当前位置:壹学网>教案>数学教案>七年级数学教案

七年级数学教案

时间:2024-08-15 18:27:46 数学教案 我要投稿

七年级数学教案

  作为一位不辞辛劳的人民教师,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。那要怎么写好教案呢?以下是小编帮大家整理的七年级数学教案,仅供参考,大家一起来看看吧。

七年级数学教案

七年级数学教案1

  教学目标

  1、知识:认识点、线、面的运动后会产生什么的几何体

  2、能力:通过点、线、面的运动的认识几何体的产生什么

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:几何体是什么运动形成的

  教学难点:对“面动成体”的理解

  教学过程:

  一、设疑自探

  创设情景,导入新课

  我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?

  学生设疑

  点动会生成什么几何体?

  线动会生成什么几何体?

  面动会生成什么几何体?

  教师整理并出示自探题目

  教师根据学生的設疑情况梳理、归纳、细化得出自探题目(自探要求)

  学生自探(讨论)

  二.解疑合探

  举例分析那些几何体由什么运动形成的?

  那些图形运动可以形成什么几何体?

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四.运用拓展:

  引导学生自编习题。

  教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  课堂小结

  作业布置

  五、教后反思

  展开与折叠

  教学目标:

  通过折叠棱柱,发展学生空间观念,积累数学活动经验.

  了解棱柱的相关概念,认识棱柱的某些特性.

  教学重点:棱柱的特性.

  教学难点:某些平面图形是否可以折叠成棱柱的思索.

  教学过程:

  一、设疑自探

  创设情景,导入新课

  我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢?

  让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:

  (1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢?

  (2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢?

  (3)这三种棱柱侧面的个数与地面多边形的边数有什么关系?

  (4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢?

  结合同学们的回答,共同总结出棱柱的性质:

  棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.

  课堂练习:

  展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)

  二.解疑合探

  (1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同?

  (2)这个六棱柱一共有多少条棱?它们的长度分别是多少?

  展示下列图形:

  先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体?

  结合以上问题,全班进一步分组讨论:

  你能否指出具有什么特征的平面图形可以折成正方体?什么样的图形不能?

  (教师参与小组讨论,并进行适当指导)

  总结结论:

  凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体.

  三.质疑再探:

  上例中为什么是旋转90度?

  探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱?

  进一步思考什么样的平面图形可以折叠成棱柱?

  四.运用拓展:

  1、课堂练习P11想一想

  2、小结

  ①.棱柱的相关概念及特征

  ②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等.

  ③作业

  P10习题

  每人用纸制作一个完整的正方体以备下节课使用.

  截一个几何体

  教学目标:

  1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。

  2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型课件进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。

  3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,增强自信心,提高学习数学的兴趣。

  教学的重点:引导学生用一个平面去截一个正方体的'切截活动,体会截面和几何体的关系,充分让学生动手操作、自主探索、合作交流。

  教学的难点:从切截活动中发现规律,并能用自己的语言来表达。能应用规律来解决问题。

  课程过程:

  一、设疑自探

  创设情景,导入新课

  复习面的分类和面面相交的结果.

  集体回答或发表个人见解.

  为理解截面的边数作铺垫.

  2、学生探索

  由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点.

  了解到这两个截面完全一样的

  自然过渡到用一个平面去截正方体.

  问题的提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识.

  实施“想—做—想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想.

  培养学生的想象力.

  分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬表现好的培养集体荣誉感.

  分组通过实践操作证实小组的讨论的结果,发表、展示自己的研究成果.(由于时间关系,选择有代表性的小组展示)

  培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识.

  二、解疑合探

  帮助学生完成由实际体验到空间想象的过渡,提高想象能力.并总结各种截面是如何截出来的,它们有什么规律.

  观察,想象,思考截面的边那些面相交的来.

  新问题:“刚才切、截一个正方体就得多个不同的截面,那么如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?”

  动手操作、探究、交流.

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四、运用拓展

  练习、作业布置、解答课堂练习.学生能独立完成课堂练习.

  从不同方向看

  教学目标:

  经历"从不同方向观察物体"的活动过程,发展空间思维,能在与他人交流的过程中,合理清晰地表达自己的思维过程.

