数学家的故事
数学家的故事1
许宝騄
(19l0.9.10一1970.12.18)是中国数学家,生卒于北京.他出身于名门世家,从小就受中国传统教育的影响,父亲聘请教师讲授'四书五经',到14岁才入北京汇文中学念高一。1928年考入燕京大学化学系,因对数学有强烈的爱好,次年转学入清华大学数学系,从一年级读起。1933年在清华大学以理学士毕业,考上了留英的名额,因体重太轻不合格未能成行。休养一年后在北京大学任助教。1936年再次考取留英名额,派往伦敦大学Galton实验室和统计系攻读学位。1938年得英国哲学博士,1940年得英国科学博士。毕业后返回祖国在西南联大任教授。1945年赴美,先后在哥伦比亚、伯克莱和北卡罗莱纳大学任访问教授。1947年北京解放前夕,回国在北京大学任教授,直到1970年去世。解放后,他是第一批当选的学部委员。
许宝騄是中国概率统计领域内享有国际声誉的第一位数学家。他的主要工作是在数理统计和概率论两个方面。
数理统计方面,在1938年到1945年这一期间,他对Ney-man-Pearson理论作出了重要的贡献,他得到了一些重要的非中心分布,论证了F检验在上述理论中的优良性,这些都是奠基性的工作;同时他对多元统计分析中的精确分布和极限分布得到了重要的结果,导出正态分布样本协方差矩阵特征根的联合分布和极限分布,这些结果是多元分析中的基石。以上这两方面的工作确立了他在数理统计中的国际上的.地位。晚年,他致力于组合设计的构造,也有重要的工作。
概率论方面,在1945-47年间,他潜心于独立和的极限分布的研究,由于消息闭塞,所得结果大部分与Kolmogorov的工作相重,但使用的方法是不同的。50年代他对马氏过程发生了兴趣,在这一方向写了几篇重要的论文。
以上提到的工作,除独立和这一部分外,都收集在Springer出版社1983年出的《许宝騄全集》(英文版)中。
数学家的故事2
茅以升是我国著名铁路桥梁专家,他曾主持建造了杭州的钱塘江大桥、南京大桥等。茅以升从小就很,上学的时候他就对数学有着特殊的偏好,据说他能一口气背出圆周率小数点后一百多位的数字。
要说他立志当桥梁专家的事,那是在茅以升上中学的时候,在他的发生了一起"文德桥倒塌"的事故。当时在桥上行走的人都掉进了河里,死了很多无辜的.。茅以升听到这个消息后非常痛心,他暗下决心长大后一定要建一座坚固的桥。后来,茅以升终于学有所成,为了掌握更多的知识,他还远渡重洋去了国外留学。回国后他被请去作钱塘江大桥的设计师。就这样在茅以升和他的同事们的下,终于建成了钱塘江大桥,他的设计图纸被美国桥梁设计专家华德尔博士看了后赞不绝口。
数学家的故事3
杨辉
字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。
(一)主要著述
杨辉一生留下了大量的著述,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。
《详解九章算法》现传本已非全帙,编排也有错乱。从其序言可知,该书乃取魏刘微注、唐李淳风等注释、北宋贾宪细草的《九章算术》中的80问进行详解。在《九章算术》9卷的基础上,又增加了3卷,一卷是图,一卷是讲乘除算法的,居九章之前;一卷是纂类,居书末今卷首图、卷l乘除,卷2方田、卷3粟米、卷4衰分的衰分、反衰诸题、卷6商功的诸同功问题已佚。卷4衰分下半卷、卷5少广存《永乐大典》残卷中,其余存《宜稼堂丛书》中。从残本的体例看,该书对《九章算术》的详解可分为:一、解题。内容为解释名词术语、题目含义、文字校勘以及对题目的评论等方面。二、明法、草。在编排上,杨辉采用大字将贾宪的法、草与自己的详解明确区分出来。三、比类。选取与《九章算术》中题目算法相同或类似的问题作对照分析。四、续释注。在前人基础上,对《九章算术》中的80问进一步作注释。杨辉的“纂类”,突破《九章算术》的分类格局,按照解法的性质,重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。
杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
11
121
1331
14641
15101051
1615201561
.....................................
