当前位置:壹学网>教案>数学教案>八年级数学下册教案

八年级数学下册教案

时间:2024-05-19 09:29:14 数学教案 我要投稿
  • 相关推荐

八年级数学下册教案

  作为一名人民教师,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?以下是小编为大家收集的八年级数学下册教案,仅供参考,希望能够帮助到大家。

八年级数学下册教案

八年级数学下册教案1

  一、目标要求

  1.理解掌握分式的四则混合运算的顺序。

  2.能正确熟练地进行分式的加、减、乘、除混合运算。

  二、重点难点

  重点:分式的加、减、乘、除混合运算的顺序。

  难点:分式的加、减、乘、除混合运算。

  分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。

  三、解题方法指导

  【例1】计算:(1)[++(+)]·;

  (2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的四则混合运算要注意运算顺序及括号的.关系。

  解:(1)原式=[++]·=[++]·=·==。

  (2)原式=·÷=··=y-x。

  【例2】计算:(1)(-+)·(a3-b3);

  (2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

  (2)原式=[-]·=-=-====。

  说明:分式的加、减、乘、除混合运算注意以下几点:

  (1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

  (2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

  (3)注意括号的“添”或“去”、“变大”与“变小”。

  (4)结果要化为最简分式。

  四、激活思维训练

  ▲知识点:求分式的值

  【例】已知x+=3,求下列各式的值:

八年级数学下册教案2

  教学目标

  1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

  2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

  3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

  教学重点和难点

  重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

  难点:不等式的解集的概念.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y与5的差大于零;

  (3)x与3的和小于6; (4)x的小于2.

  (3)当x取下列数值时,不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)两题用投影仪打在屏幕上)

  二、讲授新课

  1.引导学生运用对比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向学生提出如下问题:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

  (启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

  然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

  最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

  一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

  不等式一般有无限多个解.

  求不等式的解集的过程,叫做解不等式.

  3.启发学生如何在数轴上表示不等式的解集

  我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

  在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

  记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

  即用数轴上表示-2的点和它的.右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

  此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

  三、应用举例,变式练习

  例1 在数轴上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在数轴上表示1≤x≤4,如下图

  (5)在数轴上表示-2<x≤3,如下图

  (此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

  例2 用不等式表示下列数量关系,再用数轴表示出来:

  (1)x小于-1; (2)x不小于-1;

  (3)a是正数; (4)b是非负数.

  解:(1)x小于-1表示为x<-1;(用数轴表示略)

  (2)x不小于-1表示为x≥-1;(用数轴表示略)

  (3)a是正数表示为a>0;(用数轴表示略)

  (4)b是非负数表示为b≥0.(用数轴表示略)

  (以上各小题分别请四名学生生回答,教师板书,最后,请学生在笔记本上画数轴表示)

  例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

  练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

  (2)在数轴上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  ④0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

  (4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

  自然数解是什么?(*表示选作题)

  四、师生共同小结

  针对本节课所学内容,请学生回答以下问题:

  1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

  2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

  3.记号“≥”、“≤”各表示什么含义?

  4.在数轴上表示不等式解集时应注意什么?

  结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

  五、作业

  1.不等式x+3≤6的解集是什么?

  2.在数轴上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整数解.

  课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

  在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

八年级数学下册教案3

  一、课堂引入

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

  通过讨论得到矩形的判定方法.

  矩形判定方法1:对角钱相等的平行四边形是矩形.

  矩形判定方法2:有三个角是直角的四边形是矩形.

  (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

  二、例习题分析

  例1(补充)下列各句判定矩形的说法是否正确?为什么?

