圆数学教案
作为一位无私奉献的人民教师,总归要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的圆数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
圆数学教案1
单元分析:
一、教材分析
1.本单元教材是在学生已经认识了圆,并学习了长方形、正方形等平面图形以及它们的周长、面积计算的基础上学习圆的知识,为以后学习圆柱、圆锥等知识打下基础。
2.本单元的主要内容是:圆的认识、圆的周长和圆的面积。
二、单元教学目标
1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同圆中直径与半径的关系;会用圆规画圆。
2.理解圆周率的意义,掌握圆周率的近似值;掌握圆的周长与面积的计算公式,并能正确计算。
3.在探索圆的周长与面积的计算公式的过程中,体会“化曲为直”、“化圆为方”的思想。
三、教学重点、难点
圆的特征和圆面积的推导过程,以及圆周长和面积的计算。
四、课时安排:6课时
圆的认识
教学目标
1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一圆中直径与半径的关系。
2.初步学会用圆规画圆,培养学生的作图能力。
3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题。
教学重点
圆的各部分名称及其各部分之间的关系。
教学难点
掌握圆的正确画法。
课前准备
圆形纸、圆规、直尺、三角板、圆形实物。
课时安排: 1课时
授课人
授课时间
教学过程
一、创设情境
谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?
出示情境图,学生观察。
谈话:这些轮子都是圆形的。根据这些信息,能提出什么数学问题?
轮子为什么设计成圆形的呢?……
二、探索新知
1.谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。下面,请大家画一个圆,研究一下。
谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?
学生交流。
学生可能会出现不同的方法;
①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。
②用圆形的瓶子盖可以画出一个圆。
谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?
学生阐述自己的想法,师生予以评价。
谈话:怎样才能画出一个规范的圆呢?给大家介绍一种画圆的仪器——圆规。请大家用圆规画圆试一试。谁来说说你是怎样画的?
学生交流:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚旋转一周。
谈话:有针尖的一脚固定的这一点,叫做圆心,用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书在黑板上)
请同学们打开书,看自主练习第2题:找出下面圆的直径和半径。(生答)
2.谈话:直径和半径是圆中不同的.线段,它们之间有什么关系呢?请同学们小组合作研究一下试试?
谈话:哪个小组说一说你们是怎研究的?有什么发现?
学生可能会出现下列情况:
①通过对折,发现圆有无数条直径。
②通过画一画,我发现圆有无数条半径。
③通过测量发现同一个圆里所有的直径都相等,所有的半径都相等。
④通过对折或测量发现这个圆中,直径是半径的两倍,半径是直径的一半。用字母可以表示为:r=1÷2d; d=2r。
3.谈话:谁能用今天学习的内容解释轮子为什么设计成圆形的?
三、巩固应用
1、自主练习第2题(多媒体出示)。
2、自主练习第3题(多媒体出示,学生自主做在书上,集体交流)。通过练习,进一步巩固半径直径的关系。
直径(D)
半径(R)
圆形桌面
90 CM
压路机前轮
0.62M
自行车轮
7.1DM
钟面
120MM
四、全课小结
谈话:这节课你有什么收获?你对自己的表现满意吗?
板书设计
圆的认识
圆心o,画圆时固定的一点,确定圆的位置。
半径r,从圆心到圆上任意一点的线段,半径决定圆的大小,同圆或等圆中有无数条半径,半径都相等。
圆直径d,通过圆心两端都在圆上的线段,同圆或等圆中有无数条直径,直径都相等。
关系:同圆或等圆中,半径是直径的二分之一,直径是半径的2倍。
对称性:圆是轴对称图形,直径所在的直线是圆的对称轴。
圆是曲线图形。
课后札记:
圆数学教案2
教学目标:
1、初步认识圆,了解圆的基本特征。知道什么是圆心、半径和直径,以及半径和直径之间的关系。
2、通过观察、操作、交流等活动,发展学生的空间观念,培养学生的思维能力。
3、感受圆之美,渗透数学文化。
教学重点:知道什么是圆心、半径和直径,以及半径和直径之间的关系。
教学难点:了解圆心、半径和直径,以及半径和直径之间的关系。
教具、学具准备:圆形物体、简易的画圆工具、圆规、直尺
教学过程:
一、引入新课
1、播放动画:平静的水面丢进小石子,泛起圆形的波纹。
师:生活中,你还在哪儿见过圆?(生举例)
出示:在一切平面图形中,圆最美。(图片欣赏)
2、了解圆与其他平面图形的区别,感知圆的特征,并揭示课题。
【通过感知生活中的圆,唤起学生相关的生活经验,体会到圆在生活中无处不在,感知圆形的美。通过观察圆与其他平面图形的区别,初步感知圆的特征,激发学生主动学习的欲望。】
二、新知学习
(一)画圆
1、尝试画圆,初步感知圆的`特征。
学生可能出现的画圆方法:
(1)用圆形物体描圆;
(2)利用老师制作的画圆工具画圆;
(3)用圆规画圆。
2.学生第二次用圆规画圆,深化认识。
(集体学习,同伴互助学习用)
板书:定点、定长、旋转一周。
师:你们有没有见过体育老师在操场上是怎么画圆的?(课件展示)
老师也可以仿照体育老师的方法,利用绳子和粉笔在黑板上画圆,你有什么要提醒老师的?
