当前位置:壹学网>作文>写作素材>名人故事>数学家的故事

数学家的故事

时间:2024-12-10 11:49:03 名人故事 我要投稿

数学家的故事(锦集15篇)

数学家的故事1

  秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

数学家的.故事(锦集15篇)

数学家的故事2

  今年九月的时候,我读了一本书,在这本书里,我认识了许多数学家。

  这本书主要讲了阿基米德用数学战胜罗马战舰,牛顿在干农活时沉迷于数学问题,欧拉巧思妙想帮爸爸扩大羊圈,高斯十岁就能运用等差数列求和

  此时我想到了有一年暑假我做数学题的时候,有一道找规律的`题目不会做。前三个数分别是4、16、64,要我们填第四个数。我想:4加上12等于16,那么16加上12是不是等于64呢?可是结果是不对的。想了一会儿想不出正确的答案就去找爸爸教我,爸爸告诉我这道题的规律是每个数乘以四就等于第二个数。

  跟这些数学家相比,我真是太惭愧了。他们个个善于观察,勤于思考。在科学上具有打破沙锅问到底、不达目的不罢休的精神。而我呢?在学数学的时候,一点点小小的问题就把我给吓倒了,没能换几种角度去思考问题,而是直接去向家长求教,我要向他们学习。

数学家的故事3

  高斯是一对贫穷夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。高斯的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

  当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。高斯曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予高斯一生的天赋。

  父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持高斯成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

  在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。高斯发现姐姐的儿子聪明伶利,因此高斯就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

  若干年后,已成年并成就显赫的高斯回想起舅舅为高斯所做的一切,深感对高斯成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  罗捷雅真的希望儿子能干出一番伟大的事业,对高斯的.才华极为珍视。然而,她也不敢轻易地让儿子投入不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

  初显天分

  高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

  一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。

  高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101······1加到100有50组这样的数,因此50X101=5050。

  布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西能教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

  得到资助

  1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的教师们和慈母把他推荐给伯伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。

  布伦兹维克公爵卡尔·威廉·斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

  1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

  1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

  公爵继续慷慨资助高斯的研究,使得他能在1803年谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。

  公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

  布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

数学家的故事4

  张丘建

  张丘建,北魏时清河(今河北临清市一带)人,生平不详,我国南北朝时期的著名数学家,有《张丘建算经》传世。

  《张丘建算经》约成书于公元466—485年间,共三卷93题,包括测量、纺织、交换、纳税、冶炼、土木工程、利息等各方面的计算问题。其体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份宝贵的遗产。后世学者北周甄鸾、唐李淳风相继为该书做了注释。特别是唐代,经太史令李淳风注释整理,收入《算经十书》,成为当时算学馆先生的必读书目。《算经十书》是《周髀算经》、《九章算术》《海岛算经》、《孙子算经》、《五曹算经》、《夏候阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《数术记贵》等十种。《算经十书》至清代多已佚失。乾隆初年(1736)以后,戴震致力整理古代算书,复从《永乐大典》中辑出,使后人得见古代数学面目。

  张丘建一生从事数学研究,造诣很深。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔卡西《算术之钥》等著作中均出现有相同的问题。张丘建在《算经》中较早提出了“百鸡问题”:“鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡,问鸡翁、母、雏各几何?”这道题的意思是:“每只公鸡价值5元,母鸡价值3元,3只小鸡价值1元,用100元钱买100只鸡,问,公鸡、母鸡、小鸡各可以买多少只?”“百鸡问题长期以来被作为讲解不定方程的入门例子。

  据传、张丘建小时候才思敏捷,聪慧过人,尤其是计算能力超群,被人誉为“神童“。当时的数学家夏侯阳得知这个消息后,有意收张丘建为徒,但不知他是否真象传说中那样极具数学天赋,于是便找到了张丘建,当面出了道题来考他。题目是这样的:有甲乙两个和尚为寺庙分头去化缘,半个月后他俩化到些银两回到寺庙。此时若乙给甲10两银子,甲比乙所多的是乙余下的5倍;若甲给乙10两银子,那么二人的'银两相等,问甲乙各化到多少银两?