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
《日用算法》,原书不传,仅有几个题目留传下来。从《算法杂录》所引杨辉自序可知该书内容梗概:“以乘除加减为法,秤斗尺田为问,编诗括十三首,立图草六十六问。用法必载源流,命题须责实有,分上下卷。”该书无疑是一本通俗的实用算书。
《乘除通变本末》三卷,皆各有题,在总结民间对等算乘除法的改进上作出了重大贡献。上卷叫《算法通变本末》,首先提出“习算纲目”,是数学教育史的重要文献,又论乘除算法;中卷叫《乘除通变算宝》,论以加减代乘除、求一、九归诸术;下卷叫《法算取用本末》,是对中卷的注解。
《田亩比类乘除捷法》,其上卷内容是《详解九章算法》方田章的延展,所选例子非常贴近实际。下卷主要是对刘益工作的引述。杨辉在《田亩比类乘除捷法》序中称“中山刘先生作《议古根源》。……撰成直田演段百间,信知田体变化无穷,引用带从开方正负损益之法,前古之所未闻也。作术逾远,罔究本源,非探喷索隐而莫能知之。辉择可作关键题问者重为详悉著述,推广刘君垂训之意。”《田亩比类乘除捷法》卷下征引了《议古根源》22个问题,主要是二次方程和四次方程的解法。
《续古摘奇算法》上卷首先列出20个纵横图,即幻方。其中第一个为河图,第二个为洛书,其次,四行、五行、六行、七行、八行幻方各两个,九行、十行幻方各一个,最后有“聚五”“聚六”:聚八”“攒九”“八阵”“连环”等图。有一些图有文字说明,但每一个图都有构造方法,使图中各自然数“多寡相资,邻壁相兼”凑成相等的和数。卷下评说《海岛》也有极高的科学价值。
杨辉著作大都注意应用算术,浅近易晓。其著作还广泛征引数学典籍和当时的算书,中国古代数学的一些杰出成果,比如刘益的“正负开方术”,贾宪的“开方作法本源图”“增乘开方法,”幸得杨辉引用,否则,今天将不复为我们知晓。
(二)主要研究成果
杨辉的数学研究与数学教育工作之重点在于改进筹算乘除计算技术,总结各种乘除捷算法,这是由当时的社会状况决定的。唐代中期以后,社会经济得到较大发展,手工业和商业交易都具有相当的规模,因而,人们在生产、生活中需要数学计算的机会,较前大大增加,这种情况迫切要求数学家们为人们提供便于掌握、快捷准确的计算方法。为适应社会对数学的这种需求,中晚唐时期出现了一些实用的算术书籍。但是,这些书籍除了《韩延算术》,被宋人误认为《夏侯阳算经》而刊刻流传到现在外,都已失传。《韩延算术》大约编写于公元770年前后,书中介绍了很多乘除捷法的`例子。比如,某数乘以42可以化为某数乘以6,再乘以7;某数除以12可以化为某数除以2,再除以6。对于更复杂的问题可同样处理。通过将乘数、除数分解为一位数,可以使运算在一行内实现,简化了运算,提高了速度。韩延还介绍了其他一些简捷算法。比如“身外添加四”、“隔位加二”。北京科学家沈括也总结了增成、重因等捷算法。
杨辉生活在南宋商业发达的苏杭一带,进一步发展了乘除捷算法。他说:“乘除者本钩深致远之法。《指南算法》以‘加减’、‘九归’、‘求一’旁求捷径,学者岂容不晓,宜兼而用之。”在前人的基础上,他提出了“相乘六法”:一曰“单因”,即乘数为一位数的乘法;二曰“重因“,即乘数可分解为两个一位数的乘积的乘法;三曰“身前因”,即乘数末位为一的两位数乘法,比如257×21=257×20十257,实际上,身前因就是通过乘法分配律将多位数乘法化为一位数乘法和加法来完成。四曰相乘,即通常的乘法;五曰“重乘”,就是乘数可分解为两因数的积,作两次相乘;六曰“损乘”,是一种以减代乘法,比如,当乘数为9、8、7时,可以10倍被乘数中,减去被乘数的—、二、三倍。杨辉还进一步发展了唐宋相传的求一算法,总结出了“乘算加法五术”、“除算减法四术”。求一实际上就是通过倍、折、因将乘除数首位化为一,从而用加减代乘除。杨辉的“乘算加算加法五术”,即“加一位”、“加二位”、“重加”、“加隔位”、“连身加”。乘数为11至19的,用加一位;乘数为l0l至199的,用加二位法;乘数可分为两因数的积,且可用加一或加二时,称为重加;乘数为101至l09时,用隔位加;乘数为21至29、20l至299时,用连身加。例如,342×56的计算,用现代符号写出,便是:342×56=342×112十2=(34200十342×l2)十2=(34200十3420十342×2)十2。其“除算减法四木”即“减一位”、“减二位”、“重减”、“减隔位”,用法与乘算加法类似。