【通过学生自主画圆与教师的示范画圆,使学生的思维形成梯度,有利于学生对圆的本质的理解,并为下面进一步认识圆的特征做好铺垫。】
(二)认识圆心、半径和直径
1、教师用圆规画一个圆。
2、揭示圆心及半径,进而介绍各自的字母表示。
3、思考:半径有多少条?长度怎样?你是怎么发现的?
4、介绍墨子的发现
早在二千多年前,我国古代思想家墨子在他的著作《墨经》中这样写道:“圆,一中同长也。”(媒体出示)
你是如何理解所谓“一中”和“同长”的?
5、由“同长”引出直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
【通过介绍中国古代思想家的研究成果,揭示出圆各部分的名称及基本特征,同时让学生感受圆所包含的文化内涵。】
三、巩固练习
1、判断
(1)画圆时,圆规两脚间的距离是半径的长度。()
(2)半径3厘米的圆比直径6厘米的圆小。()
(3)同一个圆中,所有的直径都相等。()
(4)两条半径一定能组成一条直径。()
(5)判断下面两幅图,那幅图在画圆时体现出定点的作用,那幅图体现出定长的作用。(出示图片:奥运五环和射击靶)
2、出示古代的阴阳太极图
想知道这幅图是怎么构成的吗?原来它是用一个大圆和两个同样大的小圆组合而成的。现在,如果告诉你小圆的半径是5厘米,你又能知道什么呢?
【通过练习,巩固所学的知识,体现数学学习的价值。】
课堂小结。
拓展提升,在比较中深化认识。(机动)
1、体会正多边形与圆之间的内在联系
【比较圆与正多边形的关系,体会曲线图形与直线图形的内在联系,提高学生的认知水平。】
圆数学教案3
教学内容:
练习十七3———8题
教学目标:
知识目标:使学生在观察、操作、画图等活动中感受并发现圆的有关特征
能力目标:
在活动积累认识图形的经验,增强空间观念,发展数学思考。
情感目标:
提高数学学习的兴趣和学好数学的自信心
教学重点:
在观察、操作、画图等活动中感受并发现圆的有关特征
教学流程:
复习你知道圆的哪些知识?先回顾,然后完成下面的练习。
1、(1)在同一个圆内,所有的'半径都,所有的直径,直径是半径的,半径是直径的。
(2)把圆规两脚分开,使两脚的距离是2.5厘米,这样画出圆的半径是,直径是。
(3)连接和任意一点的线段叫圆的半径,用字母表示。它的长度就是画圆时的距离
(4)通过圆心,并且两端都在圆上的线段叫做,用字母表示。
2、作图与应用(1)r=2cm(2)d=8cm
3、完成练习十七第3题
4、完成练习十七第4题如果在正方形内画一个最大的圆,要怎样想?半径多少?
你能画一画吗?想一想圆的大小与什么有关?
5、完成练习十七第5题先判断哪个圆大哪个圆小?说一说你是怎样判断的?