  小丘建略加思考便有了主意,他说:“根据若甲给乙10两银子,那么二人的银两相等,可知,原来甲比乙多10+10=20两银子。再根据若乙给甲10银子,可以判定此时甲比乙多了20两,加上原来多的20两共计多出40两,而这多出40两正是乙余下的5倍,所以乙余下的银子是40÷5=8两,而这余下的8两是乙给了甲10两后所剩下的银子,所以可以得知乙化到的10+8=18两银子,则甲化到18+20=38两银子。”听了小丘建的回答,夏侯阳十分满意,马上收小丘建为徒。这道题目在《张丘建算经》中有记载,故事不足为信,但可以从中加深对该书的了解。

数学家的故事5

  柯尔莫哥洛夫是公认的20世纪最伟大的数学家之一,同时也是成就最广泛的数学家之一,研究领域几乎横跨整个数学,但在数学之外,他还有别样的人生。

  柯尔莫哥洛夫从小兴趣广泛,除了数学之外,还喜欢旅行、游泳、艺术、诗歌、历史等等。研究数学的同时,还广泛涉猎古建筑,雕塑和绘画等等,被誉为百科全书般的人物。少年时代的柯尔莫哥洛夫最痴迷的是数学和历史,他曾写过一篇关于地主财产的论文,但他的历史老师告诉他:“你在论文中只提供了一种证明,对数学来说也许够了,但对历史来说还不够,历史学家至少需要五种证明”。听罢此话,柯尔莫哥洛夫当即回应说:“那我还是学只要一种证明的数学吧!”

  中学毕业之后,柯尔莫哥洛夫当过一段时间的列车售票员。身体本来就强壮加之战斗民族的天性,他特别喜欢打抱不平,偶尔还会和不讲理的乘客一言不合就大打出手。

  尽管在数学上已经做出了非凡的成就,但他还是按捺不住躁动的内心。26岁的时候,他找来了亚历山德罗夫(另一位非常杰出的数学家),一起乘船沿伏尔加河穿越高加索山脉,来到了塞万湖中的小岛上,开始每天游泳爬山晒太阳的惬意生活,在这期间,亚历山德罗夫完成了一本拓扑学传世名著《拓扑学》,而柯尔莫哥洛夫则开了扩散理论研究的先河。

  完成概率论公理化的'划时代意义工作之后,柯尔莫哥洛夫又怀念起了那种惬意的生活。于是他又找来了亚历山德罗夫,之后两人在科马洛夫卡买了一座房子。他们每周花一整天时间来爬山滑雪或干脆就是只穿短衣短裤在冰天雪地里徒步30公里。在这期间,他又完成了许多重要工作。而且陆续地有许多著名数学家和学生们慕名来访,二人与他们进行了许多亲切而有意义的讨论,内容不仅有数学,还有柯尔莫哥洛夫热爱的艺术文学等等。这些学生中就有后来的数学大师盖尔范德和马尔采夫。

  而柯尔莫哥洛夫最著名的一次打架事件发生在一次苏联科学院的的会议上。刚开始他与卢津(另一位数学家,不是他的导师鲁金)的意见不和,后来就开始激烈的争吵,再后来气不过的柯尔莫哥洛夫干脆直接冲上去暴打了对方一顿。两位大人物在公众场合打架传出去肯定有很大负面影响,但xxx得知后只是会心一笑,反而还喜欢上了柯尔莫哥洛夫的这种性格。

  就算年纪大了他也不消停,在莫斯科很冷的时候突发奇想地要游泳,于是脱光衣服跳进了冰冷的河水中,结果后来差点冻死,被送进医院抢救才捡回了一条命。但后来不甘心的柯尔莫哥洛夫又搞了一次同样的危险行为,还美其名曰“相信自己的身体”。70岁的时候他还举办滑雪比赛,结果很高兴地就飞奔了出去,把其他人甩在了身后。

  柯尔莫哥洛夫的荣誉和成就实在太多,只能借用费马的一句名言叫“这里的空白太小,写不下”。不仅仅是对他的成就,就连他的这种潇洒快意的人生,我们也只能仰望。

数学家的故事6

  数学家祖冲之的故事主要讲述的是数学家祖冲之在数学和天文方面有一定的研究领域,当时的皇帝很喜欢祖冲之,有的大臣不理解认为祖冲之是离经叛道的行为,但是事实的证明伟大的数学家祖冲之给后世带来很深远的影响及应用数学领域,现代学习教材应用。

  1数学家祖冲之的故事

  祖冲之是我们国家南北朝的一名数学家、天文学家,他是河北涞源人,最大的成就就是计算了圆周率。

  在秦汉之前,径一周三就是那会儿的圆周率,但是误差非常地大,后来发现圆周率应该是径一周三而有余,但是余数大小无法确定,后来,刘徽发明了割圆术,求出了圆周率是3.14,而且发现一个问题,那就是圆内切的正多边形边数越多的话,圆周率就会越来越准确。