北宋初年出现的一种除法——增成法,在杨辉那里得到进一步的完善。增成法的优点在于用加倍补数的办法避免了试商,但对于位数较多的被除数,运算比较繁复,后人改进了它,总结出了“九归古括”,包含44句口诀。杨辉在其《乘除通变算宝》中引《九归新括》口诀32句,分为“归数求成十”、“归数自上加”,“半而为五计”三类。
客观上讲,杨辉不遗余力改进计算技术,大大加快了运算工具改革的步伐。随着筹算歌诀的盛行,运算速度大大加快,以至人们感觉到摆弄算筹跟不上口诀。在这样的背景下,算盘便应运而生了,及至元末,已经广为流行。
纵横图,即所谓的幻方。早在汉郑玄《易纬注》及《数术记遗》都记载有“九宫”即三阶幻方,千百年来一直被人披上神秘的色彩。杨辉创“纵横图”之名。在所著《续古摘奇算法》上卷作出了多种多样的图形。图ll是四阶纵横图;图12是百子图,即十阶纵横图。其每行每列数之和为50—5(对角线数字之和不是505);图13是“聚八”图,杨辉按“二十四子作三十二子用”设子的这种幻方共有四圈,每圈数字之和为100;图14是“攒九”图,用前33个自然数排列,达到“斜直周围各一百四十七”的效果。杨辉不仅给出了这些图的编造方法,而且对一些图的一般构造规律有所认识,打破了幻方的神秘性。这是世界上对幻方最早的系统研究和记录。自杨辉以后,明清两代中算家关于纵横图的研究相继不断。
杨辉的另一重要成果是垛积术。这是杨辉继沈括“隙积术”之后,关于高阶等差级数求和的研究。在《详解九章算法》和《算法通变本末》中记叙了若干二阶等差级数求和公式,其中除有一个即沈括的当童垛外,还有三角垛、四隅垛、方垛三式,用现今的记号表示就相当于下面三式:
上述三式可由沈括之刍童公式推出。
对数学重新分类也是杨辉的重要数学工作之一。杨辉在详解《九章算术》的基础上,专门增加了一卷“纂类”,将《九章》的方法和246个问题按其方法的性质重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。
杨辉不仅是一位著述甚丰的数学家,而且还是一位杰出的数学教育家。他一生致力于数学教育和数学普及,其著述有很多是为了数学教育和普及而写。《算法通变本末》中载有杨辉专门为初学者制订的“习算纲目”,它集中体现了杨辉的数学教育思想和方法。
数学家的故事4
近期,我看了一本书,名字叫《数学家的故事》,其中最让我敬佩的就是华罗庚,这位伟大的数学家所发生的故事了。
华罗庚因病左腿残疾,所以,他平时走路都需要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步伐,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强的与命运抗争。增发过誓言,说:“我要用健全的头脑,来代替我这不健全的腿!”凭着这种顽强的精神与毅力,他终于从一个只有初中毕业文凭的.青年成长为一代数学大师。华罗庚一生硕实累累,是中国解析数论、典型群、矩阵几何学、自导函数论等方面的研究者和创始人。其着作《对垒素数论》,更成为20世纪数学论着的经典。华罗庚因为有了这种对生活的坚持不懈以及充满希望的精神,所以,他在逆境中登上数学的最高峰。
是啊,学数学少不了的是那种顽强的精神。我一定会向华罗庚,这位伟大的数学家学习决不放弃的毅力!
