当前位置:壹学网>作文>写作素材>名人故事>数学家的故事

数学家的故事

时间:2024-11-04 11:49:09 名人故事 我要投稿

数学家的故事14篇[精华]

  数学家的故事 篇1

  柯召(1910年4月12日~20xx年11月8日),字惠棠,浙江温岭人,数学家、中国科学院资深院士、被称为中国近代数论的创始人、二次型研究的'开拓者、一代数学宗师。 1933年毕业于清华大学,1937年(民国二十六年)获英国曼彻斯特大学博士学位,1950年加入九三学社,1955年当选为中国科学院院士。

数学家的故事14篇[精华]

  柯召在英国曼彻斯特大学深造时,在导师Mordell的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩。

  他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人才。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。

  数学家的故事 篇2

  读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。

  我最佩服的数学家是苏步青。因为他有着不懈的努力与追求,因为他有着热切的爱国精神。他的一生不知道算过了多少道算式、多少道题目。他热爱祖国,热爱数学,他把他对祖国的爱恋化成了一段段令人赞叹的事例,但是我想,数学家苏步青的伟大事例也是跟他的老师杨老师一席话有着密不可分的作用。

  杨老师曾对苏步青全班同学说过:":“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的`巨大作用。这堂课的最后一句话是:“为了救亡图存,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

  所以我想,苏步青的精神使我敬佩,可是他的老师更令人记忆深刻。我会像苏步青学习。每一天,用自己的努力化成一个又一个的算式。

  数学家的故事 篇3

  一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根 火柴者获胜。

  规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 规则一:若限制每次所取的火柴数目最少一根,最多 三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲﹑乙 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能 留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的 火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上 之分析可知,甲只要使得桌面上的`火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3 根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。

  规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为 k+1 之倍数。

  规则三:限制每次所取的火柴数目不是连续的数,而是一些 分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取甲,须 使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火 柴数的奇或偶,也是无法依照己意来控柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上 的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

  通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。

  规则四:限制每次所 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的 火 柴数为5之倍数加2时,甲也倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。

  通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵 甲先取,则甲每次取时所留火柴 韩信点 兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人 一列余6人……。刘邦茫然而不知其数。 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问 剩三,七七数之,剩二,问物几何?」 答曰:「二十三」书「孙子算经」也有类似的问题 术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩 二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则 置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人 发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数 学中占有一席非常重要的地位。

  数学家的故事 篇4

  高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个和他了10多年后因病去世,没有为他留下。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常凭的经验为年幼的高斯规划。高斯尊重他的父亲,并且秉承了其父、谨慎的性格。1806年迪德里赫逝世,此时高斯做出了许多划时代的成就。

  在成长过程中,幼年的高斯主要是力于和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有,为人热情而又能干投身于纺织贸易颇有成就。他发现的聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  在数学史上,很少有人象高斯一样很地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

  罗捷雅真诚地儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

  7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学是布特纳(Buttner),他对高斯的成长也起了一定作用。

  在全世界广为流传的一则说,高斯10岁时算出布特纳给们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。

  当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

  高斯的计算,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的,直到巴特尔斯逝世。他们学习,互相,高斯由此了真正的数学研究。

  1788年,11岁的高斯进入了文科,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出作高斯的资助人,让他继续学习。

  布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

  1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的.仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

  1806年,公爵在抵抗拿破仑统帅的法军时阵亡,这给高斯以沉重打击。他悲痛欲绝,长对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"

  慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。,高斯又在他的生活中面临着新的。

  为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根数学和天文学,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

  高斯的学术地位,历来为人们推崇得很高。他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

  高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

  虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的。

  1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

  高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了旅程。

  数学家的故事 篇5

  杨辉

  杨辉,中国南宋时期杰出的家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。

  他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

  杨辉的数学研究与教育的.重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

  他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。

  数学家的故事 篇6

  在中国现代数学洪荒之地,有一位抱定“战士死在沙场幸甚”的开拓者,他就是华罗庚。华罗庚是中国解析数论、典型论、矩阵几何学、自守函数论与多个复变函数论等很多方面研究的创始人与奠基者,也是我国进入世界著名数学行列最杰出的代表者。他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔-加当-华定理”、“华-王方法”、“华氏算子”、“华氏不等式”等。他一生为我们留下了两百多篇学术论文,10部专著,其中8部被国外翻译出版,有些已列入本世纪经典著作之列。他把数学方法创造性地应用于国民经济领域,筛选出了以改进工艺问题的数学方法为内容的“优选法”和处理生产和组织与管理问题为内容的“统筹法”。他是美国科学院历史上第一个当选为外籍院士的中国学者。他还当选为联邦德国巴伐利亚科学院院士;法国南锡大学、美国伊利诺斯大学与香港中文大学授予他荣誉博士学位。他的名字进入美国华盛顿斯密司-宋尼博物馆,被列为芝加哥科学技术博物馆中当今88个数学伟人之一。