  祖冲之究竟是根据什么方法得出的圆周率,现在没有办法进行考证,但是无论如何,他都是一个非常有毅力,很聪慧的人。

  祖冲之实事求是,亲自检验历法,在他33岁的时候编制了《大明历》,由此就开辟了历法史的新纪元。

  他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

  宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

  我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

  公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

  尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

  祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

  2祖冲之的资料

  祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的`数学家、天文学家。祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。

  3数学成就

  数学史上的创举——“祖率”祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。

数学家的故事7

  泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度。泰勒斯说可以,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。秦勒斯来到金字塔前,阳光把他的影子投在地面上。每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的'距离。这样,他就报出了金字塔确切的高度。在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。

数学家的故事8

  李冶(1192-1279)是中国古代数学家,原名李治,字仁卿,号敬斋,金代真定府栾城县(今河北省栾城县)人。

  李冶生于大兴(今北京市大兴县),父亲李通为大兴府推官。李冶自幼聪敏,喜爱读书,曾在元氏县(今河北省元氏县)求学,对数学和文学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”1230年,李冶在洛阳考中词赋科进士,任钧州(今河南禹县)知事,为官清廉、正直。1232年,钧州城被蒙古军队攻破。李冶不愿投降,只好换上平民服装,北渡黄河避难。

  经过一段时间的颠沛流离之后,李冶定居于崞山(今山西崞县)之桐川。1234年初,金朝终于为蒙古所灭。金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。他的工作条件是十分艰苦的,不仅居室狭小,而且常常不得温饱,要为衣食而奔波。但他却以着书为乐,从不间断自己的写作。据《真定府志》记载,李冶“聚书环堵,人所不堪”,但却“处之裕如也”。他的学生焦养直说他:“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”。经过多年的艰苦奋斗,李冶的《测圆海镜》终于在l248年完搞。它是我国现存最早的一部系统讲述天元术的著作。

  1251年,李冶的经济情况有所好转,他结束了在山西的避难生活,回元氏县封龙山定居,并收徒讲学。1257年在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些进步的政治建议。l259年在封龙山写成另一部数学著作-一《益古演段》。1265年应忽必烈之聘,去燕京(今北京)担任翰林学士知制洁同修国史官职,因感到在翰林院思想不自由,第二年辞耿还乡。李冶是一位多才多艺的学者,除数学外,在文史等方面也深有造诣。他晚年完成的《敬斋古今注》与《泛说》是两部内容丰富的著作,是他积多年笔记而成的。《泛说》一书已失传,仅存数条于《敬斋古今注》附录。他还着有《文集》四十卷与《壁书丛制》十二卷,已佚。1279年,李冶病逝于元氏。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。

  所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的`方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题基本解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。例如李冶在东平(今山东省东平县)得到的一本讲天元术的算书中,还不懂得用统一符号表示未知数的不同次幂,它“以十九字识其上下层,曰仙、明、霄、汉、垒、层、高、上、天、人、地、下、低、减、落、逝、泉、暗、鬼。”这就是说,以“人”字表示常数,人以上九字表示未知数的各正数次幂(最高为九次),入以下九字表示未知数的各负数次幂(最低也是九次),其运算之繁可见一斑。从稍早于《测圆海镜》的《铃经》等书来看,天元术的作用还十分有限。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。

  《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的“识别杂记”阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式),这部分内容是对中国古代关于勾股容圆问题的总结。后面各卷的习题,都可以在“识别杂记”的基础上以天元术为工具推导出来。李冶总结出一套简明实用的天元术程序,并给出化分式方程为整式方程的方法。他发明了负号和一套先进的小数记法,采用了从零到九的完整数码。除O以外的数码古已有之,是筹式的反映。但筹式中遇O空位,没有符号O。从现存古算书来看,李冶的《测圆海镜》和秦九韶《数书九章》是较早使用O的两本书,它们成书的时间相差不过一年。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。

  《测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学著作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。李冶清楚地看到这一点,他坚信天元术是解决数学问题的一个有力工具,同时深刻认识到普及天元术的必要性。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,促使他写一本深入浅出、便于教学的书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。李冶大概认识到,天元术是从几何中产生的。因此,为了使人们理解天元术,就需回顾它与几何的关系,给代数以几何解释,而对二次方程进行几何解释是最方便的,于是便选择了以二次方程为主要内容的《益古集》(11世纪蒋周撰)。正如《四库全书·益古演段提要》所说:“此法(指天元术)虽为诸法之根,然神明变化,不可端倪,学者骤欲通之,茫无门径之可入。惟因方圆幂积以明之,其理尤届易见。”李冶是很乐于作这种普及工作的,他在序言中说:“使粗知十百者,便得入室啖其文,顾不快哉!”