6、完成练习十七第6题要求学生在(2,2)的位置画一个半径2厘米的圆。
7、完成练习十七第7题引导学生发现,在同一个圆里的所有线段中,直径最长。
圆数学教案4
第一课时:
圆的认识
教学内容:
科书第85~87页例1、例2,以及随后的“练一练”,练习十三第1~3题。
教学目标:
1.使学生在观察、画图、讨论等活动中感受并发现圆的基本特征,知道圆的圆心、半径和直径的含义;会用圆规画指定大小的圆;能用圆的知识解释一些日常生活现象。
2.使学生在活动中进一步积累认识图形的经验,增强空间观念,发展数学思考。
3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学过程:
一、引入新课
1.游戏:摸图形。
出示装有长方形、正方形、平行四边形、三角形、梯形和圆形纸片的袋子。
提出要求:同学们喜欢做游戏吗?老师给大家带来了一个袋子,里面装有很多平面图形。请一位同学把它们依次摸出来,其他同学一起说出图形的名称。
2.出示学生摸出的圆形纸片,指出:这是一个圆形纸片(板书:圆)。圆与我们以前学过的三角形、长方形等多边形相比有什么不同?它有哪些有趣的特征?这节课我们一起来研究这些问题。
板书:圆的认识。
二、教学例l
1.提问:你在生活中见过圆吗?举例说一说。
学生交流时,注意以下几点:第一,如果学生说的圆形物体就在身边,可以让他们指一指物体上的圆;第二,课前要准备一些典型的、大小不同的圆形物体或图片,当学生说到这些物体时,可及时呈现出来;第三,如果学生把球当成了圆,可以通过比较让他们知道球是立体图形,而圆是平面图形。
2.追问:说了这么多的圆,看了这么多的圆,大家想不想动手画一个圆呢?先动脑筋想一想,再用手头的工具动手画一画。
3.学生独立画圆。组织交流时,可结合教材所列的画法,有针对性地介绍一些典型画法。如果有学生想到了用圆规画圆,不要急于让他们说出具体的操作过程。
4.启发思考:圆和以前学过的三角形、长方形等多边形相比有什么不同?
在交流中相机明确:以前学过的长方形、正方形、三角形、平行四边形和梯形都是由线段围成的,而圆是由曲线围成的图形。
5.介绍圆规:刚才,我们用不同的方法画出了圆,真可谓“八仙过海,各显神通”。但通常我们会借助一个专门工具来画圆,这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚上装着用来画圆的笔,两只脚可随意叉开。
6.提出要求:你能试着用圆规画出一个圆吗?
进一步要求:边画边想,用圆规画圆一般分为哪几个步骤?需要注意些什么?
7.先让学生说说自己画圆的过程,教师在黑板上示范画圆,适时板书:两脚叉开。固定针尖。旋转成圆。
引导反思:你认为画圆时应注意些什么?
根据学生的回答,小结:有针尖的一只脚要固定在一点;旋转圆规时两脚间的距离必须保持不变。
8.组织练习:请大家把圆规两脚之间的距离统一确定为4厘米,按上述步骤再画一个圆,在小组里比一比,谁画得好。
9.介绍圆心、半径和直径。
结合介绍在图中画出相应的线段,标出相应的字母,提醒学生注意每个字母的写法。再让学生结合自己画圆的过程,说说对这些概念的理解,并在自己所画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。
(1)圆的大小是由什么决定的?
学生回答后,教师总结:画圆时圆的大小是由圆规两脚间的距离决定的。
(2)指名在黑板上的圆中表示出两脚的距离。
教师总结并板书:圆规两脚间的距离就是连接圆心和圆上任意一点的线段,叫作半径,用字母r表示。
(3)教师画出直径,说说这条线段有什么特点。
学生回答后,教师总结并板书:通过圆心并且两端都在圆上的线段,叫作直径,用字母d表示。
10.探究圆的特征。
(1)出示例2的问题。
(2)学生在小组里操作、讨论,形成结论。教师巡视。
(3)小组汇报,教师板书
①在同一个圆里,半径有无数条,直径有无数条。
②在同一个圆里,半径的`长度都相等,直径的长度都相等。
③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。
④圆是轴对称图形,有无数条对称轴。
(4)说说你是怎么得出每一条结论的,指名验证。
三、巩固练习,加深理解
1.完成“练一练”第1题。
(l)出示三个图形。
(2)指名说说各圆的半径和直径。
(3)评议:为什么其他的线段不是半径或直径?
2.完成“练~练’’第2题。
(1)学生独立画圆,并标出各部分的名称。
(2)指名说说画圆的过程。
3.完成练习十三第1题。
(l)学生独立填表。
(2)指名说说思考过程。
4.完成练习十三第5题。
(l)学生独立操作后,在小组里交流。
(2)集体汇报交流。
5.作业:练习十三第2、3、6题。
四、课堂小结
师:这节课我们学习了什么?你有哪些收获?
学生发言,教师点评。
板书设计:
圆的认识
①在同一个圆里,半径有无数条,直径有无数条。
②在同一个圆里,半径的长度都相等,直径的长度都相等。
③同一个圆中直径的长度是半径的2倍,半径的长度是直径的一半。
④圆是轴对称图形,有无数条对称轴。
圆数学教案5
第一单元圆的周长和面积
一.本单元的基础知识
本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。
二.本单元的教学内容
P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。
三.本单元的`教学目标
1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。
2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。
四.本单元重难点和关键
1.教学重点:求圆的周长与面积。
2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。
3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。
五.本单元的教学课时
13课时
圆数学教案6
教学目标:
(1)巩固正多边形的有关概念、性质和定理;
(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;
(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识。
教学重点:
综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归。
教学难点:
综合运用知识证题。
教学活动设计:
(一)知识回顾
1。什么叫做正多边形?