  (1)有一个角是直角的四边形是矩形;(×)

  (2)有四个角是直角的四边形是矩形;(√)

  (3)四个角都相等的四边形是矩形;(√)

  (4)对角线相等的四边形是矩形;(×)

  (5)对角线相等且互相垂直的四边形是矩形;(×)

  (6)对角线互相平分且相等的四边形是矩形;(√)

  (7)对角线相等,且有一个角是直角的四边形是矩形;(×)

  (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

  (9)两组对边分别平行,且对角线相等的四边形是矩形.(√)

  指出:

  (l)所给四边形添加的`条件不满足三个的肯定不是矩形;

  (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

  例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.

  分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

  解:∵ 四边形ABCD是平行四边形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(对角线相等的平行四边形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

  分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明

八年级数学下册教案4

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

  学生准备:复习平行四边形性质;学具:课本“探究”内容.

  学法解析

  1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

  2.知识线索:

  3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1.平行四边形定义是什么?如何表示?

  2.平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

  学生活动:分四人小组,拿出准备好的`学具探究.在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册教案5

  学习目标

  1、能说出约分的意义和步骤。

  2、能说出最简分式的意义。

  3、能说出分式的乘、除和乘方法则,并能用式子表示。

  4、能熟练地进行分式的乘除和乘方运算。

  5、会归纳总结整数指数幂的运算性质。

  6、能熟练地运用幂的运算性质进行计算。

  主体知识归纳

  1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2、约分的'步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。

  3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

  4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

  5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

  7、整数指数幂的运算性质可归纳如下

  (1)am·an=am+n(m、n都是整数);

  (2)(am)n=amn(m、n都是整数);

  (3)(ab)n=anbn(n是整数)、

  基础知识精讲

  1、正确理解分式约分的意义

  (1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。

  (2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

  2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

  (1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

  (2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

  3、进行分式的乘除运算时,应注意以下几点:

  (1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

  (2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

  (3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

  (4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

八年级数学下册教案6

  教学目标:

  学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

  教学重点:

  去分母法解可化为一元一次方程或一元二次方程的.分式方程、验根的方法、

  教学难点:

  解分式方程的一般步骤。

  教学过程:

  复习引入:

  1、什么叫分式方程?

  2、解分式方程的基本思想:

  分式方程整式方程

  3、解方程(学生板演)

  讲授新课:

  1、由上述学生的板演归纳出解分式方程的一般步骤

  (1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

  (2)解这个整式方程;

  (3)检验:将所得的解代入原方程的最简公分母,若最简公分母为0,则为增根,必须舍去;若不为0,则为原方程的根、

  2、范例讲解

  (学生尝试练习后,教师讲评)

  例1:解方程例2:解方程例3:解方程讲评时强调:

  1、怎样确定最简公分母?(先将各分母因式分解)

  2、解分式方程的步骤、

  巩固练习:P1471t,2t、

  课堂小结:解分式方程的一般步骤

  布置作业:见作业本。

八年级数学下册教案7

  教学目标:

  1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

  2、能利用它们的性质和判定进行推理和计算。

  3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

  教学重点、难点:

  重点:掌握特殊平行四边形性质与判定。

  难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

  教学过程:

  一、梳理知识:

  1.特殊平行四边形的性质.

  1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

  则BC=_____cm,△BOC的周长=_____cm

  2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

  则你能求出哪些线段的长度?

  3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

  则AB=_____cm,△BOC的周长=_______cm.

  小结:特殊平行四边形的性质(PPT呈现)

  2.特殊平行四边形的判定.

  要使平行四边形ABCD成为矩形,需要增加的条件________.

  要使平行四边形ABCD成为菱形,需要增加的条件________.

  要使矩形ABCD成为正方形,需要增加的条件________.

  要使菱形ABCD成为正方形,需要增加的条件________.

  小结:特殊平行四边形的判定(PPT呈现)

  二、深化提高:

  1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

  (1)求证:四边形ADCE为矩形;

  (2)当△ABC满足什么条件时,

  四边形ADCE是一个正方形?并给出证明.

  2.如图,矩形ABCD的对角线AC、BD交于点O,

  过点D作DP∥OC,过C点作CP∥DO,交DP于点P,

  试判断四边形CODP的形状.