  在观察的过程中,初步体会从不同方向观察同一物体可能看到不一样的结果.

  能识别简单物体的三视图,会画立方体及其简单组合体的三视图.

  教学重点:识别简单物体的三视图,会画立方体及其简单组合体的三视图.

  教学难点:画立方体及其简单组合体的三视图.

七年级数学教案2

  认识三角形教学目标:

  1、知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系

  2、过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力

  3、情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣

  教学重点难点:

  1、重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题

  2、难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中,培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法,并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形,学生统计能否摆成三角形的情况

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论

  第五环节 练习提高

  活动内容:

  1、有两根长度分别为5厘米和8厘米的`木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2、如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为若第三边为偶数,那么三角形的周长

  3、有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑,教师做最终总结并指出注意事项

  学生对本节内容归纳为以下两点:

  1、了解了三角形的概念及表示方法;

  2、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边

  第七环节 探究拓展思考

  1、若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求

  2、在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3、以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看

  第八环节 作业布置

七年级数学教案3

  教学目的

  1、了解一元一次方程的概念。

  2、掌握含有括号的一元一次方程的`解法。

  重点、难点

  1、重点:解含有括号的一元一次方程的解法。

  2、难点:括号前面是负号时,去括号时忘记变号。

  教学过程

  一、复习提问

  1、解下列方程:

  (1)5x—2=8(2)5+2x=4x

  2、去括号法则是什么?“移项”要注意什么?

  二、新授

  一元一次方程的概念。

  如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?

  只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。

  例1、判断下列哪些是一元一次方程

  x= 3x—2 x—=—1

  5x2—3x+1=0 2x+y=1—3y =5

  例2、解方程(1)—2(x—1)=4

  (2)3(x—2)+1=x—(2x—1)

  强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。

  补充:解方程3x—[3(x+1)—(1+4)]=1

  说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

  三、巩固练习

  教科书第9页,练习,1、2、3。

  四、小结

  学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

  五、作业

  1、教科书第12页习题6。

  2、第1题。

七年级数学教案4

  教学 建议

  一、重点、难点分析

  本节 教学 的重点是掌握三元一次方程组的解法, 教学 难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.

  1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.

  2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.

  3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.

  4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

  5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.

  二、知识结构

  三、教法建议

  1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.

  2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.

  在例2中,如果先确定消去 ,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.

  教学 设计示例

  一、素质 教育 目标

  (一)知识 教学 点

  1.知道什么是三元一次方程.

  2.会解某个方程只有两元的简单的三元一次方程组.

  3.掌握解三元一次方程组过程中化三元为二元或一元的思路.

  (二)能力训练点

  1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.

  2.培养学生的计算能力、训练解题技巧.

  (三)德育渗透点

  渗透“消元”的思想,设法把未知数转化为已知.

  (四)美育渗透点

  通过本节课的学习,渗透方程恒等变形的`数学美,以及方程组解的奇异美.

  二、学法引导

  1. 教学 方法:观察法、讨论法、练习法.

  2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.

  三、重点?难点?疑点及解决办法

  (一)重点

  使学生会解简单的三元一次方程组,经过本课 教学 进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

  (二)难点

  针对方程组的特点,选择最好的解法.

  (三)疑点

  如何进行消元.

  (四)解决办法

  加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1. 教师 先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.

  2. 教师 由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元, 教师 讲解、小结.

  3.由学生尝试,解决例题.

  4.学生练习,教师 小结、讲评.

  七、 教学 步骤

  (一)明确目标

  本节课将学习如何求三元一次方程组的解.

  (二)整体感知

  通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.

  (三) 教学 过程

  1.复习导入、探索新知

  (1)解二元一次方程组的基本方法有哪几种?

  (2)解二元一次方程组的基本思想是什么?

  甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

  题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?

  学生活动:回答问题、设未知数、列方程.

  这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:

  这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.

  怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?

  学生活动:思考、讨论后说出消元方案.

  教师 对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得  ④,进一步将④分别代入①和③中,就可消去 ,得到只含 、 的二元一次方程组.

