[推荐]数学家高斯的故事
数学家高斯的故事1
高斯,德国数学家、物理学家、天文学家,近代数学奠基者之一,有“数学王子”之称。
高斯出生在一个普通家庭,祖父是一个朴实的德国农民,父亲也以种果树为生,母亲则是一个穷石匠的女儿。
高斯的父亲每天都有忙不完的事,根本没有时间照顾小高斯。只要高斯不哭,他就专心算自己的账。而小高斯则会安静地坐在一旁看父亲算账。有一次,还在牙牙学语的高斯像往常一样聚精会神地看父亲算账。父亲一边算,一边直摇头,无论怎么算也算不出一个结果来,过了好久,他终于说出了一个结果。父亲紧缩的眉头终于舒展开,他深深地吸了一口气,点上一支烟,拿起笔准备把答案写下来。可是小高斯却在一旁不停地摇着头,他用小手敲击着桌子,向父亲示意这个结果是错误的,然后自己从口中慢慢地说出了一个数字。父亲感到非常吃惊,儿子还不会说话,怎么会报数呢?他突然眼前一亮,莫不是高斯说的是自己所计算的正确答案。于是,父亲抱着好奇的心理,又重新算了一遍,答案竟然真的和小高斯说的一样,高斯对了!
父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学题了。此后,高斯的父亲发现高斯具有良好的天赋,于是决定全力供他上学。
高斯8岁时进入乡村小学读书。他们的数学老师非常傲慢,瞧不起乡下人,觉得自己不能长久地留在这个地方。他认为:穷孩子的`智商都是低下的,无论他们怎么努力,都不会让他们变聪明。因此在给这些孩子上课的时候,他总是提不起精神来。
这一天,数学老师的情绪非常低落。看到老师那阴沉的脸孔,同学们顿时变得紧张起来,知道老师又会在今天找他们的麻烦了。
果然不出所料,老师发话了:“你们今天替我算从1加2加3……一直加到100的'和。谁要是不会算就不让他回家吃饭。” 说完这句话后,老师就不动声色地拿起一本小说坐在椅子上看。
教室里的学生拿起石板开始计算。一些学生加到一个数后就擦掉石板上的结果,再加下去,数越加越大,非常麻烦。有些孩子的小脸儿涨得通红,有些孩子手心、额头渗出了汗来。
不一会儿,小高斯拿起了他的石板走上前去说:“老师,我算出来了。”
老师头也没抬,摆了摆手,说:“回座位重算!肯定错了。”他认为,这么小的孩子不可能这么快得出答案。
可是高斯却并没有离开,把石板伸向老师面前说:“老师!我想这个答案是对的。”
数学老师非常生气,正准备发火,可是一看石板上整齐地写着这样的数:5050。他非常吃惊,因为他自己曾经算过,得到的数也是5050。这个8岁的孩子怎么这样快就得出这个数值呢?
高斯向老师讲了自己的解题思路,这个方法就是古时中国人和希腊人用过的方法。高斯的发现,让老师感到很惭愧,觉得自己以前太高傲了,不应该轻视穷人的孩子。他后来端正了自己的教学态度,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯的数学进步很快。
数学家高斯的故事2
位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时在穷乡僻壤教书是怀才不遇。
高斯十岁时,老师考了那道著名的`「从一加到一百」,进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
数学家高斯的故事3
说起数学家中最出名的天才,那一定是高斯。
关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了答案。高斯把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。
你知道吗?小高斯在三岁时,就已经学会计算了。有一天高斯观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。
小高斯家里很穷,冬天,爸爸总是要高斯早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。
高斯的'进步很快,不久之后,老师就没什么东西可以教高斯了。后来,高斯进了高一级学校,可数学老师看了高斯的作业后,告诉他以后不必上数学课了。
值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。
有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”
数学家高斯的故事4
高斯(1777~1855)是德国数学家、物理学家和天文学家,英国皇家学会会员。
高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。
少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。
1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。
同时作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的.一个很有实际意义的成果。
高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。
高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。
数学家高斯的故事5
数学家高斯的故事有很多,其中最有趣的一个就是在高斯念小学的时候,数学老师教给了小学生加法,因为老师当时想要休息,所以便出了一道很难的题目考考同学,而老师正要借口出去喝水时却被高斯叫住了,原来老师刚刚在黑板上写下题目高斯就已经算出答案来了,高斯用一种新的数学方法算出了老师的难题,使得老师大为惊讶。
数学家高斯的故事还包括一个他给父亲发薪水的故事,高斯的父亲是一个泥瓦匠,每个星期六他总要在晚上给工人发薪水,当时小高斯只有3岁,他看着爸爸计算工人的工资,在爸爸把一沓钱给工人的时候,高斯突然站起来说爸爸你弄错了,然后他说了一个另外的数目,当时很多工人和他的爸爸都不相信,认为这是小孩子的恶作剧,但是当大人重新算一遍的时候发现小高斯竟然是对的。
