【热门】数学家的故事15篇
数学家的故事1
祖冲之(公元429—500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。

祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3。14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3。141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的.事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
数学家的故事2
法国数学家格罗腾迪克,是20世纪最伟大的数学家之一,但他基本上属于另类,与学术界的数学家距离很远。他没有受过正规教育,也没有按部就班地在学术阶梯上晋升,而且在1970年以后完全脱离学术界。
格罗腾迪克于1928年3月24日生于柏林,13岁(1941年)作为难民来到法国。他父亲是俄国人,在二战中被纳粹杀害,母亲是德国人。格罗腾迪克在难民营中长大,受到一些初等教育,战后他到法国高等师范学校和法兰西学院听课。1949年起,他开始研究泛函分析,并取得突出结果。1953年,开始转向同调代数学,1957年转向代数几何学,14年间,完全改变代数几何学的面貌。1960—1970年,格罗腾迪克任法国高等科学研究院教授,1970年以后回家务农。
格罗腾迪克在代数几何学方面的贡献博大精深,大致可以分为10个方面。他和其他人合作出版十几部巨著,共1万页以上,成为代数几何学的圣经。
迄今为止,格罗腾迪克的.著述中还有很多思想未被完全了解,但已经产生许多大结果。1984年,格罗腾迪克的手稿《纲领草案》在部分数学家中流传,1994年正式发表,其内容尚有待发掘,1988年瑞典科学院授予他克拉福德奖,他拒绝领取,并痛斥当前的学术界腐败。不过,现在仍有许多同事和学生继续他的工作。
数学家的故事3
在人类的数学史上,法国的笛卡儿占有重要的位置。他对数学的重大贡献,是他发现了一种新的数学方法,把几何和代数这两门独立发展的数学学科结合成一门新的独立分支————解析几何。
1596年3月31日,笛卡儿诞生于法国的一座小城——拉哈。笛卡儿小时候身体很弱,直到八岁才进入拉夫雷士的教会学校并在那里学习了八年。
因为体弱,老师允许他可以晚些起床,可他并没有利用这个机会睡懒觉,而是在脑子里回想学过的知识,以后他就养成了在床上思考问题的习惯。晚年他曾说:“我喜欢在被窝里静静地独立思考,许多数学和哲学上的好想法,就是这样产生的。”
笛卡儿有着强烈的求知欲,他后来回忆自己在拉夫雷士的学习生活时说:“那些被认为是最奇怪、最不寻常的有关各种学科的书,凡是我能搞到的,都把它们读完了。”
这就怪不得笛卡儿日后会在天文学、物理学、哲学等许多领域,尤其是数学领域里表现出多种才能来。
巧遇
1617年秋天,在荷兰南部的布莱达小镇上,贴出一张布告,人们围着布告议论纷纷,这惊动了一个正在街上闲逛的士兵,一个20岁左右的小伙子,他挤进人群想去看个究竟。可是他看不懂布告上的文字,只得用法语向周围的人打听:“布告上写了些什么?”
一位学者,当地多特学院的院长毕克门打量了一下这个莽撞的士兵,开了一个玩笑:“想知道布告的内容吗?很好,我可以告诉你,但你以后得把你的答案告诉我。”
原来,当地正在开展一项有奖数学竞赛活动,布告上写的就是数学竞赛题。
第二天一早,年轻的士兵敲响了这位荷兰学者的家门,递上去他的答案,毕克门漫不经心地接过答案,才瞥了一眼,便注意起来,看来这个小伙子是懂得数学的,等到看完全部答案,毕克门被震撼了:难题全部都解答了,不但全部正确,而且解得简单明了,有的解法还相当巧妙!