  《益古演段》的价值不仅在于普及天元术,理论上也有创新首先,李冶善于用传统的出入相补原理及各种等量关系来减少题目中的未知数个数,化多元问题为一元问题。其次,李冶在解方程时采用了设辅助未知数的新方法,以简化运算。

数学家的故事9

  女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

  从她遗留下来著作可以看出,她是一位从事天文和筹算研究女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状计算工具。一般是竹制或木制一批同样长短粗细小棒,也有用金属、玉、骨等质料制成,不用时放在特制算袋或算子筒里,使用时在特制算板、毡或直接在桌上排布。应用“算筹”进行计算方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”记述,现在所见最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

  17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍纳皮尔算筹乘除法,当时读者认为容易了解,但与当时我国乘除法筹算方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天读者把中外筹算乘除法视为老古董,采用是由外国传入笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算历史只有100年。

数学家的故事10

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大家。他原是一位很精明的,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的算出了金字塔的高度,使古埃及阿美西斯钦羡不已。

  塞乐斯的方法既巧妙又:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的.。是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

  在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:

  1.圆被任一直径二等分。

  2.等腰三角形的两底角相等。

  3.两条直线相交,对顶角相等。

  4.半圆的内接三角形,一定是直角三角形。

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。

  这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的。

  塞乐斯对古希腊的和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。

  塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。"

数学家的故事11

  苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫。可他父母省吃俭用。拼死拼活也要供他上学。他在读初中时。对数学并不感兴趣。觉得数学太简单。一学就懂。后来的一堂数学课影响了他一生的道路。

  那是苏步青上初三时。他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学。而是讲故事。他说:[当今世界。弱肉强食。世界列强依仗船坚炮利。都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫。振兴科学。发展实业。救亡图存。在此一举。`天下兴亡。匹夫有责`。在座的每一位同学都有责任。"他旁征博引。讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:[为了救亡图存。必须振兴科学。数学是科学的`开路先锋。为了发展科学。必须学好数学。"苏步青一生不知听过多少课。但这一堂课使他终身难忘。

  杨老师的课深深地打动了他。读书。不仅为了摆脱个人困境。而是要拯救中国广大的苦难民众,读书。不仅是为了个人找出路。而是为中华民族求新生。当天晚上。苏步青辗转反侧。彻夜难眠。在杨老师的影响下。苏步青的兴趣从文学转向了数学。并从此立下了[读书不忘救国。救国不忘读书"的座右铭。一迷上数学。不管是酷暑隆冬。霜晨雪夜。苏步青只知道读书。思考。解题。演算。4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄。用毛笔书写。工工整整。中学毕业时。苏步青门门功课都在90分以上。

  17岁时。苏步青赴日留学。并以第一名的成绩考取东京高等工业学校。在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域。在完成学业的同时。写了30多篇论文。在微分几何方面取得令人瞩目的成果。并于1931年获得理学博士学位。获得博士之前。苏步青已在日本帝国大学数学系当讲师。正当日本一个大学准备聘他去任待遇优厚的副教授时。苏步青却决定回国。回到抚育他成长的祖任教。回到浙大任教授的苏步青。生活十分艰苦。面对困境。苏步青的回答是[吃苦算得了什么。我甘心情愿。因为我选择了一条正确的道路。。

数学家的故事12

  20世纪80年代初,数学大师陈省身同意担任南开大学数学所所长时,他正在担任着美国国家数学研究所所长。当时,他既要为美国的数学研究所创建尽心尽力,又要为南开数学所的建立未雨绸缪,因此,陈先生虽身在伯克利处理繁重的事务,却仍然关心着南开数学所建设的各项工作,并以至事无巨细,都要过问关照。我们从陈先生为南开数学所的建设给胡国定先生的信件中看到,内容多是介绍著名数学家来讲学,为中国学生出外留学以及争取他们回国,捐钱捐物,以及对南开未来的设想等等。涉及的国内外人物有100多人。