还有一个关于数学家高斯的故事,当时高斯在上小学,而老师在教给同学们方程之后就想看一看同学们的学习水平,特意出了一道大学生才能算出来的题目写在黑板上,毫无疑问高斯又是全班第一个算出来的,并且他的答案准确无误,当时他的老师对这个孩子刮目相看,特意从大城市买了一本最好的算术书送给高斯,对当时还很小的高斯说你的数学水平已经超过了我,我已经没有东西可以教你了。
其实高斯上大学靠的还是别人的资助,他的家庭不好,他的父亲一度想让高斯辍学去当一个园丁,是他的舅舅竭力阻拦并拿出自己的全部积蓄供高斯上学,之后,14岁的高斯又遇见了法国一位公爵,这位慷慨的公爵资助高斯读完了所有的课程。
高斯的生平经历介绍
著名数学家高斯从小出生在德国一个底层的`木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。
当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。
而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。
在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。
数学家高斯的故事6
德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的数学题。正常情况下,他总是在两个小时内完成这项特殊作业。像往常一样,前两道题目在两个小时内顺利地完成了。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。他没有在意,埋头做起来。然而,做着做着,他感到越来越吃力。困难激起了他的斗志:我一定要把它做出来!天亮时,他终于做出了这道难题。导师看了他的作业后惊呆了。他用颤抖的声音对青年说:“这真是你自己做出来的?你知不知道,你解开了一道有两千多年历史的'数学悬案?阿基米、牛顿都没有解出来,你竟然一个晚上就解出来了!我最近正在研究这道难题,昨天不小心把写有这个题目的小纸条夹在了给你的题目里。” 多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。”这个青年就是数学王子高斯。
数学家高斯的故事7
今天,我读了著名数学家高斯的故事。高斯出生在德国一个贫苦的家庭,从小喜欢数学,会自己寻找各种方法解答数学问题。高斯每天刻苦研究数学,被公认为“数学之王”。
高斯走上数学之路后,得到了很多人的帮助和支持。高斯的妈妈对高斯充满了希望,给了他莫大的鼓励。高斯的.舅舅把大部分精力都放在他身上,用活泼有趣的方法引导高斯做各种问题。他的老师也在高斯身上去倾注了鲜为人知的心血和汗水。
老师十分重视培养高斯的数学能力,引导他向更高的目标奋进。一个好心的公爵也尽力地资助他从事长期的数学研究。妈妈给他信心,舅舅给他智慧,老师给他知识,公爵给他力量,高斯就像一棵小树苗,阳光温暖着她,雨水滋润着他,这棵树苗在肥沃的数学土地上茁壮成长。
高斯的成功不仅因为有很多人的帮助,更重要的是高斯自身认真的钻研和探究。高斯十岁那年做出了一道极难的加法题:81297+81495+81693+……+100899。这是一个等差数列的求和问题,数学史家门认为,一个年仅10岁的孩子,能独立发现这一方法实属很不平常。我觉得能独立发现这一方法的高斯太聪明了。我也10岁了,我连这个数学方法听都没有听说过,根本没有办法计算出这么难的题目。
我想,我要像高斯一样刻苦学习数学。遇到难题不要急于请教家长,一定要自己多动脑筋,寻求方法,独立解决问题。我还要像高斯一样热爱数学,全身心地投入到数学学习中去,攻克数学堡垒,成为班级中的“数学之王”。
数学家高斯的故事8
高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的.数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯最后找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。
1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:
一个正n边形能够尺规作图若且唯若n是以下两种形式之一:
1、n=2k,k=2,3,…
2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2,…
费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
数学家高斯的故事9
聪明的小高斯
1785年,8岁的小高斯在德国农村的一所小学里念一年级。
学校的老师是城里来的。他有个偏见,总觉得农村的孩子不如城里的孩子聪明伶俐。不过,他对孩子们的学习,要求还是严格的。
有一天,他给学生们出了一道算术题。他说:“你们算一算,1加2加3,一直加到100,等于多少?谁算不出来,不准回家吃饭。”
说完,他就坐在一边的椅子上,用目光巡视趴在桌子上演算的学生。
不到1分钟的功夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了”
没等小高斯说完,老师就不耐烦地说:“错了!重新再算!”
小高斯很快地把算式检查了一遍,高声说:“老师,没有错!”说着走下座位,把小石板伸到老师面前。
老师低头一看,看见上面端端正正地写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的题,一个8岁的孩子,用不到1分钟时间就算出了正确的得数。要知道他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。他问小高斯:“你是怎么算的?”