这个有着如此敏捷的数学天才的`士兵便是笛卡儿。原来,笛卡儿从学校毕业后,只有两条路摆在面前:要么为教会服务,要么到军队服役,笛卡儿对宗教不但不感兴趣,还有深深的反感,自然选择后者,于是他穿上戎装来到荷兰,才有了他的这件逸事。
这次巧遇,对笛卡儿产生了很大的影响,毕克门打心眼里喜欢这个聪明的法国小伙子,他们成了一对忘年交,经常在一起热烈地讨论数学问题。笛卡儿在那里感到很愉快,同时,他意识到自己长于数学,萌生出致力于数学研究的念头。
蜘蛛
1619年,笛卡儿在多瑙河德国南部的一座小城——诺伊堡的军营。这是他一生的转折点,他终日沉迷在深思中,考虑数学和哲学问题。
1619年11月10日,白天,笛卡儿生病了,遵照医生的嘱咐,躺在床上休息。突然,笛卡儿眼睛一亮,原来正在天花板上爬来爬去的一只蜘蛛引起了他的注意。
这只蜘蛛在常人的眼里或许是平常得不能再平常了,它正忙着在天花板靠近墙角的地方结网,它忽而沿着墙面爬上爬下,忽而顺着吐出丝的方向在空中缓缓移动。
笛卡儿对这只蜘蛛感兴趣,是因为他这时正思索着用代数方法来解决几何完体,但遇到了一个困难,便是几何中的点如何才能用代数中的几个数表示出来呢?晚上,他心中充满极大的兴奋,带着愉快而又焦急的心情去入睡,使得他接连做噩梦,头脑久久不能平静。
凌晨,想着这只悬在半空中的蜘蛛,沉思中的笛卡儿豁然开朗:能不能用两面墙的交线及墙与天花板的交线,来确定它的空间位置呢?他一骨碌从床上爬起来,在纸上画了三条互相垂直的直线,分别表示两墙面的交线和墙与天花板的交线,用一个点表示空间的蜘蛛,当然可以测出这点到三个平面的距离。
这样,蜘蛛在空中的位置就可以准确地标出来了。笛卡儿写道:“第二天,我开始懂得这惊人发现的基本原理。”这就是指他得到了建立解析几何的线索。
后来,由这样两两互相垂直的直线所组成的坐标系,就被人们称之为笛卡儿坐标系。
数学家的故事4
在阳光明媚的十一月,磻溪小学一年一度的数学节开幕了。同学们都沉浸在欢乐的数学王国之中。我在这次数学节中,知道了很多数学家的故事,陈景润就是其中的一个。
陈景润,1953年5月22日生于福建市。他从小是个瘦弱、内向的孩子,却独独爱上了数学。演算数学题占去了他学习和生活的大部分时间,枯燥无味的代数方程式使他充满了幸福感。1953年,21岁的.陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调到中国科学院数学研究所工作。
陈景润在福州英华中学读书时就知道了一位名叫“哥德巴赫”的德国数学家提出了“任何一个大于2的偶数均可写成两个素数之和”,简称“1+1”的数学猜想。哥德巴赫一生都没有证明这个猜想,带着遗憾离开了人世,却留下了这道数学难题,成为了世界数学界的“一座高峰”。“哥德巴赫猜想”像一块磁石吸引了陈景润。他以惊人的毅力、辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,成功摘取了这颗世界瞩目的数学明珠。
从陈爷爷的身上,我看到了他坚持不懈地攀登数学高峰的努力,看到了他为了科学研究而忘我工作的奉献精神,也看到了他辛勤汗水浇开的成就之花。
在本次数学节中,我的同学们也在积极寻觅着一个个数学家的故事,努力地解决一个个数学难题,摘取着一顶顶数学竞赛桂冠。我们一起在快乐的数学王国中嬉戏、遨游。
数学家的故事5
出入相补原理
即2ab+(b-a)^2=c^2,化简便得a^2+b^2=c^2。其基本思想是图形经过割补后,其面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。例如√(2(c-a)(c-b))+(c-b)=a,√(2(c-a)(c-b))+(c-a)=b,√(2(c-a)(c-b))+(c-a)+(c-b)=c等等。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的证明。赵爽的数学思想和方法对中国古代数学体系的.形成和发展有一定影响。
赵爽自称负薪余日,研究《周髀》,遂为之作注,可见他是一个未脱离体力劳动的天算学家。一般认为,《周髀算经》成书于公元前100年前后,是一部引用分数运算及勾股定理等数学方法阐述盖天说的天文学著作。而大约同时成书的《九章算术》,则明确提出了勾股定理以及某些解勾股形问题。赵爽《周髀算经注》逐段解释《周髀》经文。
数学家的故事6
艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。
诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的'道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。
数学家的故事7
在数学史上,很难再找到如此年轻而如此有创见的数学家。他就是出生在法国的伽罗华(1811——1832)伽罗华才华横溢,思维敏捷,十七岁时就写了一篇关于《五次方程代数解法》这个世界数学难题的论文,最先提出了近代数学的一个基本概念——“群”。可是这篇论文被法国科学院一位目空一切的数学家丢失了。次年,他又写了几篇数学论文送交法国科学院,不料主审人因车祸去世,论文也不知所踪。再过两年,他被近把自己的研究再次写成简述,寄往法国科学,他去信尖锐地提醒权威们:“第一,不要因为我叫伽罗华,第二,不要因为我是大学生,”而“预先决定我对这个问题无能为力。”在这封咄咄逼人的书信面前,有两位数学家不得不宣读了他的研究简述,但随即又以“完全不能理解”予以否定,其实,他们并没有读懂伽罗华的论文。
伽罗华二十一岁那年死于决斗。临死前他对守在旁边的弟弟说:“不要忘了我,因为命运不让我活到祖国知道我的名字的`时候。”在决斗前夜,他给友人写了著名的“科学遗嘱”,其中充满自信地说:“我一行中不只一次敢于提出我没有把握的命题,我期待着将来总会有人认识到:解开这个谜对雅可比和高斯是有好处的。”
他的预言成为现实,那是在三十八年他的六十页厚的论文终于出版的时候,从此,他被认为“群论”的奠基人。
伽罗华,杰出的数学天才,我们为他的年轻而短暂的生命惋惜。
数学家的故事8
数学是基础性学科,在人类历史发展,社会和生活中发挥着不可替代的作用,从古至今,涌现出了成千上万的富有创造性的数学家,比如:毕达哥拉斯、伽略、费马、欧拉、阿涅西……他们用自己非凡的智慧和独具一心的创造,为人类社会做出了巨大的贡献。
在科学界,由于受家庭环境的熏陶,父子都是科学家的情况并不少见,就像祖冲之及他的儿子祖暅之,但一个家族几代人都是科学家,则比较少见,而瑞士的伯努利家族就是一个令人惊叹的学霸之家。
在这个家族三代人中,产生了近十位科学家,其中有三个成就特别突出。
雅各布伯努力大学时学习的是艺术专业,但他自学数学,结识了众多数学家,并成为巴塞尔大学的数学教授,此后,雅各布又先后当选为巴黎科学院的.外籍院士及柏林科学协会会员。
约翰伯努利是雅各布的亲兄弟,他解决了悬链线问题,提出洛心达法则、最速降线和测地线问题,还给出了求积分的交量替换法等。同时,作为一位数学教授,约翰还培养出了一批杰出的数学家如:欧拉洛必达……
雅各布和约翰都在学术领域取得了非凡成就,其后人也青出于蓝而胜于蓝,他就是丹尼尔。
丹尼尔在1747年成为柏林科学院院士,1748年成为巴黎科学院院士,1750年当选英国皇家学会会员,他还曾十几次获得巴黎科学院奖赏,获奖次数可以与欧拉比肩。
我努力家族在欧洲享有着极高学术声誉,我想说,这可能就是遗传基因吧,这可能就是留在骨子里那份聪明吧!我是永远做不到的。
数学家的故事9
欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。
1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。
欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的`研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。
1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。
数学家的故事10
青门门功节都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到
抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的`回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心。
数学家的故事11
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子“咕咕”叫,走路直打晃。
老牛走过来,问:“狐狸,你这是怎么啦?”这是怎么啦?”
狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完老牛干活去了。
“哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐 里有许多玉米,能告诉我一共有多少吗?”
“保密!”野猪没好气地答了一声。
“哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有 多少玉米,连你有多大岁数都能知道。”
“真的!”野猪觉得不可思议。
狐狸咳嗽了两声,说:“把你筐子里的玉米数乘以2,加上5,把所得的.数再乘上50,加上你的年龄,再减去250,把得数告 诉我。”
野猪趴在地上算了半天,最后说:“得1506。”
狐狸立刻说:“你筐里有15个玉米,你今年6岁。”
野猪一摸前脑想,对,筐里的玉米数是15个。野猪一摸后脑勺想,今年自己真是6岁。
“神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
“算的呀!你算得结果是1506。最左边的两位数15,就是玉米数;最右边的一位数6,就是你的年龄。”
“你太伟大啦!”野猪抱着狐狸亲了一下。
“伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说,你上了狐狸的当啦!野猪不信。
小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米数15是你自己写上去的,乘以 100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可以看 清楚。”
“好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米,用每根玉米棒在狐狸头上都狠敲了一下。这下可好, 瘸腿狐狸头上添了4个大包!
数学家的故事12
1.费马大定理的证明
由于费马大定理的名声,在纽约的地铁车站出现了乱涂在墙上的话:xn + yn = zn 没有解,对此我已经发现了一种真正美妙的证明,可惜我现在没时间写出来,因为我的火车正在开来。
2.闵可夫斯基证明四色定理
一次拓扑课,闵可夫斯基向学生们自负的宣称:“这个定理没有证明的最要的原因是至今只有一些三流的数学家在这上面花过时间。下面我就来证明它……”于是闵可夫斯基开始拿起粉笔。这节课结束的时候,没有证完,到下一次课的时候,闵可夫斯基继续证明,一直几个星期过去了……一个阴霾的早上,闵可夫斯基跨入教室,那时候,恰好一道闪电划过长空,雷声震耳,闵可夫斯基很严肃的说:“上天被我的骄傲激怒了,我的证明是不完全的……”
3.格雷厄姆说的笑话
格雷厄姆说:“我知道一数论学家,他仅在素数的日子和妻子同房:在月初,这是挺不错的,2,3,5,7;但是到月终的日子就显的难过了,先是素数变稀,19,23,然后是一个大的间隙,一下子就蹦到了29,……”
4.笛卡尔的浪漫数学情书
法国数学家笛卡尔流浪到瑞典,认识了瑞典一个小公国18岁的公主克里斯汀,后成为她的数学老师,日日相处使他们彼此产生爱慕之心,公主的.父亲国王知道了后勃然大怒,下令将笛卡尔处死,后因女儿求情将其流放回法国,克里斯汀公主也被父亲软禁起来。笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,大发慈悲就把这封信交给一直闷闷不乐的克里斯汀,公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。
5.希尔伯特的讨论班
一次在希尔伯特的讨论班上,一个年轻人报告,其中用了一个很漂亮的定理,希尔伯特说:“这真是一个妙不可言的定理呀,是谁发现的?”那个年轻人茫然的站了很久,对希尔伯特说:“是你……”
6.科布尔的愤怒
科布尔是上个世纪美国的院士,做代数几何,一度很有影响。据称,他有无穷多个博士论文的题目:当你证明了一个2维的情况的时候,他叫下一个博士生去证明3维的情况,然后叫下下个博士生去做4维的。后来有个叫杰拉尔德·赫夫的博士,不但做了5维的情况,而且对一般的n也解决了。这就让科布尔的未来的无穷个博士无所事事了。科布尔很愤怒。
7.牛顿