  变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

  变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

  3.如图,在中,是边的中点,分别是及其延长线上的点,.

  (1)求证:.

  (2)请连结,试判断四边形的形状,并说明理由.

  (3)若四边形是菱形,判断的`形状。

  三、拓展提高

  1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、

  △BCE、△ACF,

  (1)四边形ADEF是什么四边形?并说明理由

  (2)当△ABC满足什么条件时,四边形ADEF是菱形?

  (3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.

  2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

  (1)求证:BE=CD;

  (2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,

  四、课堂小结

  五、作业

  1.如图,在正方形ABCD中,P为对角线BD上一点,

  PE⊥BC,垂足为E,PF⊥CD,垂足为F。

  求证:EF=AP

  2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,

  EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。

  3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的长。

八年级数学下册教案8

  一、教学目标

  1.类比分数的乘除运算探索分式的乘除运算法则。

  2.会进行简单分式的乘除运算。

  3.能解决一些与分式乘除运算有关的简单的实际问题。

  4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。数学生活化,学好数学,为幸福人生奠基。

  二、教材分析

  本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。

  三、学情分析

  八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。采用自主学习与合作学习相结合的学习方式,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想,逐步形成科学的数学价值观。

  四、重点难点

  教学重点:分式的乘除运算法则的理解与运用

  教学难点:分子、分母是多项式的分式的乘除法的运算

  五、教学过程

  (一)、创设情境,引入新课

  活动1:课前三分钟

  学生主持:请同学们根据我的描述猜一个人物?…

  生:鲁班

  学生主持:根据小草的.构造鲁班发明了锯子,鲁班运用了什么思想方法?

  生:类比

  这个小故事让我们认识到类比的重要性,前面我们类比分数研究了分式的基本性质。今天,我们就来类比分数的乘除研究5.2分式的乘除法。

  【设计意图】:让学生观察图片,不但可以体会到数学来源于生活,唤起学生对数学的热爱,激发学生学习的兴趣,为类比分数乘除探索分式乘除法则打下基础。

  (二)、合作学习,共探新知

  活动2:预习反馈,探索法则

  问题:口答:

  猜一猜

  师生共同归纳分式的乘除法法则,这里运用了什么数学思想?类比、转化数学思想

  【设计意图】让学生类通过类比→观察猜想→-归纳明晰→-得出结论。通过类比分数的乘除法则总结分式的乘除法法则。

  例题讲解,师生共同完成。

  注意:1.分式乘除法的实质是约分化简。

  2.结果是最简分式或整式。

  单项式 → 约分

  分子、分母 分类

  多项式 → 分解因式,约分

  开心练习:

  学生板演,小组代表在小白板上答题,其余同学在学案上完成。

  【设计意图】:运用“兵教兵”教学方式,让学生通过充分交流,自学已会的学生教还不会的学生教师尽可能少讲,确保学生的学习时间,提高课堂效率。

  活动3:活学活用

  炎热的夏天到了,如果能吃到甘甜的西瓜是多么惬意啊。你会买西瓜吗?让我们跟随咱班的两名同学看看她们是如何买西瓜的?

  播放学生买西瓜视频。

  问题:假如我们把西瓜都看成是球形,半径为R,并把西瓜瓤的密度看成是均匀的,西瓜皮厚都是xcm,,怎样买西瓜合算?

  先猜一猜,再算一算。

  链接几何画板:观察体积比的变化。

  变式:若西瓜的体积不变,是买皮厚的还是皮薄的西瓜?(几何画板演示)

  【设计意图】:将问题生活化,让同学们帮助解决问题,激发学生的求知欲,渗透数感和几何直观,巧妙的利用几何画板将问题动起来,生动直观。变式训练,让学生学会举一反三。

  (三)、跟踪训练,分层达标

  1.利用慧学云交互平台,进行选择题的跟踪训练。

  学生在规定的时间内答题,师现场根据答题结果统计,进行有针对性的讲解。学生充当小老师,教师予以补充。

  2.智力冲浪

  (1)下面的计算对吗?如果不对,应该怎样改正?

