数学家的小故事(通用15篇)
数学家的小故事1
出入相补原理
即2ab+(b-a)^2=c^2,化简便得a^2+b^2=c^2。其基本思想是图形经过割补后,其面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。例如√(2(c-a)(c-b))+(c-b)=a,√(2(c-a)(c-b))+(c-a)=b,√(2(c-a)(c-b))+(c-a)+(c-b)=c等等。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的证明。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。
赵爽自称负薪余日,研究《周髀》,遂为之作注,可见他是一个未脱离体力劳动的.天算学家。一般认为,《周髀算经》成书于公元前100年前后,是一部引用分数运算及勾股定理等数学方法阐述盖天说的天文学著作。而大约同时成书的《九章算术》,则明确提出了勾股定理以及某些解勾股形问题。赵爽《周髀算经注》逐段解释《周髀》经文。
数学家的小故事2
1903年,在美国纽约的一个学术报告会上,数学家科尔表演了一个小插曲:他走上讲台,拿起粉笔,一言不发,在黑板上做长长的计算。
267-1=147 573 952 589 676 412 927。
然后又算呀算呀,又算出一个结果:
193 707 721761 838 257 287
=147 573 952 589 676 412 927。
两次计算的结果完全相同,听众席上掌声雷动。
台上的人不作任何解释,台下的人不提任何问题,却能完全互相了解,共享成功的喜悦。他们是打的什么哑谜?究竟是怎么一回事呢?
原来,科尔是在报告他自己关于质数研究的一个好结果。他的计算表明,267-1不是质数,因为它可以分解成两个大于1的自然数的乘积。
小学生数学故事:数学家科尔的小插曲:不是质数的自然数太多太多,大部分自然数都是合数。为什么证明了267-1不是质数就要鼓掌呢?
这是因为267-1属于一类著名的数,叫做梅森数。梅森(Mersenne,1588~1648年)是法国数学家,他研究过形如2p-1的数,其中p是质数,后来人们称这类数为梅森数。梅森证明了,当p=2,3,5,7,13,17,19,31时,对应的8个梅森数都是质数。由此猜想,在梅森数中出现质数的机会可能比较多。人们要寻找更大的新质数,往往就到梅森数里去淘金。在1903年科尔报告之前,当时的数学家们还指望267-1可能被确定是一个大的质数。科尔通过板演,告诉他的同行们,267-1不是质数,是一个有21位的.合数,不必再为它耗费时间做大量计算了。科尔还具体求出这个大合数的两个质因数,其中一个是9位数,另一个是12位数。当时还没有电子计算器,更没有电子计算机,要靠手算得出这样的结果,非常不容易。这一进展当然会赢来热烈鼓掌。
科尔为了得到他所报告的结果,用去了三年中所有星期天的时间。
现在电了计算机已经普及,计算起来就方便得多了。在一台486微机上,利用数学软件,计算267-1只需要不到1秒钟的时间;再把所得的21位数分解成质因数的乘积,也不过花费35秒左右。
利用电子计算机可以方便地判断一个不太大的整数是质数还是合数。
现在寻找人们暂时还不知道的更大的新质数,也都利用电子计算机,不过因为计算量太大太大,需要设计一套特殊方法。
如果一个梅森数是质数,就叫做梅森质数。通常打破大质数纪录的都是梅森数。
1985年发现的大质数是第30个梅森质数,有65050位数字。这个纪录在7年后被刷新,1992年发现了第31个梅森质数,有227832 位数字。
1994年发现了第32个梅森质数,有258716位数字。
1996年发现了第33个梅森质数,有378632位数字,它是21257787-1。
梅森数除去对寻找大质数有特殊贡献而外,在编码中也有实际应用。
算呀算呀,算出一个结果。
数学家的小故事3
小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。
小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。
高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。
值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。
有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
人们一直把高斯的'成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”
数学家的小故事4
爱迪生是一位伟大的发明家,他从小就爱动脑筋,常常想出一些好主意。有,他靠自己的聪明救了妈妈的命。
那一年,爱迪生刚满七岁。一天,妈妈忽然肚子痛,疼得在床上直打滚。爸爸急忙骑马到几十里外去请医生。太阳快落山的时候,医生终于来了。一检查,原来妈妈得的是急性阑尾炎,需要马上做手术。上医院已经来不及了医生决定在家里做手术。
医生环顾四周,迟疑了片刻,说:“房间里光线太暗没法做手术。”爸爸说:“那就多点几盏油灯。”医生还是摇头,连连说不行。大家急得团团转。
突然,爱迪生一溜烟似的奔出大门。不一会儿,他回来了,捧着一面明晃晃的大镜子,身后还跟着好几个小男孩,每个人都捧着一面大镜子。爸爸一见又急又气,斥责道“什么时候了,还胡闹!”爱迪生委屈地说:“我没胡闹,我想出办法了。不信您瞧!”爱迪生让小伙伴们站在点燃的.油灯旁边,由于镜子把光聚在一起,病床上一下子亮堂起来了。爸爸恍然大悟,医生也露出满意的笑容。
手术做得很成功,妈妈得救了。医生夸奖爱迪生,说:“今天多亏了你这个小家伙,他真是个聪明的孩子!”
