当前位置:壹学网>教案>数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-07-02 17:26:29 数学教案 我要投稿

七年级数学上册教案(优秀)

  作为一名老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的七年级数学上册教案,仅供参考,希望能够帮助到大家。

七年级数学上册教案(优秀)

七年级数学上册教案1

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的.意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学上册教案2

  【学习目标】

  1、理解什么是一元一次方程。

  2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】能验证一个数是否是一个方程的解。

  1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是( )

  A.6x+6(x-2 000)=150 000

  B.6x+6(x+2 000)=150 000

  C.6x+6(x-2 000)=15

  D.6x+6(x+2 000)=15

  2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.

  3.一个正方形花圃边长增加2 m,所得新正方形花圃的'周长是28 m,则原正方形花圃的边长是多少?(只列方程)

  《3.1.等式的性质》同步四维训练含答案

  知识点一:等式的性质1

  1.下列变形错误的是(D )

  A.若a=b,则a+c=b+c

  B.若a+2=b+2,则a=b

  C.若4=x-1,则x=4+1

  D.若2+x=3,则x=3+2

  2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C )

  A.a=-b

  B.-a=b

  C.a=b

  D.a,b可以是任意有理

  《3.1从算式到方程》同步练习含解析

  7.解:把x=3代入方程,得:15-a=3,

  解得:a=12.

  故选B.

  根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

  本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

  8.解:A、7x-4=3x是方程;

  B、4x-6不是等式,不是方程;

  C、4+3=7没有未知数,不是方程;

  D、2x<5不是等式,不是方程;

  故选:A.

  根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

七年级数学上册教案3

  一、教学目标

  1、知识与技能

  (1)初步了解立体图形和平面图形的概念、

  (2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体、

  2、过程与方法

  (1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉、

  (2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体、

  3、情感、态度、价值观

  (1)、形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣、

  二、教学重点、难点:

  教学重点:常见几何体的识别

  教学难点:从实物中抽象几何图形、

  三、教学过程

  1、创设情境,导入新课、

  (1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里、引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?

  (2)用幻灯片展示一些实物图片并引导学生观察、从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的`动物到北京的申奥标志……图形的世界是丰富多彩的

  2、直观感知,识别图形

  (1)对于各种各样的物体,数学中关注是它们的形状、大小和位置、

  (2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形、观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点、

七年级数学上册教案4

  教学目标和要求:

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  教学重点和难点:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1、 列代数式

  (1)若正方形的边长为a,则正方形的面积是 ;

  (2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;

  (3)若x表示正方形棱长,则正方形的体积是 ;

  (4)若m表示一个有理数,则它的相反数是 ;

  (5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

  2、 请学生说出所列代数式的意义。

  3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

  由小组讨论后,经小组推荐人员回答,教师适当点拨。

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

  二、讲授新课:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

  2.练习:判断下列各代数式哪些是单项式?

  (1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

  (加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

  4.例题:

  例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

  ①x+1; ② ; ③ ④- a2b。

  答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;

  ③是,它的'系数是,次数是2; ④是,它的系数是- ,次数是3。

  例2:下面各题的判断是否正确?

  ①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥ r2h的系数是 。

  通过其中的反例练习及例题,强调应注意以下几点:

  ①圆周率是常数;

  ②当一个单项式的系数是1或-1时,1通常省略不写,如x2,-a2b等;

  ③单项式次数只与字母指数有关。

  5.游戏:

  规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

  (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

  6.课堂练习:课本p56:1,2。

  三、课堂小结:

  ①单项式及单项式的系数、次数。

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

  四、课堂作业: 课本p59:1,2。

  板书设计:

  《单项式》 1.单项式的定义: 2.例1: 例2: 学生练习:

  教学后记:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。

七年级数学上册教案5

  教学目标

  1.了解的概念和的画法,掌握的三要素;

  2.会用上的点表示有理数,会利用比较有理数的大小;

  3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

  教学建议

一、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础。

  二、知识结构

  有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法。

  三、教法建议

  小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

  关于有理数与上的点的.对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

  四、的相关知识点

  1.的概念

  (1)规定了原点、正方向和单位长度的直线叫做。

  这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的

  (2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

  以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。

  2.的画法

  (1)画直线(一般画成水平的)、定原点,标出原点“O”。

  (2)取原点向右方向为正方向,并标出箭头。

  (3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

  (4)标注数字时,负数的次序不能写错,如下图。

  3.用比较有理数的大小

  (1)在上表示的两数,右边的数总比左边的数大。

  (2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

  (3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

  五、定义的理解

  1、规定了原点、正方向和单位长度的直线叫做,如图1所示。

  2、所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2)。

  A点表示-4; B点表示-1.5;

  O点表示0; C点表示3.5;

  D点表示6。

  从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

  正数都大于0,负数都小于0,正数大于一切负数。

  因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

  同理,表示是负数;反之是负数也可以表示为。

  3、正常见几种错误

  1)没有方向;

  2)没有原点;

  3)单位长度不统一。

七年级数学上册教案6

  1.1 生活中的立体图形

  〖教学过程:

  一、看一看:(情境创设)

  教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。

  设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”

  (2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”

  教师(问):卡通A、B身体各部分是什么图形?

