关于数学家的高斯的故事
关于数学家的高斯的故事1
1785年,8岁的小高斯在德国农村的一所小学里念一年级。
学校的老师是城里来的。他有个偏见,总觉得农村的孩子不如城里的孩子聪明伶俐。不过,他对孩子们的学习,要求还是严格的。
有一天,他给学生们出了一道算术题。他说:“你们算一算,1加2加3,一直加到100,等于多少?谁算不出来,不准回家吃饭。”
说完,他就坐在一边的'椅子上,用目光巡视趴在桌子上演算的学生。
不到1分钟的功夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了”
没等小高斯说完,老师就不耐烦地说:“错了!重新再算!”
小高斯很快地把算式检查了一遍,高声说:“老师,没有错!”说着走下座位,把小石板伸到老师面前。
老师低头一看,看见上面端端正正地写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的题,一个8岁的孩子,用不到1分钟时间就算出了正确的得数。要知道他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。他问小高斯:“你是怎么算的?”
小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99是101,3加98也是101把一前一后的数相加,一共有50个101,101乘以50,得5050。”
小高斯的回答,使老师感到吃惊。因为他还是第一次知道这种算法。他惊喜地看着小高斯,好像刚刚认识这个穿着破烂不堪的砌砖工人的儿子。
关于数学家的高斯的故事2
德国著名大科学家高斯八岁时进入乡村小学读书。教数学的老师喜欢处罚学生。
有一天,老师说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。
著名数学家高斯从小出生在德国一个底层的木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。
关于高斯的生平经历,当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。
而在高斯博士毕业的.时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。
在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。
关于数学家的高斯的故事3
高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯最后找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。
1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的`结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:
一个正n边形能够尺规作图若且唯若n是以下两种形式之一:
1、n=2k,k=2,3,…
2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2,…
费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
关于数学家的高斯的故事4
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家ET贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。ET贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。
为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的'职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
高斯的学术地位,历来为人们推崇得很高。他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是1819世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。
高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。
关于数学家的高斯的故事5
卡尔·弗里德里希·高斯(1777—1855年)是德国19世纪著名的数学家、物理学家。高斯不到20岁时,在许多学科上就已取得了不小的成就。对于高斯接二连三的成功,邻居的几个小伙子很不服气,决心要为难他一下。
小伙子们聚到一起冥思苦想,终于想出了一道难题。他们用一根细棉线系上一块银币,然后再找来一个非常薄的玻璃瓶,把银币悬空垂放在瓶中,瓶口用瓶塞塞住,棉线的另一头也系在瓶塞上。准备好以后,他们小心翼翼地捧着瓶子,在大街上拦住高斯,用挑衅的口吻说道:“你一天到晚捧着书本,拿着放大镜东游西逛,一副蛮有学问的.样子,你那么有本事,能不打破瓶子,不去掉瓶塞,把瓶中的棉线弄断吗?”
高斯对他们这种无聊的挑衅很生气,本不想理他们,可当他看了瓶子后,又觉得这道难题还的确有些意思,于是认真地想起解题的办法来。
繁华的大街商店林立,人流如织。在小伙子们为能难倒高斯而得意之时,大街上的围观者也越来越多。大家兴趣甚浓,都在想着法子,但无济于事,只好把希冀的目光投向高斯。高斯呢,眉头紧皱,一声不吭不受围观者嘈杂吵嚷的影响而冷静思考。