  经过艰苦的.努力,南开数学所于1985年正式挂牌成立。宣布陈省身为所长,胡国定为副所长。当时的中国数学,还处在恢复和发展的起步阶段。陈省身认为,南开数学所要办成开放的数学所,使得南开的数学活动能够为全国服务。因此,吴大任根据陈省身的建议,归纳提出南开数学所的办所宗旨是:“立足南开,面向全国,放眼世界。”实行这一方针的具体措施就是组织“学术活动年”。于是,每年在南开举行为期三个月到半年的学习班,研究生都可以参加。每班选择一个主题,聘请国内外一流专家承担教学工作,为达到研究的前沿,多半由陈省身出面邀请一些国际名家来演讲,国内外专家从基础讲起,使大家迅速接近世界先进水平。这样的“学术年”先后举办了10年,共12次。连续10年举办学术年,使得南开数学所在全国数学界赢得了盛誉。1995年,学术年活动告一段落。许多国内一流的数学家如吴文俊、谷超豪、齐民友、王柔怀、张恭庆、杨乐等著文庆贺。“学术年”这一活动影响了中国的一代数学家。可谓是得天时顺人心,得到了数学界老中青各阶层的广泛欢迎。来自国内外的数学界的专家学者,聚集在以陈省身为首的南开数学所进行学术交流,莫不感到兴致勃勃。

  陈省身对南开数学所的建设更是精心照料,胡国定先生在回忆数学所的发展时,曾讲述了一桩不为人知的逸事。1987年,为南开数学的发展而建的“谊园”招待所在施工期间,学校基建处向胡国定报告,工期恐怕要拖后,可能赶不上暑期“学术年”的使用,胡先生听了眉头一皱也无可奈何。陈先生知道后,拄着拐杖到工地找工人师傅聊天,看能不能提前竣工。工人们看老先生的面子,说努力一下也许行。陈先生大喜过望,立刻打电话给胡国定先生,说今天晚上我请客,请工人师傅吃饭,陈先生亲自为工人师傅敬酒。几天后,胡先生看到夜间的工地灯火通明。“谊园”招待所工程,终于按期交付使用了。

  报效祖国,着眼于中国本土的数学发展,用陈先生自己的话说就是:“为数学所我要鞠躬尽瘁,死而后已。”这是他的肺腑之言,也是他多年来的行动。陈先生把他获得沃尔夫数学奖的5万美金奖全数交给了数学所;1988年,陈省身到美国休斯顿授课和研究,所得酬金两万美金也捐给了数学所;还捐了汽车5辆。1987年3月17日,在给胡国定的信中说:“我的遗嘱,会有一笔钱给南开数学所。”到了21世纪,他为南开数学所设立了上百万美金的基金,其中半数是他自己多年的积蓄。至于图书、杂志以及其他的零星捐助,已无法精确统计。他自己说,除了儿子伯龙、女儿陈璞之外,南开数学所是我的第三个孩子。

数学家的故事13

  他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上“共轭矩阵”是他先提出来的,人类一千多年来解不出“五次方程式的通解”,是他先解出来的`。自然对数的“超越数性质”,全世界,他是第一个证明出来的人。他的一生证明“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。

  埃尔米特数学并不是真的那么差劲,只是他认为,当时,他们当地的数学教学氛围死气沉沉,而数学课本就象一堆废纸,所谓的数学成绩好的人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;因为他一旦考糟了,老师就用木条打他的脚,这也是他痛悔数学考试的原因之一;他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”

  在抵制考试的同时,埃尔米特又花了大量时间去看数学大师,如牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。

数学家的故事14

  恩师难忘 .欧拉1707年4月15日生于瑞士的巴塞尔。父亲是一位乡村穷牧师,一心想让聪颖的欧拉学习神学,以承父业。因此,父亲从小就让儿子读圣经,作祷告,对儿子进行严格的宗教教育。而欧拉最喜爱的是数学,为了不使父亲伤心,小欧拉常常等到父亲熟睡后,再偷偷地起来做数学题,或者在数学书外面套一张圣经的书皮,以逃避父亲的注意。

  父命难违。1720年,13岁的欧拉还是按照父亲的意愿,考入了瑞士的一所名牌大学——巴塞尔大学学神学。当时,享誉世界的数学家、物理学家约翰贝努里(1667——1748)正在校执教。他除了讲授数学基础课外,还给少数高材生个别授课。约翰旁征博引、生动风趣、极富魅力的数学讲座,吸引了许多外系学生来旁听。欧拉是约翰教授的最忠实的听众,总是早早地坐在最前一排,闪烁着一双天真无邪的大眼睛,聚精会神地听讲。在约翰教授的影响下,欧拉对数学的兴趣与日俱增。