  新中国成立的消息传到美国,他喜泪沾裳。为了重建自己的家园。他毫不犹豫地放弃了美国伊利诺大学终身教授的职务,丢下了优厚的薪俸、汽车和洋房,怀着一腔热诚,携全家,登上一艘轮船于1950年春,回到了祖国的怀抱。

  回国后,他在户口簿的文化程度一栏中填上了:“初中毕业”4个字。这对华罗庚来说是个难忘的字眼,而对别人来说又是个费解的事情。这究竟是怎么回事呢?还是让我们来看着他的成才道路吧。

  1910年11月12日,华罗庚出生于江苏省金坛县的一个贫苦家庭。父亲开了一个小杂货店,惨淡经营,艰难谋生。华罗庚15岁那年,毕业于金坛县初中,后到上海中华职业学校读书。由于家庭贫寒,交不起饭费,只念了1年,就离开学校,失学了。

  华罗庚从小聪明好学,念初中时,在数学课上就表现出了特殊的才华。一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”王老师在读这道题时,读得很慢,声音抑扬顿挫。读完题目后,王老师把目光扫向全班同学,一张张紧张思索的面孔,一道道疑惑不解的目光尽在王老师的视野之内。突然,一个学生站起来,说:“这物品是23个。”这是个熟悉的声音,这声音把同学们从思索和疑惑中唤醒过来。大家用惊异的目光看着他。这个最先说出答案的同学就是少年华罗庚。华罗庚在解这道题时是这样想的:从“七七数之剩二”开始,就是说,七数余二,那么七的倍数再加二定是这个数,不防设这个数是7×3+2=23。再对23进行检验:23被3除,余2;23被5除余3,因此,23符合题目条件。正是由于华罗庚从小勤奋好学,王维克老师加倍看重他的聪明与才华。华罗庚在学校时给王老师留下了很深的印象。

  就在华罗庚18岁那年,王维克老师当上了金坛县中学的校长。王校长爱惜人才,把华罗庚请到学校当会计兼做事务工作。从此,华罗庚更忙起来了。他回忆这段时间的经历时说:“除了学校繁重的事务外,早晚还要帮助母亲料理小店的事务。每天晚上大约8点钟才能回家。清理小店的帐目之后,才能钻研数学,常常到深夜。”这就是说,即使在繁忙的事务之后,华罗庚也不忘学习数学,因此,他的数学水平也在不断提高。

  华罗庚19岁那年,一个偶然的机会,他借了一本杂志,名叫《学艺》,在这本杂志的第7卷10号上刊登了一篇由苏家驹教授撰写的文章《代数的五次方程式之解法》,引起了华罗庚的浓厚兴趣。通过阅读与思考,华罗庚发现文章中存在着根本性的错误。于是他问王校长,“能不能写文章批评苏教授文章中的错误?”华罗庚的提问得到了王校长的肯定回答:“当然可以,就是圣人,也有错误,有什么不能批评的!”王校长是意大利诗人但丁名著《神曲》的译者。他的一席话给华罗庚以很大的鼓励。于是华罗庚写了一篇逻辑严谨、说理充分的文章,经王校长过目与修改后,寄给了上海的《科学》杂志。文章于1930年发表了。文章一发表,就引起了当时不少人的重视。当时清华大学数学系主任熊庆来教授看到了这篇文章。而且得知这篇文章的作者是一位仅有初中毕业文凭的金坛县初中的青年人,更感到震惊。他看出了华罗庚的才华,马上写信到金坛中学,请华罗庚到清华大学工作。华罗庚接到信后,再三考虑:一方面,他想起在此之前曾因王校长让他在金坛县初中教补习班,由于有人向上告状说王校长任用一个不合格的教员(一个初中毕业生怎么能有资格教初中),王校长不得不辞去校长职位,而且自己也不再教书;另一方面,由于自己家境贫寒,连去北京的路费都有困难,于是回信婉言谢绝了熊教授的邀请。熊教授接到华罗庚的回信后,这位求贤若渴的“伯乐”又写信去催。信中说:如果你不来,我将亲自去金坛拜访你。华罗庚又一次收到熊教授的来信,从中得知其邀请的真切与诚意,觉得自己实在不能辜负熊教授的好意,只好由父亲出面借了路费,应邀到了清华大学。