他无意地看了看明媚的阳光,又望了望那个瓶子,忽然高兴地叫道:“有办法了。”说着从口袋里拿出一面放大镜,对着瓶子里的棉线照着,一分钟、两分钟……人们好奇地睁大了眼,随着钱币“当”的一声掉落瓶底,大家发现棉线被烧断了。
高斯高声说道:“我是借了太阳的光!”人们不由发出一阵欢呼声。
关于数学家的高斯的故事6
高斯是德国著名数学家(1777~1855),出生于一个比较贫困的家庭,父母均没有受过正规教育,父亲安于现状,只希望高斯将来长大后能有一份简单的养家糊口的工作,而母亲虽是个没有文化的家庭主妇,但目光长远,对高斯要求严格。并尊重孩子的兴趣,希望高斯能有所成就。
高斯在很小的时候就有过人的才华,在他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸!算错了,钱应该是这样”。父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
高斯在7岁时进了小学,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。
原来:1+100=101,2+99=101,3+98=101……50+51=101
前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。
按:今用公式表示:1+2+……+n
高斯的数学老师对学生的.态度其实并不好,但当他发现神童高斯的时候心里很是欣慰,而且觉得自己懂的数学不多,教不了高斯更多东西了。并自掏腰包为高斯购买数学书籍。
高斯在十一岁的时候就发现了二项式定理(x+y)n的一般情形,这里n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。
由于高斯有过人的天赋,后来被费迪南公爵发现了,并决定给他经济救援,让他有机会受高深教育,在费迪南公爵的帮助下,高斯进入了一所十五岁的高斯进入一间著名的学院(程度相当于高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。
后来,数学家高斯还用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为“代数基本定理”。
关于数学家的高斯的故事7
高斯,德国数学家、物理学家、天文学家,近代数学奠基者之一,有“数学王子”之称。
高斯出生在一个普通家庭,祖父是一个朴实的德国农民,父亲也以种果树为生,母亲则是一个穷石匠的女儿。
高斯的父亲每天都有忙不完的事,根本没有时间照顾小高斯。只要高斯不哭,他就专心算自己的账。而小高斯则会安静地坐在一旁看父亲算账。有一次,还在牙牙学语的高斯像往常一样聚精会神地看父亲算账。父亲一边算,一边直摇头,无论怎么算也算不出一个结果来,过了好久,他终于说出了一个结果。父亲紧缩的眉头终于舒展开,他深深地吸了一口气,点上一支烟,拿起笔准备把答案写下来。可是小高斯却在一旁不停地摇着头,他用小手敲击着桌子,向父亲示意这个结果是错误的,然后自己从口中慢慢地说出了一个数字。父亲感到非常吃惊,儿子还不会说话,怎么会报数呢?他突然眼前一亮,莫不是高斯说的是自己所计算的正确答案。于是,父亲抱着好奇的.心理,又重新算了一遍,答案竟然真的和小高斯说的一样,高斯对了!
父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学题了。此后,高斯的父亲发现高斯具有良好的天赋,于是决定全力供他上学。
高斯8岁时进入乡村小学读书。他们的数学老师非常傲慢,瞧不起乡下人,觉得自己不能长久地留在这个地方。他认为:穷孩子的智商都是低下的,无论他们怎么努力,都不会让他们变聪明。因此在给这些孩子上课的时候,他总是提不起精神来。
这一天,数学老师的情绪非常低落。看到老师那阴沉的脸孔,同学们顿时变得紧张起来,知道老师又会在今天找他们的麻烦了。
果然不出所料,老师发话了:“你们今天替我算从1加2加3……一直加到100的和。谁要是不会算就不让他回家吃饭。”说完这句话后,老师就不动声色地拿起一本小说坐在椅子上看。
教室里的学生拿起石板开始计算。一些学生加到一个数后就擦掉石板上的结果,再加下去,数越加越大,非常麻烦。有些孩子的小脸儿涨得通红,有些孩子手心、额头渗出了汗来。
不一会儿,小高斯拿起了他的石板走上前去说:“老师,我算出来了。”
老师头也没抬,摆了摆手,说:“回座位重算!肯定错了。”他认为,这么小的孩子不可能这么快得出答案。
可是高斯却并没有离开,把石板伸向老师面前说:“老师!我想这个答案是对的。”
数学老师非常生气,正准备发火,可是一看石板上整齐地写着这样的数:5050。他非常吃惊,因为他自己曾经算过,得到的数也是5050。这个8岁的孩子怎么这样快就得出这个数值呢?
高斯向老师讲了自己的解题思路,这个方法就是古时中国人和希腊人用过的方法。高斯的发现,让老师感到很惭愧,觉得自己以前太高傲了,不应该轻视穷人的孩子。他后来端正了自己的教学态度,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯的数学进步很快。
【数学家的高斯的故事】相关文章:
数学家高斯的故事11-07
数学家高斯的故事【精】01-31
数学家高斯的小故事01-28
(荐)数学家高斯的故事02-26
数学家高斯的故事(通用)02-10
关于数学家高斯的故事12-04
高斯数学家的小故事12-09
【精】数学家高斯的故事05-26
数学家高斯的故事(优)05-12
数学家高斯的故事(荐)03-14