  (2)计算

  (4)计算

  【设计意图】:设置梯度训练题,学生砸蛋抢答问题,巩固本节课的知识点,检验学生的掌握程度。

  (四)、归纳小结,形成体系

  我们这节课都学习了哪些知识? 你有哪些收获呀?那我们用到哪些数学思想?由学生归纳本节课的内容,并相互补充。

  【设计意图】:构建知识思维导图,在知识树上进行梳理知识,生动直观。

  类比的学习方法是学习新知识的好方法,让我们细心观察,一起研究有趣的数学吧!

  (六)、布置作业,拓展延伸

  必做题:P116页1题 2题

  思维拓展:

八年级数学下册教案9

  一、教学目标

  (一)知识目标

  1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。

  2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。

  (二)能力目标

  1、培养学生学数学、用数学的意识和能力。

  2、能把已有的数学知识运用于勾股定理的探索过程。

  3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。 (三)情感目标

  1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。

  2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。

  二、教学重点

  通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。

  三、教学难点

  运用已掌握的相关数学知识探索勾股定理。

  四、教学过程

  (一)创设情境,引出问题

  想一想:

  小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?

  要解决这个问题,必须掌握这节课的内容。这节课我们要探讨的是直角三角形的三边有什么关系。

  - 1 -

  (二) 探索交流,得出新知

  探讨之前我们一起来回忆一下直角三角形的三边:

  如图,在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b

  问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢? (1)我们先来探讨等腰直角三角形的三边之间的关系。

  这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现,A

  C

  a

  B

  请同学们也来看一看、找一找。

  如图

  数学家毕达哥拉斯的发现:S A +SB =SC

  即:a 2+b2=c2

  也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。

  议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的平方? 如图

  分析: SA +SB =SC 是否成立?

  (1)正方形A 中含有 个小方格,即S A = 个单位面积。 (2)正方形B 中含有 个小方格,即S B = 个单位面积。 (3)由上可得:S A +SB = 个单位面积 问题:正方形C 的面积要如何求呢?与同伴进行交流。 方法一:

  “补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的`三角形 方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。 综上:

  我们得出:S A +SB =SC

  即:a +b=c

  2

  2

  2

  C

  - 2 -

  a

  B

  也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。

  概括:

  勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方

  数学语言描述:

  如图,在Rt △ABC 中,a 2+b2=c2

  (用多媒体简单介绍勾股定理的名称由来、中国古代的数学成就及勾股定理的“无字证明”) (三)应用新知,解决问题

  例1:求出下列直角三角形中未知边x 的长度 5

  注意:要根据图表找出未知边是斜边还是直角边,勾股定理要用对。

  从上面这两道例题,我们知道了在直角三角形中,任意已知两边,可以求第三边。 即勾股定理的变形公式: 如图,在Rt △ABC 中

  (1)若已知a ,b 则求c 的公式为:c =(2)若已知a ,c 则求b 的公式为:b =(3)若已知b ,c 则求a 的公式为:a =

  a +b c -a c -b

  22

  22

  2

  C

  a

  B

  2

  例2: 如图,在直角三角形ABC 中, ∠C=900, A

  (1) 已知: a=5, b=12, 求c;

  (2) 已知: b=8,c=10 , 求(3) 已知: a=

  3, c=2, 求 请同学们利用这节课学到的勾股定理及推论解决我们课前提出的问题:

  电视屏幕:

  解:在Rt △ABC 中,AB=46厘米,BC=58厘米

  由勾股定理得:AC=

  ?

  D

  A

  46AB

  2

  +BC

  2

  2

  =46+58

  2

  ≈74(厘米)

  ∴不同意小明的想法。

  - 3 -

  58厘米

  C

  (四)归纳总结

  (1)这节课你学到了什么知识?