数学家的故事5
哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的`佳话。
数学家的故事6
高斯最著名的故事莫过于小学时计算1+2+3+。
+100的值.当时高斯上小学,老师在班上出了这样一道题,叫大家算.那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了.老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,.这样一共有50个101,因此结果是5050.还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个20xx年的.数学难题,那就是只用直尺和圆规17等分圆周.高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周.从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家.。
数学家的故事7
尊敬的评委、亲爱的听众们:
大家好!今天我演讲的主题是“数学家的故事”。
数学,是一门抽象而神秘的学科。在许多人看来,数学是一门难以理解的学科,需要冷静理性和逻辑思维,并且需要付出大量的时间和精力。不过,也正是因为数学的高深和神秘,才吸引了一批批具有天赋和热情的数学家,他们不断发掘数学的奥秘,推动着人类的知识进步。
今天,我要讲述三位数学家的故事。他们分别是高斯、欧拉和黎曼。
首先是高斯。高斯被誉为是19世纪最伟大的数学家之一,他在数学领域做出了许多开创性的贡献。高斯从小就表现出惊人的数学天赋,14岁时就发现了如何求一个n边形的.内角和,这一成果使得他在当时的学界一举成名。
高斯在19岁时发现了一个叫做“最小二乘法”的方法,这个方法在数理统计中非常常用。他还在代数、数论、几何和物理学等领域做出了很多突出的贡献。高斯晚年时曾说过:“数学是我的太阳,照耀着我生命中的每一个角落。”
接下来是欧拉。欧拉是18世纪著名的瑞士数学家,他被誉为是数学史上最伟大的数学家之一。欧拉在数学领域有非常广泛的贡献,他在代数、数论、几何、微积分等领域都做出了重要的发现。
欧拉的一大贡献是他的公式e^ix = cos(x) + i * sin(x),这个公式在物理、工程学、计算机科学等领域有很广泛的应用。欧拉还证明了足够大的质数存在,这个定理在密码学中极度重要。此外,欧拉还写下了一系列著名的数学论文,为后人指明了研究方向和方法。
最后是黎曼。黎曼是19世纪德国著名的数学家,他对复变函数和黎曼几何做出了重要贡献。他不仅证明了黎曼猜想,也在黎曼几何中开展了非欧几何研究。
黎曼对数学的热爱来源于他对数学的美学追求。他曾说过:“我的数学考虑不仅没有追求实用性,而且不善于实践。我想仅仅凭数学本身的美完美数学画面的美,就足以激励我们的一举一动。”
这就是三位数学家的故事。他们从小就展现出过人的数学天赋,在漫长的数学探索中,他们创造出了许多令人惊叹的成就,使得数学这门许多人眼中神秘而有些难以接触的学科变得更加接近我们。
在这里我想告诉大家,数学不是一个难以理解的学科,如果我们用心去了解和体会,我们也能够发现它的美和魅力。就像高斯、欧拉和黎曼一样,在我们自己的领域上,努力追求卓越,发掘出使我们自己和我们所热爱的领域更加完美的奥秘。谢谢!
数学家的故事8
陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。
陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。
“丁零零……”下班的'铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。
陈景润,1933年5月22日生于福建福州,当代数学家。
1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任《数学学报》主编。
1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。
数学家的故事9
伽利略17岁那年,考进了比萨大学医科专业。他喜欢提问题,不问个水落石出决不罢休。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。” 比罗教授不高兴地说:“你提的.问题太多了!你是个学生,上课时应该认真听老师讲。
多记笔记,不要胡思乱想,动不动就提问题,影响同学们学习!”“这不是胡思乱想,也不是动不动就提问题。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”伽利略没有被比罗教授吓倒,继续反问。 “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授搬出了理论根据,想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。这位数学家的故事也成为追求真理的典范。
数学家的故事10
高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的.,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。
高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学家的故事11
陈景润出生在福建省福州市的闽侯镇,他的父亲陈元俊是一个邮电局的小职员。
陈景润到了上学的年龄,父母给他找了一所离家近的小学,送他去读书。在所有的学科中,他特别喜欢数学,只要遨游在代数、几何的题海中,他就能够忘却所有的烦恼。
陈景润平时少言寡语,但非常勤学好问,他总是主动向老师请教问题或借阅参考书。
一个中午,最后一节课下了,陈景润走出教室,回家吃饭。他从书包里拿出一本刚从老师那儿借来的教学书,边走边看。书上的内容像电影一样一幕幕地闪现,陈景润就像一个饥饿的人扑到面包上,大口大口地吞吃着精神的食粮。
他只顾专心致志地看书,不知不觉偏离了方向,朝着路边的小树走去。只听哎哟一声,他撞到了树上。
抗日战争爆发初期,陈景润刚刚升入初中,中学里的一位数学老师使陈景润的人生之路发生了根本的改变。这位老师就是曾经任清华大学航空系主任的`沈元老师。有一次,沈元老师向学生讲了个数学难题,叫哥德巴赫猜想,学生们叽叽喳喳地议论起来。
沈元老师最后又说了一句话:自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠!