  解:由②,得     ④

  把④代入①,得   ⑤

  把④代入③,得    ⑥

  ⑤与⑥组成方程组

  解这个方程组得

  把 代入④,得

  ∴

  ∴

  注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.

  b.得 , 后,求 ,要代入前面最简单的方程④.

  c.检验.

  这道题也可以用加减法解,②中不含 ,那么可以考虑将①与③结合消去,与②组成二元一次方程组.

  学生活动:在练习本上用加减法解方程组.

  【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.

  2.学生尝试解决例题

  例1? 解方程组

  学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.

  解:②×3+③,得?   ④

  ①与④组成方程组

  解这个方程组,得

  把 , 代入②,得

  ∴

  ∴

  归纳:这个方程组的特点是方程①不含 ,而②、③中 的系数绝对值成整数倍关系,显然用加减法从②、③中消去 后,再与①组成只含 、 的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.

  【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.

  3.尝试反馈,巩固知识

  练习:P30 (1)

  学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.

  4.变式训练要,培养能力

  补例:解方程组

  学生活动:独立完成.

  【教法说明】此方程组中方程①、③中 、 的系数完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!

  (四)总结、扩展

  1.解三元一次方程组的基本思想是什么?方法有哪些?

  2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.

  3.注意检验.

  【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.

  八、布置作业

  (一)必做题:P31  A组1.

  (二)选做题:解方程组

  (三)思考题:课本第32页“想一想”.

  【教法说明】作业

  (一)是为了巩固本节所学知识;作业

  (二)有很强的技巧性,可培养学生兴趣;作业

  (三)培养学生分析问题、解决问题的能力.

七年级数学教案5

  ●教学内容

  七年级上册课本11----12页1.2.4绝对值

  ●教学目标

  1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作?__________,B处记作__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念?———绝对值。

  二、建立数学模型

  1、绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  注意:①与原点的关系 ②是个距离的概念

  2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6 , , 0, -10, +10

  2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的.相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  3.出示题目

  (1) -3的符号是_______,绝对值是______;

  (2) +3的符号是_______,绝对值是______;

  (3) -6.5的符号是_______,绝对值是______;

  (4) +6.5的符号是_______,绝对值是______;

  学生口答。

  师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

  5、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  6、例2.求绝对值等于4的数

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4, |-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  所以绝对值等于4的数是+4和-4.

  6、练习:做书上12页课内练习1、2两题。

  四、归纳小结

  1、本节课我们学习了什么知识?

  2、你觉得本节课有什么收获?

  3、由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  1、让学生去寻找一些生活中只考虑绝对值的实际例子。

  2、课本15页的作业题。

七年级数学教案6

  学习目标:

  1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

  2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

  3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

  4、体验不等式在实际问题中的`作用,感受数学的应用价值。

  学习重点:

  一元一次不等式组的解法

  学习难点:

  一元一次不等式组解集的确定。

  一、学前准备

  【回顾】

  1.解不等式 ,并把解集在数轴上表示出来。

  【预习】

  1、 认真阅读教材34-35页内容

  2、XXXXXXXXXXXX X 叫做一元一次不等式组。

  XXXXXX XXXXXXX叫做一元一次不等式组的解集。

  叫做解不等式组。

  4、求下列两个不等式的解集,并在同一条数轴上表示出来

  ①

  二、探究活动

  【例题分析】

  例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么?

  例2. (问题2)题中的相等关系是什么?不等关系又是什么?

  例3. 解不等式组

  【小结】

  不等式组解集口诀

  “同大取大,同小取小,大小小大中间找,大大小小解不了”

  一元一次不等式组解集四种类型如下表:

  不等式组(a

  (1)x>ax>b

  x>b 同大取大

  (2)x< p="">

  x

  ax

  无解 大大小小解不了

  【课堂检测】

  1、不等式组 的解集是( )

  A. B. C. D.无解

  2、不等式组 的解集为( )

  A.-1<="" c.x<-1="" b.-1

  3、不等式组 的解集在数轴上表示正确的是( )

  A B C D

  4、写出下列不等式组的解集:(教材P35练习1)

  三、自我测试

  1.填空

  (1)不等式组x>2x≥-1 的解集是X XX;

  (2)不等式组x<-1x<-2 的解集 ;

  (3)不等式组x<4x>1 的解集是XX XX;

  (4)不等式组x>5x<-4 解集是XXX XXX。

  2、解下列不等式组,并在数轴上表示出来

  四、应用与拓展

  1、若不等式组 无解,则m的取值范围是 XXXX XXXXX.