  ①勾股定理:直角三角形两直角边的平方和等于斜边的平方。 ②在直角三角形中,任意已知两边,可以用勾股定理求第三边。 (2) 运用“勾股定理”应注意什么问题? ①要利用图形找到未知边所在的直角三角形; ②看清未知边是所在直角三角形的哪一边; ③勾股定理要用对。

  (五)练习巩固

  (1)、如图,受台风“麦莎”影响,一棵树在离地面8米处断裂, 树的顶部落在离树跟底部6米处,这棵树折断前有多高?

  (2)、学校有一块长方形的花圃,经常有同学为了少走几步而走捷径,于是在草坪上开辟了一条“新路”,他们这样走少走了______步.

  (每两步约为1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 则BC 的长为___________。 (六)作业

  1. A、B 、C 组:课本第69、70页,习题18.1 第1, 2,3题. 2. A、B :练习册33、34页

  3.A :课本第71页“阅读与思考”,了解勾股定理的多种证法。

八年级数学下册教案10

  教学目标

  (一)教学知识点

  1.用分式表示生活中的一些量.

  2.分式的基本性质及分式的有关运算法则.

  3.分式方程的概念及其解法.

  4.列分式方程,建立现实情境中的数学模型.

  (二)能力训练要求

  1.使学生有目的的梳理知识,形成这一章完整的知识体系.

  2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.

  3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.

  (三)情感与价值观要求

  使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的`快乐,成为一个乐于学习的人.

  ●教学重点

  1.分式的概念及其基本性质.

  2.分式的运算法则.

  3.分式方程的概念及其解法.

  4.分式方程的应用.

  ●教学难点

  1.分式的运算及分式方程的解法.

  2.分式方程的应用.

  ●教学方法

  讨论——交流法

  讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.

  ●教具准备

  投影片两张,实物投影仪

  第一张:问题串,(记作§3.5A)

  第二张:例题分析,(记作§3.5B)

  ●教学过程

  Ⅰ.提出问题,回顾本章的知识.

  出示投影片(§3.5A)

  问题串:

  1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.

  2.分式的性质及有关运算法则与分数有什么异同?

  3.如何解分式方程?它与解一元一次方程有何联系与区别?

  [师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.

  (教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)

  [生]实际生活中的一些量可以用分式表示,例如(用实物投影)

  某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?

  [生]我们组来回答此问题,此人晨练时平均每分钟行米.

  我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.

  [生]应为m.

  [师]同学们举的例子都很有特色,谁还能举.

  [生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?

  [生]原价为元.……

  [师]都是分式.分式有什么特点?和整式有何区别?

  [生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.

  [生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)

  某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?

  解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得

八年级数学下册教案11

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1、平移

  2、平移的性质:

  ⑴经过平移,对应点所连的线段平行且相等;

  ⑵对应线段平行且相等,对应角相等。

  ⑶平移不改变图形的大小和形状(只改变图形的位置)。

  (4)平移后的图形与原图形全等。

  3、简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;

  ⑵需要平移的方向;

  ⑶需要平移的距离或一个对应点的`位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;

  ⑵作出这些点平移后的对应点;

  ⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1、旋转

  2、旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3、简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的“基本图案”

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:

  ⑴平移变换;

  ⑵旋转变换;

  ⑶轴对称变换;

  ⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;

  ⑹轴对称变换与平移变换的组合。

八年级数学下册教案12

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的'推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

八年级数学下册教案13

  一、教学目标

  1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程.

  2.能够将一元二次方程化为一般形式并确定a,b,c的值.

  二、(重)难点预见

  重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程. 难点:能够将一元二次方程化为一般形式并确定a,b,c的值.

  三、学法指导

  结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务.

  四、教学过程

  开场白设计:

  一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用.什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获.

  1、忆一忆

  在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?