数学家的小故事5
1、陈景润:
陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。
他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
2、高斯:
高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。
他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁!
3、华罗庚:
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”。
这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。
那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
4、拉格朗日:
拉格朗日(1736—1813),法国著名的.数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
5、祖冲之:
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方. 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。
数学家的小故事6
熊庆来(),字迪之,出生于云南省红河哈尼族彝族自治州弥勒市息宰村。熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。
熊庆来自幼养成勤奋好学的好习惯,非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。他潜心于学术研究与著述,编写的《高等数学分析》等10多种大学教材是当时第一次用中文写成的数学教科书,创办了中国近代史上第一个近代数学研究机构——清华大学算学研究部和国立东南大学、清华大学等3所大学的数学系,以及中国数学报。他一直治学严谨,数学论文常常修改三五遍以上。在任教授期间,他总是非常认真地批改学生的`作业。作业中的错误他用红毛笔仔细地逐本圈阅,改正。好的作业,则用大笔书写一个“善”字,表示满意。他经常废寝忘食,不顾病痛地工作。据熊庆来的夫人回忆,在东南大学第一年,过度疲劳使他吐血,而且又犯痔疮,熊庆来竟顽强地伏在床上坚持编写教义。熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会。1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。在这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。
数学家的小故事7
夜幕降临,父亲给我找了一道题让我解决:10间教室,每间装6盏灯,关闭5间教室的'灯,剩多少盏?我一听暗自欣喜,对我来说那是易如反掌。毫不犹豫地回答:"简单!用6*10-6*5=30盏灯。"然而,父亲却摇头微笑,我有些不满地质问:"难道答案不是30盏吗?"
父亲耐心地说:"你理解错了,问题是求总共有多少盏灯,而非亮着的灯数。怎能相减呢?"我顿时茅塞顿开,重新计算:"正确解答应该是6*10=60盏灯!"这时,我想到了另一道智力题,决定考考父亲:"一位渔夫钓鱼,钓到6条无头,9条无尾,8条半个身子的鱼,请问他钓了多少条鱼?"父亲听后苦思冥想,却始终无法得出答案。我自信满满地揭晓谜底:"6条无头即'0',9条无尾即'0',8条半截也是'0',所以渔夫一条鱼也没钓到!"父亲听后捧腹大笑,称赞不已。
这次的数学小故事,真是既生动有趣又富有挑战性啊!
数学家的小故事8
秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。
在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的.实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。 因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的时间领先,其实想法的成熟,还有待提高。为了解决 “孙子问题”中的不足,秦九韶推广了“孙子问题”的解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。
数学家的小故事9
德国著名大科学家高斯八岁时进入乡村小学读书.教数学的老师喜欢处罚学生。
有一天,老师说:“你们今天替我算从1加2加3一直到100的和.谁算不出来就罚他不能回家吃午饭.”
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算.有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来.
不到半个小时,小高斯拿起了他的石板走上前去.“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了.”他想不可能这么快就会有答案了.
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。
拓展:高斯的生平经历介绍
著名数学家高斯从小出生在德国一个底层的木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。
关于高斯的生平经历,当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的`理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。
而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。
在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。
数学家的小故事10
高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的'助手和一个小保险公司的评估师.当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.。
数学家的小故事11
柯尔莫哥洛夫是公认的20世纪最伟大的数学家之一,同时也是成就最广泛的数学家之一,研究领域几乎横跨整个数学,但在数学之外,他还有别样的人生。
柯尔莫哥洛夫从小兴趣广泛,除了数学之外,还喜欢旅行、游泳、艺术、诗歌、历史等等。研究数学的同时,还广泛涉猎古建筑,雕塑和绘画等等,被誉为百科全书般的人物。少年时代的柯尔莫哥洛夫最痴迷的是数学和历史,他曾写过一篇关于地主财产的论文,但他的历史老师告诉他:“你在论文中只提供了一种证明,对数学来说也许够了,但对历史来说还不够,历史学家至少需要五种证明”。听罢此话,柯尔莫哥洛夫当即回应说:“那我还是学只要一种证明的数学吧!”