  在清华大学,华罗庚当上了一名助理员。主要职务是管理数学系的图书、收发公文、代领文具、绘制图表等。这样,他可以利用工作之余读书、听课。由于熊教授的安排与指导,华罗庚学业进步很快,学习也更加刻苦,常常自学到深夜。他只用一年半的时间就修完了大学课程,用4个月的时间自学了英语,并能达到读英语数学文献的水平。另外,他还自修了德文,特别是他听了研究生课程后,数学修养有了很大的'提高,并不断取得了新的成果。他写的3篇论文,先后在国外数学杂志上发表,清华大学的教师对他不得不刮目相看。不久,在清华大学的教授会议上决定让他这位只有初中学历的人任清华大学的教师。可见,华罗庚的成才主要是由于他自己努力奋斗的结果。华罗庚在给中学生谈学习数学时说过:“不怕困难、刻苦学习,是我学好数学最主要的经验。”他还说:“我不轻视容易的问题,今天练习了容易的,明天碰到较难的也就容易了。我也不怕难的问题,我时刻准备着在必要时把一个问题算到底。我相信,只要辛勤劳动,没有克服不了的困难、没有攻不破的堡垒。”华罗庚就是这样刻苦学习,才从一个只有初中学历的青年,自学成为一名大学教师的。

  1936年熊庆来教授又推荐华罗庚到英国剑桥大学留学。1938年华罗庚回到日本铁蹄下灾难深重的祖国,由熊庆来教授推荐当上了昆明西南联大教授,当时的他年仅28岁。在西南联大期间,华罗庚的生活是清苦的。他们一家住在昆明郊区的一个小村子中的两间小厢楼里,厢楼下是猪栏、牛圈,卫生环境可想而知。华罗庚在回忆这段生活时说:“晚上一灯如豆。所谓灯,乃是一个破香烟罐,放上一个油盏,摘些破棉花做灯芯。为了节省菜油,芯子捻得小小的。晚上牛蹭痒,擦得地动山摇,危楼欲倒!”华罗庚虽然居住在这样的厢楼中,过着艰难的生活,但他还是勤奋努力,不断地耕耘,用3年时间写出了一部数学手稿,名为《堆垒素数论》,华罗庚写完《堆垒素数论》后,自然打算出版成书。于是他又把中文稿译成英文稿,并把中文稿寄到当时的“中央研究院”,但是,中央研究院不但未能给予出版,还把手稿弄丢了。这对华罗庚是一个莫大的打击,3年的心血,付之东流,怎么不使他心疼呢!后来,华罗庚把手头的一份《堆垒素数论》英文稿寄到当时苏联的维诺格拉托夫院士那里,终于由苏联把英文稿译成俄文稿出版了。这本书出版后,引起了世界数学界的震动。新中国成立后《堆垒素数论》(俄文版)又被译成中文,在自己的祖国出版了。像《堆垒素数论》先在别国出版,后在国内出版,在世界出版史上也属于罕见的现象。

  华罗庚一共上过9年学,只有一张初中毕业文凭,却成了蜚声中外杰出的数学家。华罗庚的一生是勤奋好学的一生,是自学成才的典范。他的格言“天才在于积累,聪明在于勤奋”披露了这一成功的秘诀。他提出的“树老易空,人老易松,科学之道,戒之以空,戒之以松”的箴言是值得后人永志不忘的。这位开拓中国现代数学研究的巨人,逝世前的遗愿竟是“甚盼尸体能对革命有用,俟墙可作人梯,跨沟可作人桥。”

  数学家的故事 篇7

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大家。他原是一位很精明的,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的算出了金字塔的高度,使古埃及阿美西斯钦羡不已。

  塞乐斯的方法既巧妙又:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

  在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的`伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:

  1.圆被任一直径二等分。

  2.等腰三角形的两底角相等。

  3.两条直线相交,对顶角相等。

  4.半圆的内接三角形,一定是直角三角形。

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。

  这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的。

  塞乐斯对古希腊的和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。

  塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。"

  数学家的故事 篇8

  公元1902年9月23日,那是一个普通的日子,可对祖辈从福建同安逃荒到浙江平阳带溪村的父亲苏祖善家来说,那是一件难得的大喜、大吉的日子。真是老天有眼,天官赐福。

  父亲苏祖善家添了一丁,夫妻俩笑得合不拢嘴,终于有了世代务农的“接班人”。可父亲苏祖善夫妻俩从未上过学,尝够没有文化的苦,望子成龙心切,于是给儿子选取“步青”为名,算命先生还说上一番好话,以“步青”为名,将来定可“平步青云,光宗耀祖”。