2。什么是正多边形的中心、半径、边心距、中心角?
3。正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)
4。正n边形的每个中心角都等于。
5。正多边形的有关的定理。
(二)例题研究:
例1、求证:各角相等的圆外切五边形是正五边形。
已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’。
求证:五边形ABCDE是正五边形。
分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可。
教师引导学生分析,学生动手证明。
证法1:连结OA、OB、OC,
∵五边形ABCDE外切于⊙O。
∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,
又∵∠BAE=∠ABC=∠BCD。
∴∠BAO=∠OCB。
又∵OB=OB
∴△ABO≌△CBO,∴AB=BC,同理BC=CD=DE=EA。
∴五边形ABCDE是正五边形。
证法2:作⊙O的半径OA’、OB’、OC’,则
OA’⊥AB,OB’⊥BC、OC’⊥CD。
∠B=∠C∠1=∠2=。
同理===,
即切点A’、B’、C’、D’、E’是⊙O的5等分点。所以五边形ABCDE是正五边形。
反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点。由同样的方法还可以证明“各角相等的圆外切n边形是正边形”。
此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。
拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA。
求证:五边形ABCDE是正五边形。(证明略)
分小组进行证明竞赛,并归纳学生的证明方法。
拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N。
求证:五边形ABCDE是正五边形。(证明略)
学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬。
例2、已知:正六边形ABCDEF。
求作:正六边形ABCDEF的外接圆和内切圆。
作法:1过A、B、C三点作⊙O。⊙O就是所求作的正六边形的外接圆。
2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆。
用同样的方法,我们可以作正n边形的外接圆与内切圆。
练习:P161
1、求证:各边相等的圆内接多边形是正多边形。
2、(口答)下列命题是真命题吗?如果不是,举出一个反例。
(1)各边相等的圆外切多边形是正多边形;
(2)各角相等的圆内接多边形是正多边形。
3、已知:正方形ABCD。求作:正方形ABCD的外接圆与内切圆。
(三)小结
知识:复习了正多边形的定义、概念、性质和判定方法。
能力与方法:重点复习了正多边形的判定。正多边形的外接圆与内切圆的'画法。
(四)作业
教材P172习题4、5;另A层学生:P174B组3、4。
探究活动
折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形。
(提示:①对折;②再折使A、B、C分别与O点重合即可)
(2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形。
(提示:可以。主要应用把一个直角三等分的原理。参考图形如下:
①对折成小正方形ABCD;
②对折小正方形ABCD的中线;
③对折使点B在小正方形ABCD的中线上(即B’);
④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形。)
探究问题:
(安徽省20xx)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形;
乙同学:我发现边数是6时,它也不一定是正多边形。如图一,△ABC是正三角形,形,==,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;
丙同学:我能证明,边数是5时,它是正多边形。我想,边数是7时,它可能也是正多边形。
(1)请你说明乙同学构造的六边形各内角相等。
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证)。
(3)根据以上探索过程,提出你的猜想(不必证明)。
(1)[说明]
(2)[证明]
(3)[猜想]
解:(1)由图知∠AFC对。因为=,而∠DAF对的=+=+=。所以∠AFC=∠DAF。
同理可证,其余各角都等于∠AFC。所以,图1中六边形各内角相。
(2)因为∠A对,∠B对,又因为∠A=∠B,所以=。所以=。
同理======。所以七边形ABCDEFG是正七边形。
猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形。
圆数学教案7
教学目标
结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
重点
圆的特征的进一步体会
难点
用圆的知识来解释生活中的简单现象。(找到解决问题的突破点:研究各图形中心点的运动轨迹)
教具
纸片(圆形,方形,椭圆形)
电化教具
动画课件
教学过程:
一、 知识回顾
1、用你自己的话说说什么样的图形是圆?
2、按下列要求画圆:(在平面上固定一个点A)
(1)以点A为圆心画一个圆;
(2)画一个圆,使所画的圆经过这个点A;
(3)画一个圆,使A点为圆心,半径为2厘米。
3、举出生活中看到圆的例子。(从车轮是圆形的引入新课)
二、新课探究
1、问题:车轮为什么做成圆形的?