中学毕业之后,柯尔莫哥洛夫当过一段时间的列车售票员。身体本来就强壮加之战斗民族的天性,他特别喜欢打抱不平,偶尔还会和不讲理的乘客一言不合就大打出手。
尽管在数学上已经做出了非凡的成就,但他还是按捺不住躁动的内心。26岁的时候,他找来了亚历山德罗夫(另一位非常杰出的数学家),一起乘船沿伏尔加河穿越高加索山脉,来到了塞万湖中的小岛上,开始每天游泳爬山晒太阳的惬意生活,在这期间,亚历山德罗夫完成了一本拓扑学传世名著《拓扑学》,而柯尔莫哥洛夫则开了扩散理论研究的先河。
完成概率论公理化的划时代意义工作之后,柯尔莫哥洛夫又怀念起了那种惬意的生活。于是他又找来了亚历山德罗夫,之后两人在科马洛夫卡买了一座房子。他们每周花一整天时间来爬山滑雪或干脆就是只穿短衣短裤在冰天雪地里徒步30公里。在这期间,他又完成了许多重要工作。而且陆续地有许多著名数学家和学生们慕名来访,二人与他们进行了许多亲切而有意义的讨论,内容不仅有数学,还有柯尔莫哥洛夫热爱的艺术文学等等。这些学生中就有后来的数学大师盖尔范德和马尔采夫。
而柯尔莫哥洛夫最著名的一次打架事件发生在一次苏联科学院的的会议上。刚开始他与卢津(另一位数学家,不是他的导师鲁金)的意见不和,后来就开始激烈的争吵,再后来气不过的'柯尔莫哥洛夫干脆直接冲上去暴打了对方一顿。两位大人物在公众场合打架传出去肯定有很大负面影响,但xxx得知后只是会心一笑,反而还喜欢上了柯尔莫哥洛夫的这种性格。
就算年纪大了他也不消停,在莫斯科很冷的时候突发奇想地要游泳,于是脱光衣服跳进了冰冷的河水中,结果后来差点冻死,被送进医院抢救才捡回了一条命。但后来不甘心的柯尔莫哥洛夫又搞了一次同样的危险行为,还美其名曰“相信自己的身体”。70岁的时候他还举办滑雪比赛,结果很高兴地就飞奔了出去,把其他人甩在了身后。
柯尔莫哥洛夫的荣誉和成就实在太多,只能借用费马的一句名言叫“这里的空白太小,写不下”。不仅仅是对他的成就,就连他的这种潇洒快意的人生,我们也只能仰望。
数学家的小故事12
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表浮胆第感郢啡电拾钉浆面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的`尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
数学家的小故事13
华罗庚在中学读书时,曾对传统的珠算方法进行了认真思考。他经过分析认为:珠算的加减法难以再简化,但乘法还可以简化。乘法传统打法是“留头法”或“留尾法”,即先将乘法打上算盘,再用被乘数去乘;每用乘数的'一位数乘被乘数,则在乘数中将该位数去掉;将乘数用完了,即得最后答案。华罗庚觉得:何不干脆将每次乘出的答数逐次加到算盘上去呢?这样就省掉了乘数打上算盘的时间例如:28×6,先在算盘上打上2×6=12,再退一位,加上8×6=48,立即得168,只用两步就能得出结果。对于除法,也可以同样化为逐步相减来做节省的时间就更多的。凭着这一点改进,再加上他擅长心算,华罗庚在当时上海的珠算比赛中获得了冠军。
数学家的小故事14
艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。
诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的`基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。
数学家的小故事15
诺伊曼
诺伊曼(1903~1957),美籍匈牙利数学家,美国科学院院士。
诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913 年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作 是开辟了数学的一个新分支------对策论。1944年出版了他的杰出著作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。
高斯(1777~1855)
高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。
高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。
高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。
欧拉(1707~1783)
欧拉瑞士数学家,英国皇家学会会员。
欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的'劳累,致使他双目失明。但是,这并没有影响他的工作。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。
欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。
阿基米德(约公元前287~212年)
——希腊物理学家、数学家。
阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗 澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。"
在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上……
阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。
【数学家的小故事】相关文章:
数学家的小故事04-02
【精选】数学家的小故事10-05
(经典)数学家的小故事10-26
数学家的小故事05-25
高斯数学家的小故事12-09
数学家的小故事简短12-03
数学家华罗庚的小故事01-27
数学家高斯的小故事01-28
数学家的小故事通用01-29
数学家的小故事(热)09-19