陈景润听了这句话后,内心不禁为之一震:哥德巴赫猜想、数学皇冠上的明珠,我能摘下这颗明珠吗?
1973年2月,陈景润的关于(1+2)简化证明的论文终于公开发表了!陈氏定理立即在世界数学界引起轰动,专家们给予他极高的评价。
轻轻地告诉你:
攀登科学高峰,就像登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦的。
数学家的故事12
伟大的韦达
一元二次方程的根与系数的关系,常常也称作韦达定理,这是因为该定理是16世纪法国最杰出的数学家韦达发现的。
韦达的小传
韦达1540年出生在法国东部的普瓦图的韦特奈。他早年学习法律,曾以律师身份在法国议会里工作,韦达不是专职数学爱,但他非常喜欢在政治生涯的`间隙和工作余暇研究数学,并做出了很多重要贡献,成为那个时代最伟大的数学家。
韦达是第一个有意识地和系统地使用字母表示数的人,并且对数学符号进行了很多改进。他在1591年所写的《分析术引论》是最早的符号代数著作。是他确定了符号代数的原理与方法,使当时的代数学系统化并且把代数学作为解析的方法使用。
因此,他获得了“代数学之父”之称。他还写下了《数学典则》(1579年)、《应用于三角形的数学定律》(1579年)等不少数学论著。韦达的著作,以独特 形式包含了文艺复兴时期的全部数学内容。只可惜韦达著作的文字比较晦涩难懂,在当时不能得到广泛传播。在他逝世后,才由别人汇集整理并编成《韦达文集》于1646年出版。韦达1603年卒于巴黎,享年63岁。下面是关于韦达的两则趣事:
与罗门的较量
比利时的数学家罗门曾提出一个45次方程的问题向各国数学家挑战。法国国王便把该问题交给了韦达,韦达当时就得出一解,回家后一鼓作气,很快又得出了22解。答案公布,震惊了数学界。韦达又回敬了罗门一个问题。罗门苦思冥想数日方才解出,而韦达却轻而易举地作了出来,为祖国争得了荣誉,他的数学造诣由此可见一斑。
韦达的“魔法”
在法国和西班牙的战争中,法国人对于西班牙的军事动态总是了如指掌,在军事上总能先发制人,因而不到两年功夫就打败了西班牙。可怜西班牙的国王对法国人在战争中的“未卜先知”十分脑火又无法理解,认为是法国人使用了“魔法”。
原来,是韦达利用自己精湛的数学方法,成功地破译了西班牙的军事密码,为他的祖国赢得了战争的主动权。另外,韦达还设计并改进了历法。所有这些都体现了韦达作为大数学家的深厚功底。
数学家的故事13
康托尔(G.Cantor,xx-1918),德国数学家。
康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础。从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论。
克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀。他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久。他甚至在柏林大学的学生面前公开攻击康托尔。横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位。使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折。
法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西。集合论是一个有趣的'“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了。
德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾。
菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想。
数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交。
......
从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去。变得很自卑,甚至怀疑自己的工作是否可靠。他请求哈勒大学当局把他的数学教授职位改为哲学教授职位。
健康状况逐渐恶化,xx年,他在哈勒大学附属精神病院去世。
数学家的故事14
一天,法国蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的'圆周率近似值越精确。”这就是著名的“蒲丰试验”。
数学家的故事15
有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:
“那边可能有好玩的,我们过去看看好吗?”
邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”
胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。
两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”
邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”
华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”
邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。”
华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。”
当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。
金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就可以问神问卦,求医求子了。
华罗庚感到好笑,他自己却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:
“孩子,你为什么不拜,这菩萨可灵了。”
“菩萨真有那么灵吗?”华罗庚问道。
一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。”
“菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。
庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见“菩萨”能动了,他从马上下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的'偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。??”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
【数学家的故事】相关文章:
数学家的故事08-06
[经典]数学家的故事07-10
数学家的故事12-01
数学家的故事(精选)07-26
数学家的故事07-30
[中国史上的数学家故事] 数学家的故事05-23
有关写数学家的经典故事 数学家的经典故事04-13
数学家华罗庚的故事01-06
关于数学家的故事05-13
(推荐)数学家的故事04-26