4,1.69.

  对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.

  由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.

  22=4,(-2) =4,故平方为4的数为2或-2.

  问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?

  分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.

  《6.1.2平方根》课堂练习题

  2.(绵阳中考)±2是4的(A)

  A.平方根B.相反数

  C.绝对值D.算术平方根

  3.下面说法中不正确的是(D)

  A.6是36的平方根B.-6是36的平方根

  C.36的平方根是±6 D.36的平方根是6

  4.下列说法正确的是(D)

  A.任何非负数都有两个平方根

  B.一个正数的平方根仍然是正数

  C.只有正数才有平方根

  D.负数没有平方根

  《6.1平方根》课时练习含答案

  15.下面说法正确的'是( )

  A.4是2的平方根

  B.2是4的算术平方根

  C.0的算术平方根不存在

  D.-1的平方的算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

数学七年级上册教案10

  教学目标

  1.知识与技能

  会利用绝对值比较两个负数的大小.

  2.过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.

  3.情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心.

  教学重点难点

  重点:利用绝对值比较两个负数的大小.

  难点:利用绝对值比较两个异分母负分数的大小.

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│ (2)4与-5 (3)0与3

  (4)-7和0 (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.

  思考 若任取两个负数,该如何比较它的大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.

  注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的.绝对值.

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.

数学七年级上册教案11

  总课时:1课时

  一、教学目标:

  (一)教学知识点

  1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.

  2 .近似数和有效数字 并按要求取近似数.

  3.从统计图中获取信息 并用统计图形象地表示数据.

  (二)能力训练要求

  1.体会描述较小 数据的方法 进一步发展数感.

  2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.

  3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.

  (三)情感与价值观要求:

  1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的勇气.

  二、教学重点:

  1.感受较小的数据.

  2.用科学记数法表示较小的数.

  3.近似数和有效数字 并能按要求取近似数.

  4.读懂统计图 并能形象、有效地用统计图描述数据.

  教学难点:形象、有效地用统计图描述数据.

  教学过程:.创设情景 引入新课

  三.讲授新课:

  请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

  1.哪些数据用科学记数法表示比较方便?举例说明.

  2.用科学记数法表示下列各数:

  (1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.

  (2)生物学家发现一种病毒的'长度约为0.000043毫米;

  (3)某种鲸的体重可达136 000 000千克;

  (4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚.

  四.课时小结:我们这节课回顾了以下知识:

  1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据.

  2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.

  3.又一次欣赏了形象的统计图 并从中获取有用的信息.

  (1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.

  (2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

  (3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

  制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.

  (1)形象统计图(略)只要合理即可.

  (2)从表中的数据看出 河流越长 其流域面积越大.

  (3)河流的年径流量与河流所处的位置有关系.

  五.课后作业:试卷

数学七年级上册教案12

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________。

  (2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________。

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(—3)×(—3)×(—3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的'知识解决问题的能力

  6、拓展思维知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

数学七年级上册教案13

  一:说教材:

  1教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  3教育目标

  (1)、知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)、过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)、情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  4教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二:说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三:说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四:师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五:说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1全年哪几个月是亏损的?哪几个月是的盈利的?

  2各月亏损与盈利情况又如何?

  3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

  盈利多少?

  6你能将亏损情况与盈利情况用算式列出来吗?

  (5)通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的'观察,分析题目的能力。为以后解决实际问题做准备。

  (三):归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六:说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

数学七年级上册教案14

  学习目标

  1、掌握多项式、多项式的项及其次数,常数项的概念。

  2、确定一个多项式的项、项数和次数。

  3、由单项式与多项式归纳出整式概念。

  4、在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

  重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

  难点:多项式的次数。

  学法指导

  从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

  《2.1.3多项式》同步四维训练含答案

  新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

  (1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

  (2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度。

  《2.1.2多项式》课时练习含答案

  1、下列说法中正确的是( )

  A.多项式ax2+bx+c是二次多项式

  B.四次多项式是指多项式中各项均为四次单项式

  C.-ab2,-x都是单项式,也都是整式

  D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

  2、如果一个多项式是五次多项式,那么它任何一项的次数( )

  A.都小于5 B.都等于5

  C.都不小于5 D.都不大于5

  3、一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

  A.a10+b19 B.a10-b19

  C.a10-b17 D.a10-b21

  4、若xn-2+x3+1是五次多项式,则n的值是( )

  A.3 B.5 C.7 D.0

  5、下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有。(填序号)

  6、一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为。

  7、多项式的二次项系数是。

  8、老师在课堂上说:“如果一个多项式是五次多项式……”老师的.话还没有说完,甲同学抢着说:“这个多项式最多只有六项。”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式。”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

  9、如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值。

  10、四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

  (1)请把游戏最后丁所报出的答案用整式的形式描述出来;

  (2)若甲取的数为19,则丁报出的答案是多少?

数学七年级上册教案15

  教学目标

  1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

  2.能将用科学记数法表示的数还原为原数.(重点)

  教学过程

  一、情境导入

  在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

  如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

  生活中,我们还常会遇到一些比较大的数.例如:

  1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

  2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

  3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

  像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

  二、合作探究

  探究点一:用科学记数法表示大数

  例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为(  )

  A.167×103 B.16.7×104

  C.1.67×105 D.1.6710×106

  解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.

  方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

  例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元(  )

  A.9.34×102 B.0.934×103

  C.9.34×109 D.9.34×1010

  解析:934千万=9340000000=9.34×109.故选C.

  方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

  探究点二:将用科学记数法表示的数转换为原数

  例3 已知下列用科学记数法表示的数,写出原来的数:

  (1)2.01×104;(2)6.070×105;(3)-3×103.

  解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

  解:(1)2.01×104=20100;

  (2)6.070×105=607000;

  (3)-3×103=-3000.

  方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

  三、板书设计

  科学记数法:

  (1)把大于10的数表示成a×10n的`形式.

  (2)a的范围是1≤|a|<10,n是正整数.

  (3)n比原数的整数位数少1.

  教学反思

  本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

【数学七年级上册教案】相关文章:

七年级数学上册教案10-12

七年级上册数学教案优秀02-25

七年级数学上册教案【荐】07-16

七年级数学上册教案(优秀)07-02

七年级数学上册教案(合集)07-17

七年级数学上册教案汇总(15篇)07-03

(集合)七年级数学上册教案15篇07-03

七年级数学上册教案【常用15篇】07-03

七年级数学上册教案15篇[合集]07-04