  名字毕竟不是“功名利禄”的天梯。正当同龄人纷纷背起书包上学的时候,父亲苏祖善交给儿子的`却是一条牛鞭。从此,苏步青头戴一顶父亲编的大竹笠,身穿一套母亲手缝的粗布衣,赤脚骑上牛背,鞭子一挥,来到卧牛山下,带溪溪边。苏步青家养的是头大水牛,膘壮力大,从不把又矮又小的牧牛娃放在眼里。

  有一次,水牛脾气一上来,又奔又跳,把苏步青摔在刚刚砍过竹的竹园里。真是老天庇佑,他跌在几根竹根中间,未有皮肉之苦,逃过一劫。

  放牛回家,苏步青走过村私塾门口,常被琅琅的书声所吸引。有一次,老师正大声念:“苏老泉,二十七,始发愤,读书籍。”他听后,就跟着念了几遍。此后,他竟记住了顺口溜,放牛时当山歌唱。

  老师父亲苏祖善常听儿子背《三字经》、《百家姓》,心存疑惑。有一次,正好看见儿子在私塾门口“偷听”,为父的心终于动了,夫妻一合计,决定勒紧裤带,把苏步青送进了私塾。

  数学家的故事 篇9

  华罗庚上小学时,一个老师对新上任的老师介绍学校的情况时,说这个学校的学生都是穷人家的孩子,多数是笨蛋……这话深深刺痛了华罗庚的心,他决心要以优异的成绩回敬那位老师。

  一天,数学老师出了一道有趣的难题给大家:今有一物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问为几何?

  全班同学面面相觑答不上来,唯有华罗庚站起来说:“老师,我知道,是‘23’。”全班震惊,老师也点头称赞。从此,他便爱上了数学课。

  华罗庚的故事都值得我们学习。正当他求学时,父亲店铺生意日见萧条,无力供他继续读书了,他只好辍学看柜台。他利用一本代数、一本几何、一本只剩50页的微积分开始了自学。白天没有时间,晚上守着小油灯一遍遍地演算。父亲说他是个“书呆子”,几次逼他把书烧掉,邻居也劝他好好做买卖,一些上了大学的同学有的对他也有些冷淡。不幸的'是,他又患上了可怕的伤寒,医生摇头叹息地叫家人为他准备“后事”。他向死神发起挑战,挣扎着下地干活,左腿又被摔成残废。他还是不气馁,拄着拐杖忍着疼痛进行锻炼。练得能走了,就到一所中学去干杂务,给老师打水、削铅笔,即使这样,他也没有放弃自学。就在中学工作不久,他开始向报刊投寄数学论文,多次退稿也不灰心。后来他发表了《苏家驹之代数的五次方程式解法不能成立的理由》一文,得到了数学泰斗熊庆来的赏识,很快把他介绍到清华园,安置在自己身边。

  一年半后,华罗庚攻下了清华大学数学专科的全部课程,并且自修了英语和法语。接着,他的数学论文在国内外刊物上陆续发表。1934年,在熊庆来的推荐下,任命华罗庚为数学系助教。不久,校领导又任命他为数学教授。

  一个贫困而又残疾的人,终于以惊人的毅力自学成才,并成为驰名中外的数学家。华罗庚的故事值得我们为之学习。

  数学家的故事 篇10

  高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

  高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。

  老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。

  1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

  1791年高斯最后找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。

  1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:

  一个正n边形能够尺规作图若且唯若n是以下两种形式之一:

  1、n=2k,k=2,3,…

  2、n=2k×(几个不同「费马质数」的`乘积),k=0,1,2,…

  费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。

  1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

  任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。

  事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

  数学家的故事 篇11

  华罗庚在中学读书时,曾对传统的珠算方法进行了认真思考。他经过分析认为:珠算的加减法难以再简化,但乘法还可以简化。乘法传统打法是“留头法”或“留尾法”,即先将乘法打上算盘,再用被乘数去乘;每用乘数的一位数乘被乘数,则在乘数中将该位数去掉;将乘数用完了,即得最后答案。华罗庚觉得:何不干脆将每次乘出的'答数逐次加到算盘上去呢?这样就省掉了乘数打上算盘的时间例如:28×6,先在算盘上打上2×6=12,再退一位,加上8×6=48,立即得168,只用两步就能得出结果。对于除法,也可以同样化为逐步相减来做节省的时间就更多的。凭着这一点改进,再加上他擅长心算,华罗庚在当时上海的珠算比赛中获得了冠军。