2、小组讨论探究策略(引导学生想做成圆形有什么好处,如果做成正方形,三角形,椭圆形又会是什么情况?找到解决问题的关键点是研究几种图形中心点的运动轨迹的不同)
3、学生动手探究(用准备好的纸片试一试),把各种图形的中心点的运动轨迹想办法描出来。
4、小组内讨论交流,准备好发言,在全班交流
由于圆上的各点到中心点(圆心)的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样坐在车上的人或放在车内的物就很平稳;而正方形、椭圆形等由于上面的点到中心点的距离不一样,这样在运动中,中心点运动的线路就不是一条直线,如果人坐在这样的车上会感觉到颠簸。
三、观看动画,进一步体会车轮为什么做成圆形的`。
本质:圆上的各点到中心点的距离都相等,而其它图形不具有这个特点。
四、拓展应用
要重视让学生动手写的练习。可先让一些学生说,其他人补充。
五、课后延伸
用心发现生活中的圆,尝试用学过的知识解释。
进一步体会圆的特征
要使学生明白回答这样一个问题应从哪方面入手,最基本的一个方法就是探究车轮做成圆会是什么情况,做成其它形状又是什么情况,这两种情况进行比较就能得出结论了。
观看动画,进一步加深印象。
学以致用,体验成功。
板书设计
圆的认识(一)
车轮为什么做成圆形的?
圆 形:各点到中心点距离相等-------中心点运动成一条直线---------平稳
正方形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳
椭圆形:各点到中心点距离不相等-------中心点运动不是一条直线---------不平稳
教学后记
结合具体的情境,体验数学与日常生活密切相关,能用圆的知识
来解释生活中的简单现象。学生掌握得较好,能体会和解释这些与圆有关的现象。
圆数学教案8
教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:正确掌握圆面积的计算公式。
教学难点:圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:这个圆形的中心就是喷头所在的地方。
师:请大家说说这个圆形的`面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?
板书:正方形的边长=圆的半径r
正方形的面积=r2
2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?
3、教学例7
⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天这节课你学到了什么?
2、圆面积的计算方法,我们是怎样探索出来的?
3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。
六、布置作业
1.第107页的第1-3题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
七、板书设计:
圆的面积
S=r2×3倍多
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
教学反思
本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。
圆数学教案9
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.
(4)有关圆的内容非常丰富,有很多有价值的`问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.
篇二:圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学重点:
(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
((3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
圆数学教案10
学习目标:
【知识与技能】
理解圆的定义及弧、弦、半圆、直径等相关概念。
【过程与方法】
经历动手实践、观察思考、分析概括的学习过程,养成自主探究、合作交流的良好习惯。
【情感、态度与价值观】
利用我国悠久的数学研究历史,对学生进行爱国主义熏陶;通过圆的完美性,让学生进行美的体验。
【重点】
与圆有关的概念
【难点】
圆的概念的理解
学习过程:
一、自主学习
(一)复习巩固
1、举出生活中的圆的例子
2、圆既是 对称图形,
又是 对称图形。
3、圆的周长公式C= 圆的面积公式S=
(二)自主探究
1、圆的.定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转 ,另一个端点所形成的图形叫做 .固定的端点O叫做 ,线段OA叫做 .以点O为圆心的圆,记作 ,读作
决定圆的位置, 决定圆的大小。
圆的定义○2:到 的距离等于 的点的集合。
2、弦:连接圆上任意两点的 叫做弦
直径:经过圆心的 叫做直径
3、弧: 任意两点间的部分叫做圆弧,简称弧
半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆
优弧: 半圆的弧叫做优弧。用 个点表示,如图中 叫做优弧
劣弧: 半圆的弧叫做劣弧。用 个点表示,如图中 叫做劣弧
等圆:能够 的两个圆叫做等圆
等弧:能够 的弧叫做等弧
圆数学教案11
【教学内容】
圆的面积
【教学目标】
知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。
过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
情感、态度与价值观:培养学生的空间观念。
【教学重难点】
重点:
1、理解圆的面积公式的推导过程。
2、掌握圆的面积的计算公式,能够正确地计算圆的面积
难点:理解圆的面积公式的推导过程。
【导学过程】
【知识回顾】
1、还记得这些平面图形的面积计算公式吗?
2、平行四边形的面积公式推导过程还记得吗?
我们是通过剪拼的方法把它转化成长方形的。
【新知探究】
(一)、定义:
1、请你摸一摸哪里是圆的面积?
2、师:圆所占平面的大小就是圆的`面积。
引导学生操作:
师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)
生:(圆的大小由直径或半径决定。)沿直径或半径剪。
师剪第一刀,再问:第二刀怎么剪?
师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。
将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。
师:随着等分份数的不断增加,你有什么发现吗?