  五、数学日记

七年级数学教案7

  1.1 生活中的立体图形

  〖教学过程:

  一、看一看:(情境创设)

  教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。

  设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”

  (2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”

  教师(问):卡通A、B身体各部分是什么图形?

  通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。

  教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。

  (出示课题):生活中的立体图形

  音乐响起,屏幕播放录象。

  二、议一议(课堂讨论)

  问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?

  组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。

  问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?

  电脑演示:(1)球体 (2)圆柱 (3)圆锥

  并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。

  电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),

  问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的'关系?

  诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?

  (用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。

  通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。

  三、练一练(评价)

  遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:

  1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。

  尽量让每个学生都发言,注意培养学生的语言表达能力。

七年级数学教案8

  教学目标

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  教学难点两个负数大小的比较

  知识重点绝对值的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体

  验数学知识与生活实际的联系。

  因为绝对值概念的几何意义是数形转化的典型

  模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  合作交流

  探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对

  有什么规律?、

  —3,5,0,+58,0.6

  要求小组讨论,合作学习。

  教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  巩固练习:教科书第15页练习。

  其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概

  念的一个应用,所以安排此例。

  学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  把14个气温从低到高排列;

  把这14个数用数轴上的点表示出来;

  观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

  应怎样比较两个数的大小呢?

  学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:

  在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。

  在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

  想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。

  要求学生在头脑中有清晰的图形。让学生体会到数学的'规定都来源于生活,每一种规定都有它的合理性

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  课堂练习例2,比较下列各数的大小(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式

  练习:第18页练习

  小结与作业

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

  这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

  习绝对值概念的必要性和激发学习的兴趣。②教材中数的绝对值概念是根据几何意

  义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

  数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学

  中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

  大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型。为此设置了想象练习。

  4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

  学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案9

  教学目标:

  1、在解决问题的过程中,探索分数除以整数的计算方法,并能正确的进行计算。

  2、在探索分数除以整数计算方法的过程中,体验算法的多样性,养成独立思考的习惯,促进个性化学习。

  3、在解决现实问题的过程中,感受数学与生活的密切联系,体验学数学,用数学的乐趣。

  教学过程:

  一、创设情境,提出问题。

  师:同学们,我们学校设立了许多课外兴趣小组,同学们在课余时间可以根据自己的兴趣爱好参加小组的活动。今天我们一起走进布艺兴趣小组,看看那里的同学给我们提出了哪些数学问题。

  师:看大屏幕,从情境图中你找到了哪些数学信息?

  生:布艺兴趣小组的同学要用9/10米的布给小猴做衣服。如果做背心,可以做3件;如果做裤子,可以做2条。

  师:根据这些信息,你能提出什么数学问题?

  生1:做一件背心需要花布多少米?

  生2:做一条裤子需要花布多少米?

  (教师根据学生的提问,有选择的进行板书)

  二、自主探索,获取新知

  1、独立思考、自主探究。

  师:我们先看第一个问题 “做一件背心需要花布多少米?”怎样列算式?

  生1:9/10÷3=

  师:为什么用除法?

  生1:把9/10平均分成3份,求1份是多少,所以用除法。

  师:谁还能再说一遍?

  生重复。

  师:9/10÷3结果是多少呢?请在自己的练习本写一写、画一画,算一算。

  生自主操作,师适时巡视指导,找出两位同学上台板演。

  2、合作交流,解决问题。

  师:将你的想法和同桌交流一下。

  生交流。

  师:我们来看几位同学的方法。

  (投影展示,画线段图的方法)

  师:我们先看第一位同学的方法,这是哪位同学的,你能来介绍一下吗?