  数学家的故事 篇12

  12岁开始研究相对论

  雅各布·巴内特(Jacob Barnett)喜欢坐在起居室的一角,在一块白板和落地窗前涂涂画画,那些涂画并不是一个12岁男孩的幻想,而是围绕现代物理学中许多难题的演算。记者、著名物理学教授蜂拥而至,人们沉浸在发现天才的狂喜中,但雅各布从不理会这些用复杂眼神盯着他的陌生人——爸妈会应付他们,他只需考虑是去玩会儿电子游戏,还是继续玩眼前的方程。

  雅各布刚出生时,父母就隐隐觉得他与众不同。他一直不说话,甚至不看人,直到两岁时被查出患有阿斯伯格综合症(自闭症的一种温和的表现形式)。患有这种病的人会讷于表达自己的情感。一开始,父母担心他在学校会跟不上,结果恰恰相反,3岁时他就可以拼出5000块拼图,或者翻出全国公路路线图,背诵出每一条高速公路的名字。如果手边有一张纸,他会用各种几何图形和方程填补它的空白。有一天,父母发现他坐在门廊边,一两个星期后他们得知,雅各布已经自学了所有高中的微积分、物理和几何课程。

  一次智商测试后,父母被告知:雅各布的IQ为170,比爱因斯坦更高。而高智商带来的副作用是,他很难入睡:“一闭上眼睛,我就能看到很多数字在头顶上打转。它们让我保持清醒,很吓人。”母亲知道,高智商并不来自于遗传:“我们全家的数学都很烂。”就连雅各布也发现了这一点:“每次我试图在饭桌上讨论数学,全家人就会一脸呆滞地望来望去。”

  惊慌的母亲给普林斯顿大学的高级研究所写了封电子邮件,录制了一段儿子阐释物理学的视频。著名天体物理学家司科特·特里梅安(Scott Tremaine)敏锐地发现了这个男孩,他回复了一封邮件,写道:“我对他在物理学方面的兴趣以及他迄今为止所掌握的物理学知识留下了深刻的印象。他目前所进行的研究已经涉及了天体物理学与理论物理学中多个最为棘手的问题,任何能够解决这些问题的人都会获得诺贝尔奖。”

  8岁时,他高中毕业,进入了印第安纳大学天体物理学系。和他一起上课的人几乎都比他大10岁以上。“但我们还是得经常向他走去,向他请教。”他的同学说。而教授则说:“他的问题永远领先我的课堂内容两步,教室里的每个人,都只有瞠目结舌看着他的份。”

  12岁时,他开始攻读博士。印第安纳大学为他提供了一个研究员的职位,现在,他的研究主要集中在相对论和宇宙大爆炸学说上。印第安纳大学雄心勃勃地表示,已经为他的'研究找来了一些项目基金,希望能够有所突破。爱因斯坦提出相对论时26岁,两倍于如今的雅各布。

  他常常面无表情,摄影师让他笑一下,他挤出来的笑容既羞怯又不自然。他的妈妈在旁边看着,眼泪突然开始在眼眶里打转:“我的天哪!他两岁时,我最担心的是他也许永远都不会属于我们这个世界,现在我最担心的,是他永远失去了说‘我爱你’的能力。”

  数学家的故事 篇13

  贝塞克维奇(AbramS.Besicovich,1891-1970年)是具有非凡创造力的几何分析学家,生于俄罗斯,一战时期在英国剑桥大学。他很快就学会了英语,但水平并不怎么样。他发音不准,而且沿习俄语的习惯,在名词前不加冠词。有一天他正在给学生上课,班上学生在下面低声议论教师笨拙的英语。贝塞克维奇看了看听众,郑重地说:“先生们,世上有5000万人说你们所说的'英语,却有两亿俄罗斯人说我所说的英语。”课堂顿时一片肃静。

  数学家的故事 篇14

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。是位兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去。在这座号称"之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得埃拉托塞和卡农的门生,钻研《几何原本》。

  后来阿基米德成为兼数学家与力学家的伟者,并且享有"力学之父"的美称。其原因在于他通过大量发现了杠杆原理,又用几何演泽推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

  《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。

  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的.三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学地结合起来。

  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

  《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

  《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。

  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于的无穷小分析领域里去,预告了微积分的诞生。

  正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

【数学家的故事】相关文章:

[经典]数学家的故事02-27

数学家的故事(精选)07-26

数学家的故事07-29

数学家的故事07-30

有关写数学家的经典故事 数学家的经典故事04-13

[中国史上的数学家故事] 数学家的故事05-23

数学家的小故事04-02

关于数学家的故事12-08

【精】数学家的故事09-21

【精选】数学家的小故事10-05