A:随着等分份数的不断增加,曲线越来越直。
B:随着等分份数的不断增加,每一小份越来越接近三角形。
(三)拼摆推导面积公式。
1、拼摆
师:把圆转化成什么图形?我们来试一试。
学生操作,演示学生的作品。
师:转化后的图形面积与圆的面积有什么关系?面积不变。
课件出示:把圆等分成不同等份时的图形的趋势。
2、推导面积公式
小组讨论:长方形各部份相当于圆的什么?
请你推导圆的面积公式。
学生汇报:(2~3名学生说,老师说,全班说推导过程)
(4)学生齐读圆面积公式(S=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)
【设计意图】在这个环节教师成为学生的学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。
【知识梳理】
本节课学习了什么知识?
【随堂练习】
1、根据下面所给的条件,求圆的面积。
(1)、半径2分米
(2)、直径10厘米
2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?
3、判断对错:
(1)圆的半径越大,圆所占的面积也越大。()
(2)圆的半径扩大3倍,它的面积扩大6倍。()
圆数学教案12
圆的复习课教案
—、学习内容
有关点、直线、圆和圆的位置关系的复习。
二、学习目标
1、了解点和圆、直线和圆、圆和圆的几种位置关系。
2、进一步理解各种位置关系中,d与R、r数量关系。
3、训练探究能力、识图能力、推理判断能力。
4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。
三、学习重点切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。四、学习难点各知识点之间的联系及灵活应用。
五、学习活动概要问题情景引入――基础知识重温――综合知识应用
六、学习过程
(一)、图片引入,生活中的圆。
(二)、点与圆的位置关系
1、问题引入:点和圆的位置关系有哪几种?怎样判定。复习点和圆的位置关系,点到圆心的距离d与半径r的数量关系与三种位置关系的联系。
2、练习反馈如图,已知矩形ABCD的边AB=3厘米,AD=4厘米。
(1)以点A为圆心、4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(2)若以A点为圆心作圆A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是什么?
(3)、直线和圆的位置关系1、知识回顾:直线和圆的三种位置关系及交点,三种位置关系与圆心到直线的距离d与半径r的数量关系间的联系。
3、分组活动:全班分为三组,各代表相交、相切、相离。
当出示的问题是圆与直线的位置关系是哪组代表的,那组的同学起立,看那组同学反应最快。已知⊙O的半径是5,根据下列条件,判断⊙O与直线L的位置关系。
(1)圆心O到直线L的距离是4
(2)圆心O到直线L的垂线段的长度是5
(3)圆心O到直线L的距离是6
(4)圆心O到直线L上的一点A的距离是4
(5)(圆心O到直线L上的一点B的距离是5
(6)圆心O到直线L上的一点C的距离是6
4、要点知识重温:圆的切线出示图形,同学们重温切线的有关性质及判定。
5、知识应用
1、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线。
(1)、在以点O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD是圆的线。
(2)圆与圆的位置关系1、生活中处处有数学。
列举反应圆和圆的`位置关系的实例,以投篮为例。
2、知识回顾:1圆和圆的五种位置关系2)两圆外切、内切时,圆心距d与半径R、r的位置关系。
3、抢答1)两圆圆心距为4㎝,两圆半径分别是1㎝、3㎝,则两圆位置关系是———— 2)两圆外切,半径分别是1㎝、3㎝,则圆心距为―― 3)两圆半径分别是1㎝、3㎝,圆心距是2㎝,则两圆位置关系是―― 4)两圆相切,半径分别是3㎝、1㎝,则圆心距是―― 5)两圆内切,圆心距为4㎝,一圆半径是5㎝,则另一圆的半径是―― 4、活动与探究已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径都是R,求⊙O3的半径。 。
3。求圆的认识教案一篇
《圆的认识》教案设计教学目的:
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
教学重、难点:掌握圆各部分的名称及圆的特征。圆的画法的掌握。
教具准备:多媒体课件、圆规、直尺等学具准备:各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等教学主要过程一结合实际、谈话引入新课。
谈话引入:今天非常高兴能和六(五)班同学一起来学习、研究一个数学问题。
我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?(生举例师强调——指物品的表面)师:看来大家平时非常留心观察。
课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。
回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(圆是没有棱角的,边是弯的;圆的边是一条曲线。)师:同学们观察得真仔细。
圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。
(板书课题)二、引导探究新知识
1、导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。
最后看看谁的收获多。(1分钟)
2、学生动手操作,讨论交流。