  学法指导:

  本节课学习一元二次方程先让学生回忆一元一次方程.学习四边形可以让学生回忆三角形,学习四边形的`边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果.

  2、想一想

  请同学们根据题意,只列出方程,不进行解答:

  (1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽.

  (2)两个连续正整数的平方和是313,求这两个正整数.

  (3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长.

  预习困难预见:

  (1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了.

  (2)学生在解答第(3)题时,设未知数时忘记带单位.

  (3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间.

  改进措施:

  教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑.

  3、议一议

  请同学们将上面的方程按照以下要求进行整理:

  (1)使方程的右边为0(2)方程的左边按x的降幂排列.我们会得到:

  ① ② ③

  你能发现上面三个方程有什么共同点?

  _____________________叫做一元二次方程.在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

  学法指导

  学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法.

  4、试一试

  下面方程是一元二次方程吗?为什么?

  ①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程.

  口诀生成:

  判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现.

  5、学一学

  一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数.你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来.

八年级数学下册教案14

  【教学目标】

  一、知识目标

  经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

  二、能力目标

  知道分时方程的意义,会解可化为一元一次方程的分式方程。

  三、情感目标

  在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的'应用价值。

  【教学重难点】

  将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

  【教学过程】

  一、课前预习与导学

  1.什么叫做分式方程?解分式方程的步骤有哪几步?

  2.判断下面解方程的过程是否正确,若不正确,请加以改正。

  解方程:=3-

  解:两边同乘以(x-1),得

  2=3-x=1,①

  x=3+1-2,②

  所以x=2.③

  (不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)

  3.解下列分式方程:(1)=(2)+=2.

  二、新课

  (一)情境创设:

  1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

  设甲每天加工服装多少件,可得方程:

  2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

  设这个两位数的十位数字是x,可得方程:

  3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

  设自行车的速度为xkm/h,可得方程:

  (二)探索活动:

  1.上面所得到的方程有什么共同特点?

  2.这些方程与整式方程有什么区别?

  结论:分母中含有未知数的方程叫做分式方程。

  3.如何解分式方程=?

  解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

  可以得到一元一次方程:20(x+1)=24x

  解这个方程,得

  x=5

  为了判断x=5是否是原方程的解,我们把x=5代入原方程:

  左边==4,右边==4,左边=右边。

  x=5是原方程的解。

  说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

  三、例题教学:

  例1.解方程:-=0

  板书出解分式方程的一般过程及完整的书写格式。

  解:方程两边同乘x(x-2),得

  3(x-2)-2x=0

  解这个方程,得

  x=6

  把x=6代入原方程:左边=右边=0,左边=右边。

  x=6是原方程的解。

  四、课堂练习:

  1.下列各式中,分式方程是()

  A.B.C.D.

  2.分式方程解的情况是()

  A.有解,B.有解C.有解,D.无解

  3.解下列方程:

  4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

八年级数学下册教案15

  一、学习目标

  二、学习过程

  阅读教材

  独立完成下列预习作业:

  1、观察下列算式:

  ⑴ ⑵

  请写出分数的乘除法法则:

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  2、分式的乘除法法则:(类似于分数乘除法法则)

  乘法法则:分子乘以分子作为积的`分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  3、分式乘方:即分式乘方,是把分子、分母分别乘方.

  三、合作交流,解决问题:

  1、计算:

  ⑴ ; ⑵

  2、计算:

  ⑴ ; ⑵ .

  4、计算:⑴ ⑵

  四、课堂测控:

  1、计算:

【八年级数学下册教案】相关文章:

八年级下册物理的教案01-31

数学五年级下册教案08-28

关于初中语文八年级下册教案模板 八年级语文下册语文教案03-01

人教版八年级下册物理压强教案06-15

人教版八年级下册物理教案07-11

五年级数学下册教案04-02

八年级物理下册运动和力教案12-22

八年级数学的教案优秀10-30

一年级数学下册教案12-08

四年级人教版数学下册教案03-01