牛顿的一生落落寡合,没有结婚,也没有知心的朋友,人们结交他都是因为他很高的地位和渊博的学识。一个同事回忆说他只见过牛顿笑过一次,当时,有一个人问牛顿说欧几里得的几何原本如此的老朽,不知道有什么价值。对此,牛顿放声大笑。
8.高斯
听说过数学家高斯一件极其变态的事情,但是从另一个侧面我们也可以知道他不仅仅是天分出众,更重要的是努力。高斯中年的时候妻子就死去了,那个时候,高斯就很有名望,家里有保姆。妻子病的一塌糊涂,不过他还是专心自己的研究。这个当然不是一个值得称道的品质。就是妻子的弥留之际,他还是没有去她的身旁,保姆实在看不下去,就去高斯做研究的地方去找他说让他赶快过去,高斯随口答应了,但是依然做自己的东西。保姆又来了一次,痛斥了他一番,岂知高斯告诉她说:“我马上就过去,你让她再等一会……”。
9.托姆
托姆是法国人,35岁得的菲尔兹奖。在一次采访当中,作为数学家的托姆同两位古人类学家讨论问题。谈到远古的人们为什么要保存火种时,一个人类学家说,因为保存火种可以取暖御寒;另外一个人类学家说,因为保存火种可以烧出鲜美的肉食。而托姆说,因为夜幕来临之际,火光摇曳妩媚,灿烂多姿,是最美最美的。美丽是我们的数学家英雄们永恒的追求。
结尾诗
我不知道世人怎样看我;
可我自己认为,我好像只是一个在海边玩耍的孩子,
不时的为拾到更光滑些的石子或更美丽些的贝壳而欢欣,
而展现在我面前的是完全未被探明的真理之海。
——Issac Newton
数学家的故事13
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的`训斥高斯,但是高斯却说他已经将答案算出来了,
就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学家的故事14
生活中,数学无所不在,发挥着重大的作用,而日常生活中的点滴也需要运用到数学。记得在一个周日午后,为庆祝妹妹十岁的生日,我们在酒店设宴款待亲朋好友。她邀请了六位同学、一位大姐姐和一位小弟弟,算上我就共十人聚在一起,在单独的包厢内共享欢乐时光。当美味的蛋糕被端上桌时,妹妹却遇到了棘手的问题:该如何公正地分配呢?她害怕因为分配不均而让大家闹情绪。
于是,我提出了建议:“既然我们共有十人,不妨把蛋糕均匀分为十等份,每人获得的份额就是整个蛋糕的十分之一,这样便确保了公平。”
听后有人担忧地说:“倘若每个人得到的十分之一不足解馋,那又该怎么办?”
我接着提议道:“我们可以按照每个人的食量来切割蛋糕,想吃多少切多少,这样一来就没有争议了。”
接下来,我们就按照这个方案分享起美味的'蛋糕,每个人都吃得心满意足。生日派对结束之后,我们都带着愉快的心情回到了各自的家。
这次的生日聚会让我深深体会到数学的重要性。只有掌握了数学知识,才能在需要时展现出自身的实力。
数学家的故事15
李冶(1192-1279)是中国古代数学家,原名李治,字仁卿,号敬斋,金代真定府栾城县(今河北省栾城县)人。
李冶生于大兴(今北京市大兴县),父亲李通为大兴府推官。李冶自幼聪敏,喜爱读书,曾在元氏县(今河北省元氏县)求学,对数学和文学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”1230年,李冶在洛阳考中词赋科进士,任钧州(今河南禹县)知事,为官清廉、正直。1232年,钧州城被蒙古军队攻破。李冶不愿投降,只好换上平民服装,北渡黄河避难。
经过一段时间的颠沛流离之后,李冶定居于崞山(今山西崞县)之桐川。1234年初,金朝终于为蒙古所灭。金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。他的工作条件是十分艰苦的,不仅居室狭小,而且常常不得温饱,要为衣食而奔波。但他却以着书为乐,从不间断自己的写作。据《真定府志》记载,李冶“聚书环堵,人所不堪”,但却“处之裕如也”。他的学生焦养直说他:“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”。经过多年的艰苦奋斗,李冶的《测圆海镜》终于在l248年完搞。它是我国现存最早的一部系统讲述天元术的著作。