几分钟后分别从圆心、半径、直径各方面纷纷展示汇报。(5分钟)师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征(8分钟)谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?结合学生交流、汇报探究结果,及时引导梳理。
主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
预设板书:圆的认识——平面曲线图形圆心(o)圆中心一点确定圆的位置半径(r):线段连接圆心到圆上任意一点确定圆的大小长度都相等〈在同一个圆里〉直径(d)线段通过圆心两端都在圆上长度都相等〈在同一个圆里〉半径和直径的关系d=2r r=d/2 4、学习画圆(5分钟)你是如何画圆的?课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。
——揭示圆大小位置的确定学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作三应用拓展1、基本练习(4分钟)〈1〉投影出示找出下列圆的半径直径〈2〉半径直径的相关计算〈3〉概念的判断和识别2、应用练习。(10分钟)〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示〈2〉你能用今天学习的圆的知识去解释一些生活现象吗(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?平静的湖面扔一小石子,会有什么变化?为什么?月饼为一般都做成圆形的,为什么?)看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。
有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)先请同学们猜测一个字。
(很多学生都说可以猜“样”)再学生猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)四总结全课(3分钟)1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。
(句号是圆形的)延伸:1、用圆作画2、谈谈我眼中的圆。
圆数学教案13
教学目标:
1、进一步认识圆,理解掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长和面积。
2、进一步认识轴对称图形,知道轴对称图形的含义,并能正确找出轴对称图形的对称轴。
教学过程:一、送给学生一句鼓励的话:你的进步是老师最大的快乐!祝同学们成功!(让学生齐读,以调动课堂气氛。)
二、导入课题:师:今天,我们上一节复习课,老师希望通过我们的整理和复习,同学们一定会有更大的进步,祝同学们在这次月考中取得优异成绩!同学们有信心吗?(生:有!)下面我们就对第四单元“圆”进行整理和复习。
三、出示学习目标:
1、进一步认识圆,理解掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长和面积。
2、进一步认识轴对称图形,知道轴对称图形的含义,并能正确找出轴对称图形的对称轴。
(指名读学习目标,再让学生熟悉一遍。)
四、1.出示复习指导:复习第85页-102页的内容,你认为应该掌握哪些公式及概念性知识?用你喜欢的方式总结出来?可以在练习本上写?也可以互相提问或同桌讨论。(指名读“复习指导”,4分钟)
2.学生汇报:⑴什么叫做圆的半径、直径?半径和直径的关系?
⑵什么叫做圆的周长?用公式怎么表示?
⑶什么叫做圆周率?用字母怎样表示?
⑷圆的周长总是直径的多少倍?
⑸什么叫做圆的面积?圆的面积公式是怎样推导出来的?怎样表示?
⑹什么叫轴对称图形?什么叫对称轴?
⑺在我们所学的平面图形当中,哪些是轴对称图形?各有几条对称轴?
⑻如何画圆?什么决定圆的位置?什么决定圆的大小?
⑼圆环的面积怎样求?
(学生提出问题同时找其他学生做答)
师:同学们对本章应掌握的重点知识找得非常准确,而且很全面。下面老师还有一个问题(电脑出示):半圆的周长和面积应当如何求?(让学生回答)
师:同学们对本单元应掌握的重点知识掌握很好,下面请让我们一起走进“练功房”。
五、出示:走进练功房。(老师相信你!一定是最棒的!)
㈠.认真思考巧填空.
1、圆的直径是4厘米,半径是()厘米,周长是()厘米,面积是()平方厘米(学生回答,电脑出示答案)答案:2;12.56;12.56
。
2、大圆的半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。(学生回答,电脑出示答案)答案:2;4
33、()和()的比值叫圆周率,用字母()表示,它的.近似值是()。(学生回答,电脑出示答案)
答案:圆的周长;直径;π;3.14
4、()决定圆的位置,()决定圆的大小。(学生回答,电脑出示答案)答案:圆心;半径
5、等边三角形有()条对称轴。圆有()条对称轴。
(学生回答,电脑出示答案)答案:3;无数
㈡.脑筋转转来判断。
1、圆的任意一条直径所在的直线都是圆的对称轴,所以圆有无数条对称轴。()
2、半径是2厘米的圆的周长和面积相等。()
3、大小不同的两个圆,大圆周长与直径的比值一定大于小圆周长与直径的比值。()
4、周长相等的两个圆,它们的面积也一定相等。()
5、通过圆心的线段叫做圆的直径。()
(学生回答,电脑出示答案)答案:√;×;×;√;×
㈢.精挑细选。
1、圆周率π的值()3.14。
A大于B小于C等于
2、一个半圆的周长是()。
AπrB2πrCπr+rDπr+d
3、下面图形()不是轴对称图形。
A长方形B等腰三角形C任意梯形D半圆形
4、直径和半径的关系是()
A直径是两个半径B在同一个圆里,直径等于半径的2倍C半径是直径的一半
(学生回答,电脑出示答案)答案:A;D;C;B
㈣.智力比拼解一解。
1、一辆汽车轮胎外直径是0.8米,如果车轮每分钟转动500周,这辆汽车每小时行驶多少米?