  生:(画线段图的方法)把9/10米平均分成3份,每份是3/10米。

  师:我们再来看一位同学的,他用的是长方形布条,这是哪位同学的,介绍一下?

  生:把9/10米平均分成3份,每份是3/10米。

  师:不管是画线段图还是用长方形来表示,我们都可以得到每份是3/10米。

  板书方法:画线段图。

  师:我们再来看黑板上这两位同学的(学生板演),请这位同学来介绍一下你的做法。

  生:9/10÷3=9÷3/10=3/10(米)

  把9/10米平均分成3段,就是把9个1/10米平均分成3份,每份是(9÷3)个1/10米,即3/10米

  师:谁能再重复一遍?生重复。

  师:我们可以用平均分的思想直接进行计算。(板书:平均分的方法)

  师:看这种方法9/10÷3=9/10×1/3=3/10(米),(学生板演内容)谁来介绍一下?

  生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。

  生似懂非懂。

  师:你们能明白吗?我们结合这条形图来看一下,(出示课件)。

  师:把条形图平均分成3份,一份占多少?

  生:1/3。

  师:也就是求什么/

  生:也就是求9/10米的1/3。

  师:我们可以怎样计算?

  生:9/10×1/3

  师:看一下算式?有什么变化?

  生1:前面是除法,后面是乘法。

  生2:3和1/3互为倒数

  师:也就是除法转化成了乘法。(板书:转化)

  师:谁能再说一说这种方法?

  师:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。

  师:这就是第三种方法,利用乘法的意义进行计算。(板书:乘法的意义)

  师:除了这几种方法,你还有哪些办法?

  生:转化成小数来计算。

  师:说一下

  生:9/10米化成小数0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。

  师板书:9/10÷3=0.9÷3=0.3(米)

  师:同学们想出了这么多方法解决问题,它们的结果相同,说明大家的思路是正确的,哪种方法更好一些呢?

  生1:我认为第三种方法比较好,因为算起来比较简便。

  生2:我认为第三种方法比较好,因为第二种方法只适用于能出开的情况。

  师:说得非常好,到底他说的对不对,等会我们来验证一下。

  3、选择算法,解决问题。

  师:同学们,看来大家都已经有自己喜欢的方法了,我们来看第二个问题“做一条裤子需要花布多少米?”用你喜欢的方法独立完成。

  (让学生独立列式,教师巡回指导,了解学生情况,找一位同学进行板演)

  9/10÷2=9/10×1/2=9/20(米)

  师:我们来看这位同学的,你们都和这位同学一样吗?谁来说说这种方法?

  生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法来计算。

  师:谁能再说一遍

  生重复。

  师:看算式,我们把除法转化成了乘法来计算。看来大家都觉得这种方法比较简单。

  4、归纳概括,推广应用。

  (1)师:仔细观察、分析刚才所解决的两个问题,想一想:我们怎样计算分数除以整数?看这两个算式,前面是除法,后面是?

  生:乘法

  师:看圈起来的两个数字,有什么关系?

  生1:倒数

  生2:互为倒数

  师:一定要说完整。现在谁能用一句话来总结一下怎样计算分数除以整数的计算方法?

  生:分数除以整数等于分数乘这个整数的倒数。(师板书)

  师:谁能再说一遍?

  生重复,全班同学一块交流。

  三、巩固练习,加深理解

  1、自主练习1

  先让学生独立填写,然后组织交流。

  交流时让学生说说自己的.算法,体会到此题分数的分子都能被除数整除,所以采用分子除以除数的方法相对简捷。

  2、自主练习2

  让学生运用分数除以整数的计算方法连一连。独立完成,组织交流。

  首先让学生观察第一行算式与第二行算式的特点以及之间的关系,从而悟出此题的意图,学生就可以顺利地利用分数除以整数的计算方法得出应该连的相应算式。

  3、自主练习5

  独立完成,投影展示交流。(两种方法,直接去除或者转化成乘法计算)

  此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。

  4、自主练习4

  独立完成,板演交流

  此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。

  四、课堂小结

  师:这节课我们主要学习了什么知识?