  慧眼识才。毕竟,欧拉当时只是一个13岁的孩子,个子比一般学生矮一头,大学生们谁也没有把他放在眼里,更没有引起约翰教授的注意。有一次,约翰在讲课时,无意中提到一个当时数学家还没有解决的难题。没有想到,这个瘦小的孩子课后交来了一份关于难题的解答,尽管还有不甚严谨之处,但构思非常精巧,论述恢弘大气,约翰非常惊喜。他当即决定,每星期在家单独为欧拉授课一次。欧拉在以后的自传中回忆道:“我找到了一个把自己介绍给著名的约翰贝努里教授的机会。……他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学著作,尽我所能地去研究它们。如果我遇到什么困难和障碍,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切困难。……无疑,这是在数学学科上获得及时成功的最好的方法。”欧拉的聪颖勤奋也深深地吸引了教授的儿子尼丹尔,两人从此结为终身好友。

  1722年,欧拉在巴塞尔大学获学士学位。第二年,16岁的欧拉又获哲学硕士学位,成为这所古老的大学有史以来最年轻的硕士。父亲执意要欧拉放弃数学,把精力用在神学上。迷恋数学的欧拉既不肯放弃数学,又不愿公然违抗父亲的.意志。在这决定人生方向的关键时刻,约翰教授登门做说服工作。教授动情地对固执的父亲说:“亲爱的神甫,您知道我遇到过不少才气洋溢的青年,但是要和您的儿子相比,他们都相形见绌。假如我的眼力不错,他无疑是瑞士未来最了不起的数学家。为了数学,为了孩子,我请求您重新考虑您的决定。” 父亲被打动了。欧拉当了约翰的助手。从此,欧拉和数学终身相伴。

数学家的故事15

  高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和高斯生活了10多年后因病去世,没有为高斯留下孩子。迪德里赫后来娶了罗捷雅,第二年高斯们的孩子高斯出生了,这是高斯们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重高斯的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

  在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。高斯发现姐姐的儿子聪明伶利,因此高斯就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为高斯所做的一切,深感对高斯成才之重要,高斯想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持高斯成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。高斯性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,高斯总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟高斯一样无知。

  罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,高斯也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管高斯已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

  7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,高斯进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),高斯对高斯的成长也起了一定作用。

  在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家ET贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。

  当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。ET贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有高斯写的答案是正确的,而其高斯的孩子们都错了。高斯没有明确地讲过,高斯是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

  高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对高斯刮目相看。高斯特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。高斯们一起学习,互相帮助,高斯由此开始了真正的数学研究。

  1788年,11岁的高斯进入了文科学校,高斯在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让高斯继续学习。

  布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

  1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为高斯支付各种费用,送高斯入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当高斯为自己的前途、生计担忧而病倒时虽然高斯的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但高斯没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援高斯。公爵为高斯付诸了长篇博士论文的.印刷费用,送给高斯一幢公寓,又为高斯印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。高斯在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

  1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。高斯悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但高斯是位刚强的汉子,从不向高斯人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理高斯的未公布于众的数学手稿时才得知高斯那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"

  慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,高斯的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示高斯,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,高斯甚至愿意给高斯增加薪金,为高斯建立天文台。现在,高斯又在高斯的生活中面临着新的选择。

  为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其高斯学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,高斯一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

  高斯的学术地位,历来为人们推崇得很高。高斯有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

  高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了高斯的足迹。从研究风格、方法乃至所取得的具体成就方面,高斯都是1819世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

  虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在高斯快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

  1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命高斯为科学顾问,这一年,德国汉诺威政府也聘请高斯担任政府科学顾问。

  高斯的一生,是典型的学者的一生。高斯始终保持着农家的俭朴,使人难以想象高斯是一位大教授,世界上最伟大的数学家。高斯先后结过两次婚,几个孩子曾使高斯颇为恼火。不过,这些对高斯的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

【数学家的故事】相关文章:

[经典]数学家的故事02-27

数学家的故事07-29

数学家的故事07-30

数学家的故事(精选)07-26

有关写数学家的经典故事 数学家的经典故事04-13

[中国史上的数学家故事] 数学家的故事05-23

【精选】数学家的小故事10-05

数学家的小故事04-02

数学家陈景润的故事02-08

数学家的小故事05-25