  通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。

  教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。

  (出示课题):生活中的立体图形

  音乐响起,屏幕播放录象。

  二、议一议(课堂讨论)

  问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?

  组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。

  问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?

  电脑演示:(1)球体 (2)圆柱 (3)圆锥

  并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。

  电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),

  问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?

  诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?

  (用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。

  通过一连串的'活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。

  三、练一练(评价)

  遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:

  1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。

  尽量让每个学生都发言,注意培养学生的语言表达能力。

七年级数学上册教案7

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

  3.通过揭示有理数的.减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

七年级数学上册教案8

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

  二、教学目标分析

  (一)知识技能目标

  1.目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

  2.目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

  (二)过程目标

  1.目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识.

  2.目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.

  (三)情感目标

  1.目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

  (2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

  2.目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的`学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

  四、教学过程分析

  (一)教学过程流程图

  探究Ⅰ

  (二)教学过程Ⅰ

  (以探究为主线、形式多样化)

  1.问题情境

  (1) 多媒体展示有关盈亏的新闻报道,感受生活实际.

  (2) 据此生活实例,展示探究Ⅰ,引入新课.

  考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.

  2.讨论交流

  (1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.

  (2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

  (3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.

  (4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.

  让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.

  3.建立模型

  (1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.

  (2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.

  (3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.

  (教师及时给出完整的解答过程)

  学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.

  4.小结

  一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.

  培养学生科学的学习态度与严谨的学习作风.

  探究Ⅱ

  (三)教学过程Ⅱ

  1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.

  恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.

  启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

  2.列代数式

  费用=灯的售价+电费

  电费=0.5×灯的功率(千瓦)×照明时间(时)

  在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.

  节能灯的费用(元):60+0.5×0.011t.

  白炽灯的费用(元):3+0.5×0.06t.

  分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.

  3.特值试探

  具体感知

  学生分组计算:

  t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

  时间(小时)

  1000

  20xx

  2500

  3000

  节能灯的费用(元)

  白炽灯的费用(元)

七年级数学上册教案9

  教学内容:

  第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。

  教学目标:

  1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。

  2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。

  教学重点:

  会用正、负数表示相反意义的量。

  教学难点:

  会用正、负数解决生活中的实际问题。

  教具准备:

  多媒体课件

  教学方法:

  合作交流、师生互动

  教学过程:

  一、游戏激趣

  教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?

  向上看 向前走200米 电梯上升15层 我在银行存入了500元

  二、复习旧知

  我们已经学习了负数,你能举几个负数的例子吗?

  通过前面内容的'学习,你还知道哪些知识?

  三、学习新知

  1.教学例3。

  出示例3的情境:小明向东走200米,小军向西走200米。

  教师问:你准备怎样来表示这两个不同意思的量?

  学生1:向东走200米记作+200米,向西走200米就记作-200米。

  学生2:向西走200米记作+200米,向东走200米就记作-200米。

  教师对这两种记法都应给予肯定。

  学生独立试一试

  (1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?

  (2)如果体重减少2kg记作-2kg,那么+5kg表示什么?

  学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。

  (3)练习:课堂活动第2题:说出表中正数、负数表示的意义。

  项目 父母工资 电话费 父母奖金 水、电、气费 伙食费

  收支情况(元) 4500 -130 1000 -280 -1750

  2.教学例4。

  教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)

  月份 7月 8月 9月 10月 11月 12月

  盈亏情况(元) +6500 -2700 0 -750 +9500 +16700

  教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)

  教师:从表中你获得了哪些信息?

  学生小组内交流,然后全班汇报。

  教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。

  3.讨论生活中的负数。

  教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。

  教师:存折上的-800表示什么意思?

  学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元

  电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)

  老师现在要到33层应该按几啊?要到地下3层呢?

  四、课堂练习

  1.下图每段表示1m,小丽刚开始的位置在0处。

  (1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )

  (2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。

  (3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。

  (4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。

  (5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。

  2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。

  3.如果-20分表示比平均分低20分,那么+15表示( )

  4.如果比规定任务多做5个记作+5个,那么-5表示( )

  5.2.如果在银行存入10000元记作+10000,那么-5000表示( )。

  五、自学“你知道吗?”

  学生阅读教科书92页内容,说说有什么收获?

  六、课堂小结

  通过今天的学习,你有什么收获?

  七、课堂作业

  练习二十二第6、7题。

  家庭作业:90页课堂活动第3题,练习二十二第5、8题

  板书设计:

  认识具有相反意义的量及其简单应用

  向东走200米记作+200米,向西走200米就记作-200米

  正数、负数来表示相反意义的量。

七年级数学上册教案10

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的'事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

七年级数学上册教案11

  教学目标

  1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点

  两个负数大小的比较

  知识重点

  绝对值的概念

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20|-10|=10显然|0|=0

  这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

  验数学知识与生活实际的联系.

  因为绝对值概念的几何意义是数形转化的典型

  模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

  合作交流

  探究规律

  例1求下列各数的绝对值,并归纳求有理数a的绝对

  有什么规律。、

  -3,5,0,+58,0.6

  要求小组讨论,合作学习.