  生:分数除以整数(板书)

  师:通过这节课的学习,你有什么收获?

  生汇报。

七年级数学教案10

  一、教学内容分析

  1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的.大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

  1.定义规定了原点、正方向、单位长度的直线叫数轴

  2.三要素原点正方向单位长度

  3.应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零.具体方法如下

  (边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?

  原点向左1.5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3).画出数轴并表示下列有理数:

  1、1.5,-2.2,-2.5,0.

  2.写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念.

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  十二、课后练习

  习题1.2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案11

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的'顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学教案12

  一、教学内容分析

  1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的'点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零.具体方法如下

  (边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?

  原点向左1.5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  教法说明通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3).画出数轴并表示下列有理数:

  1、1.5,-2.2,-2.5,0.

  2.写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  教法说明此组练习的目的是巩固数轴的概念.

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  十二、课后练习习题1.2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案13

  一、说教材分析

  1.教材的地位和作用

  二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

  2.教学目标

  知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

  能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

  情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

  3.重点、难点

  重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

  难点:在实际生活中二元一次方程组的应用。

  二、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习旧知,温故知新

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

  设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。

  这两个条件可以用方程

  x+y=10

  2x+y=16

  表示:

  上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

  把两个方程合在一起,写成

  x+y=10

  2x+y=16

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (3)发现问题,探求新知

  满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

  xxy

  y

  上表中哪对x、y的值还满足方程②。

  一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

  设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4)分析思考,加深理解

  通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

  (5)强化训练,巩固双基

  课堂练习:

  设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

  练习2:已知下列三对数值:

  哪一对是下列方程组的解?

  (设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的.几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  (6)小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

  ①通过本节课的学习,你学会了哪些知识;

  (7)布置作业,提高升华

  教科书第89页1、第90页第1题。

  以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

  五、评价与反思

  本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

  1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

  2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

  3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

七年级数学教案14

  (1)、来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

  (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

  (3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

  2、在组长的组织下进行讨论、交流。(约5分钟)

  3、小组分任务展示。(约25分钟)

  4、达标检测。(约5分钟)

  5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么

  (二)小组合作交流,探究新知

  1、观察下图,回答问题:(五组完成)

  大象距原点多远两只小狗分别距原点多远

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。

  2、做一做:

  (1)求下列各数的`绝对值:(四组完成)-1.5,0,-7,2

  (2)求下列各组数的绝对值:(一组完成)

  (1)4,-4;

  (2)0.8,-0.8;

  从上面的结果你发现了什么

  3、议一议:(八组完成)

  (1)|+2|=,1=|+8.2|=;5

  (2)|-3|=|-0.2|=|-8|=

  (3)|0|=;

  你能从中发现什么规律

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1

  (2)求出(1)中各数的绝对值,并比较它们的大小

  (3)你发现了什么

  2、比较下列每组数的大小。

七年级数学教案15

  教学目标

  1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

  2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:认识一些基本的几何体,并能描述这些几何体的特征

  教学难点:描述几何体的特征,对几何体进行分类。

  教学过程:

  一、设疑自探

  创设情景,导入新课

  在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

  学生设疑

  让学生自己先思考再提问

  教师整理并出示自探题目

  ①生活常见的几何体有那些?

  ②这些几何体有什么特征

  ③圆柱体与棱柱体有什么的.相同之处和不同之处

  ④圆柱体与圆锥体有什么的相同之处和不同之处

  ⑤棱柱的分类

  ⑥几何体的分类

  学生自探(并有简明的自学方法指导)

  举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

  说说它们的区别

  二.解疑合探

  针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

  2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

  活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

  三.质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四.运用拓展:

  引导学生自编习题。

  请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

  教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  课堂小结

  作业布置

  五、教后反思

【七年级数学教案】相关文章:

七年级上册数学教案优秀02-25

直线、射线、线段七年级数学教案12-05

小学数学教案【精选】07-06

优秀的数学教案07-08

趣味数学教案07-13

小学数学教案(精选)07-20

苏教版数学教案02-23

小学数学教案03-04

小学数学教案[精选]04-16