2、一个圆环的外圆半径是5厘米,内圆的半径是4厘米,求圆环的面积。
(指名板演,其他同学做在练习本上,然后集体订正讲解)
1、3.14×0.8×500×60=75360(米)
2、3.14×52-3.14×42=28.16(平方厘米)
六、畅所欲言谈收获。(学生回答)
师:同学们还有哪些不懂的问题可以提出来,我们大家共同讨论。
七、课堂小测。(做学案)
八、出示附加题。(学案完成后,有余力的学生完成“快乐数学”)
1、一种童车前轮直径是0.28米,后轮直径是0.35米,前轮行驶20圈的路程,后轮行驶多少圈?
2、在一个周长为18.84厘米的圆内画一个最大的正方形,这个正方形的面积是多少平方厘米?
圆数学教案14
活动目标
1、观察由“长条”变“圆圈”、由“小”变“大”的过程,感知圆及大小的含义。
2、体验游戏的快乐。
活动准备
彩色塑料打包带一根。
活动过程
1、教师故作神秘地说:
我有一根细细长长的东西,你们想看看吗?
2、出示包装带:
别看它细细长长、简简单单的.样子,它的本领可不小,它会变戏法呢!
请小朋友闭上眼睛,它要开始变了。
3、教师把打包带接成一个小圆圈,一、二、三!
睁开眼睛看一看,它变成什么?
气球太小了,我们一起来打气,好吗?
4、教师让“气球”一点点变大,带幼儿边做打气动作、边说:
气气气,变大喽!气气气,变大喽!……
5、当“气球”不能变大时,教师放开打包带的一端让它弹起,并说:啪——气球破掉了!
6、同上形式,反复游戏。
圆数学教案15
活动目标:
1、认识半圆和椭圆。
2、能从活动中体验圆与半圆、椭圆之间的异同,拼出自己感兴趣的物体。
3、培养幼儿对数学活动的兴趣。
活动准备:
1、圆,半圆,椭圆,数量若干(每种同类图形的大小,颜色有区别,如有红圆,绿圆,大圆小圆等)。
2、用几种图形拼成的花,动物、金鱼、熊猫等。
3、操作材料每人一份。
活动过程:
1、导入:有趣的.圆
师:小朋友,你们和圆形宝宝做过游戏吗?今天,老师把圆形宝宝带到了我们中二班,我们一起来看欢迎它吧?
师:圆形宝宝它会变魔术哦!你猜猜它会变成什么?
幼儿思考后回答。
教师出示圆形变魔术的图片。
小结:圆形宝宝好厉害呀,快给它鼓掌,圆形宝宝有更厉害的本领哦!
2、认识半圆。
(1)认识半圆,并与圆做比较。
老师:(出示圆)这是什么?圆宝宝又变魔术啦,小朋友们,我们现在一起来看看圆宝宝它变成了什么呢?
师:轻轻对折,一个圆形变成了两个(半圆)
师:小朋友,你知道哪些东西是半圆形的吗?
幼儿思考后回答。
教师出示半圆形的图片。
小结:圆形对折可以变成半圆形,小朋友,你们还想看圆形宝宝变魔术吗?
3、认识椭圆。
教师:小朋友们,刚刚圆宝宝变魔术把圆变成了半圆,现在呀,圆宝宝又要开始变魔术了,这次她会变成什么呢,请小朋友们的眼睛看好了哦,看看圆宝宝又变出了什么图形宝宝了呢。
教师拿出圆形球球,捏一捏。
师:谁知道这个图形叫什么?
学生说:这是椭圆。
唉,现在你们再看看,它和圆又有什么不一样可呢?
4、圆形、椭圆形、半圆形拼图
师幼一起在白板上拼图。
5、幼儿拼图
幼儿操作,自主拼图。
【圆数学教案】相关文章:
圆的周长数学教案07-11
大班数学教案球和圆的不同06-09
中班数学教案《会变的圆》反思12-31
五年级数学教案《圆的认识》04-04
圆的认识六年级数学教案04-15
圆的作文300字02-29
圆的作文300字3篇03-26
圆的作文400字3篇05-23
小学数学圆的面积教案优秀01-02
圆的作文300字四篇04-26