1251年,李冶的经济情况有所好转,他结束了在山西的避难生活,回元氏县封龙山定居,并收徒讲学。1257年在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些进步的政治建议。l259年在封龙山写成另一部数学著作-一《益古演段》。1265年应忽必烈之聘,去燕京(今北京)担任翰林学士知制洁同修国史官职,因感到在翰林院思想不自由,第二年辞耿还乡。李冶是一位多才多艺的学者,除数学外,在文史等方面也深有造诣。他晚年完成的《敬斋古今注》与《泛说》是两部内容丰富的著作,是他积多年笔记而成的。《泛说》一书已失传,仅存数条于《敬斋古今注》附录。他还着有《文集》四十卷与《壁书丛制》十二卷,已佚。1279年,李冶病逝于元氏。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。
所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的`一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题基本解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。例如李冶在东平(今山东省东平县)得到的一本讲天元术的算书中,还不懂得用统一符号表示未知数的不同次幂,它“以十九字识其上下层,曰仙、明、霄、汉、垒、层、高、上、天、人、地、下、低、减、落、逝、泉、暗、鬼。”这就是说,以“人”字表示常数,人以上九字表示未知数的各正数次幂(最高为九次),入以下九字表示未知数的各负数次幂(最低也是九次),其运算之繁可见一斑。从稍早于《测圆海镜》的《铃经》等书来看,天元术的作用还十分有限。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的“识别杂记”阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式),这部分内容是对中国古代关于勾股容圆问题的总结。后面各卷的习题,都可以在“识别杂记”的基础上以天元术为工具推导出来。李冶总结出一套简明实用的天元术程序,并给出化分式方程为整式方程的方法。他发明了负号和一套先进的小数记法,采用了从零到九的完整数码。除O以外的数码古已有之,是筹式的反映。但筹式中遇O空位,没有符号O。从现存古算书来看,李冶的《测圆海镜》和秦九韶《数书九章》是较早使用O的两本书,它们成书的时间相差不过一年。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。
《测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学著作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。李冶清楚地看到这一点,他坚信天元术是解决数学问题的一个有力工具,同时深刻认识到普及天元术的必要性。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,促使他写一本深入浅出、便于教学的书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。李冶大概认识到,天元术是从几何中产生的。因此,为了使人们理解天元术,就需回顾它与几何的关系,给代数以几何解释,而对二次方程进行几何解释是最方便的,于是便选择了以二次方程为主要内容的《益古集》(11世纪蒋周撰)。正如《四库全书·益古演段提要》所说:“此法(指天元术)虽为诸法之根,然神明变化,不可端倪,学者骤欲通之,茫无门径之可入。惟因方圆幂积以明之,其理尤届易见。”李冶是很乐于作这种普及工作的,他在序言中说:“使粗知十百者,便得入室啖其文,顾不快哉!”
《益古演段》的价值不仅在于普及天元术,理论上也有创新首先,李冶善于用传统的出入相补原理及各种等量关系来减少题目中的未知数个数,化多元问题为一元问题。其次,李冶在解方程时采用了设辅助未知数的新方法,以简化运算。
【数学家的故事】相关文章:
数学家的故事08-06
[经典]数学家的故事07-10
数学家的故事12-01
数学家的故事(精选)07-26
数学家的故事07-30
数学家的故事09-29
[中国史上的数学家故事] 数学家的故事05-23
有关写数学家的经典故事 数学家的经典故事07-02
华罗庚数学家的故事12-15
有趣的数学家故事10-04