  教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

  巩固练习:教科书第15页练习.

  其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.

  求一个数的绝时值的法则,可看做是绝对值概

  念的一个应用,所以安排此例.

  学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

  结合实际发现新知

  引导学生看教科书第16页的图,并回答相关问题:

  把14个气温从低到高排列;

  把这14个数用数轴上的点表示出来;

  应怎样比较两个数的大小呢。

  学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:

  在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

  在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

  想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

  要求学生在头脑中有清晰的图形.

  让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  课堂练习

  例2,比较下列各数的大小(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式

  练习:第18页练习

  小结与作业

  课堂小结

  怎样求一个数的绝对值,怎样比较有理数的大小。

  本课作业

  1,必做题:教产书第19页习题1,2,第4,5,6,10

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

  这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

  习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意

  义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

  数的绝对值的规律,如果直接给出绝对值的.概念,灌输知识的味道很浓,且太抽象,学生不易接受.

  2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3,有理数大小的比较法则是大小规定的直接归纳,其中第

  (2)条学生较难理解,教学

  中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

  大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

  4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

  学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学上册教案12

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的'北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

七年级数学上册教案13

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的`顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学上册教案14

  教学目标和要求:

  1.理解单项式及单项式系数、次数的概念.

  2.会准确迅速地确定一个单项式的系数和次数.

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

  教学重点和难点:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.

  教学过程:

  一、复习引入:

  1、列代数式

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

  2、请学生说出所列代数式的意义.

  3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

  由小组讨论后,经小组推荐人员回答,教师适当点拨.

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

  二、讲授新课:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

  如a,5.

  2.练习:判断下列各代数式哪些是单项式?

  (1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.

  (加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

  四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

  单项式的系数:单项式中的数字因数叫做这个单项式的系数.

  单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  4.例题:

  例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b

  答:①不是,因为原代数式中出现了加法运算;

  ②不是,因为原代数式是1与x的商;

  ③是,它的系数是π,次数是2;

  ④是,它的系数是-,次数是3.

  例2:下面各题的判断是否正确?

  ①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的`系数是.

  答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确

  强调应注意以下几点:

  ①圆周率π是常数;

  ②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

  ③单项式次数只与字母指数有关.

  5.游戏:

  规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

  (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

  三、课堂小结:

  ①单项式及单项式的系数、次数.

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

  教学后记:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

七年级数学上册教案15

  教学目标:

  1、正确理解数轴的意义,理解数轴的三要素。

  2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

  3、理解相反数的意义及求法。

  4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

  重点难点

  1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

  2、有理数和数轴上的的点的对应关系。

  教学方法

  合作探究交流

  学法指导

  观察归纳概括

  教学过程

一、情景引入:

  (1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

  (2)我们能否用类似温度计的图形表示有理数呢?

  二、讲授新课:认真阅读课本第43页至45页,完成下列问题

  (1)画一条水平直线,在直线上取一点O(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。

  于是,+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1、5的.点表示,任何有理数都可以用数轴上的一个点来表示。

  三、例题讲解、巩固提高

  例1、如图,指出数轴上A、B、C、D各点表示什么数?

  A D CB

  –2 –1 0 1 2 3

  解:点A表示—2;点B表示2;点C表示0;

  点D表示—1

  练习:画出数轴并用数轴上的点表示下列个数:

  —5,0,5,—4,—、

  四、继续探究

  2与—2有什么相同点与不同点?它们在数轴上的位置有什么关系?5与—5,与–呢?

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数、特别地0的相反数是0、

  在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等、

  练习:1、5的相反数是▁▁;▁▁的相反数是—3、5。

  议一议

  数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?

  数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。

  练习:比较大小:—3▁5;0 ▁—4;—3 ▁—2、5。

  3、合作交流

  (1)什么是数轴?怎样画数轴。

  (2)有理数与数轴上的点之间存在怎样的关系?

  (3)什么是相反数?怎样求一个数的相反数?

  (4)如何利用数轴比较有理数的大小?

  5、随堂练习:

  (1)下列说法正确的是()

  A、数轴上的点只能表示有理数

  B、一个数只能用数轴上的一个点表示

  C、在1和3之间只有2

  D、在数轴上离原点2个单位长度的点表示的数是2

  (2)语句:①—5是相反数?②—5与+3互为相反数③—5是5的相反数④—5和5互为相反数⑤0的相反数是0⑥—0=0。上述说法中正确的是()

  A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥

  (3)大于—4而小于4的整数有▁▁▁▁▁▁。

  (4)用“﹤”或“﹥”号填空

  ①—5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1

  (5)写出下列各数的相反数

  3、4,—3,0,a,2a—3。

【七年级数学上册教案】相关文章:

七年级数学上册教案10-12

七年级上册数学教案优秀02-25

地理七年级上册教案11-20

七年级上册地理教案06-06

七年级生物上册教案06-07

七年级上册生物教案01-18

七年级生物上册教案11-06

生物七年级上册教案02-17

七年级上册生物教案05-20