小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99是101,3加98也是101把一前一后的数相加,一共有50个101,101乘以50,得5050。”
小高斯的回答,使老师感到吃惊。因为他还是第一次知道这种算法。他惊喜地看着小高斯,好像刚刚认识这个穿着破烂不堪的砌砖工人的儿子。
附:数学家高斯的小故事
高斯是德国著名数学家(1777~1855),出生于一个比较贫困的家庭,父母均没有受过正规教育,父亲安于现状,只希望高斯将来长大后能有一份简单的养家糊口的工作,而母亲虽是个没有文化的'家庭主妇,但目光长远,对高斯要求严格。并尊重孩子的兴趣,希望高斯能有所成就。
高斯在很小的时候就有过人的才华,在他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸!算错了,钱应该是这样”。父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
高斯在7岁时进了小学,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。
原来:1+100=101,2+99=101,3+98=101……50+51=101
前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。
按:今用公式表示:1+2+……+n
高斯的数学老师对学生的态度其实并不好,但当他发现神童高斯的时候心里很是欣慰,而且觉得自己懂的数学不多,教不了高斯更多东西了。并自掏腰包为高斯购买数学书籍。
高斯在十一岁的时候就发现了二项式定理(x+y)n的一般情形,这里n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。
由于高斯有过人的天赋,后来被费迪南公爵发现了,并决定给他经济救援,让他有机会受高深教育,在费迪南公爵的帮助下,高斯进入了一所十五岁的高斯进入一间著名的学院(程度相当于高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。
后来,数学家高斯还用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为“代数基本定理”。
数学家高斯的故事10
晚上,我和妈妈阅读了几位数学家的故事,有高斯、陈景润、华罗庚.....他们都很值得我们学习。
我感受最深的还是数学家高斯小时候的故事。故事的内容是:在高斯念小学的时候,有一次老师教完加法后,因为要去休息,所以出了一道题目要同学们做,题目是:1+2+3+4+……+99+100=?老师心里想,这下小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来高斯已经算出来了,老师一看答案大惊失色,问高斯是怎么算出来的,高斯解释说:“1+100=101,2+99=101,3+98=101……一共有50个101,所以50x101=5050,那不就算出来了啦!”。
看完这个故事,我觉得高斯实在是太聪明了,这么小的年龄,对数学运算就有如此的.灵活性,真值得我们大家学习。
数学家高斯的故事11
高斯最著名的故事莫过于小学时计算1+2+3+。
+100的值.当时高斯上小学,老师在班上出了这样一道题,叫大家算.那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了.老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,.这样一共有50个101,因此结果是5050.还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个20xx年的'数学难题,那就是只用直尺和圆规17等分圆周.高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周.从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家.。
数学家高斯的故事12
德国著名大科学家高斯八岁时进入乡村小学读书.教数学的老师喜欢处罚学生。
有一天,老师说:“你们今天替我算从1加2加3一直到100的和.谁算不出来就罚他不能回家吃午饭.”
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算.有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来.
不到半个小时,小高斯拿起了他的石板走上前去.“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了.”他想不可能这么快就会有答案了.
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。
拓展:高斯的生平经历介绍
著名数学家高斯从小出生在德国一个底层的木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。
关于高斯的生平经历,当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的.时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。
而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。
在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。
数学家高斯的故事13
高斯是数学史上少有的天才,很多人认为伟大的科学家和才子都出自于书香门第,家里人可以对他的智力进行较早的开发。可是,高斯的出身却正好推翻了这一论断。高四的祖父是一个朴实的'德国农民,父亲也是以种果树为生,母亲则是一个穷石匠的女儿。由于家贫,他的母亲在34岁时才做新娘,而他的父亲这时已经40岁了,父亲根本就没有指望他能读书长学问,也根本不用可能对他进行早期教育。幸运的.是,高斯有一个聪明的舅舅,他是一位心灵手巧的织绸能手,虽然文化不高,但知道许多故事。这位舅舅也十分喜欢高斯,常常通过给他讲故事来教育他。
高斯的父亲整天忙于自己的事,只要小高斯不哭,他就专心算自己的帐,而小高斯则经常在旁边一声不响地看父亲算账。有一次,还在牙牙学语的小高斯像往常一样聚精会神的看父亲算账,父亲一边算,一边直摇头,算来算去还是算不出一个结果来,过了好久,才自言自语地报出一个结果,父亲紧锁的眉头终于舒展了,点上一支烟,深深吸了一口,一边准备把答案写下来。可是小高斯却在一旁用小手敲着桌子,不停地摇头,向父亲示意这个结果是不正确的,然后从小嘴中慢慢的说出了一个数字,父亲十分惊异,儿子还不会说话,怎么会报数呢?他突然灵感一现,莫不是高斯说出了自己所计算的正确答案。于是,父亲抱着好奇的心理,重新进行验算,答案竟然和高斯说的一样,小高斯对了。
父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学了。
数学家高斯的故事14
德国著名大科学家高斯八岁时进入乡村小学读书。教数学的老师喜欢处罚学生。
有一天,老师说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。
拓展:高斯的'生平经历介绍
著名数学家高斯从小出生在德国一个底层的木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。
关于高斯的生平经历,当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。
而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。
在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。
数学家高斯的故事15
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。
”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的`小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3++n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
而后,在他上大学的时候,导师每天单独布置给他三道数学题。
像往常一样,前两道题目在两个小时内顺利地完成了。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。高斯做着做着,感到越来越吃力。开始,他还想,也许导师见我每天的题目都做的很顺利,这次特意给我增加难度吧。但是,时间一分一秒地过去了,第三道题竟毫无进展。高斯绞尽脑汁,也想不出现有的数学知识对解开这道题有什么帮助。
困难激起了高斯的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去寻求答案。终于,当窗口露出一丝曙光时,他长舒了一口气,他终于做出了这道难题!
见到导师时,高斯感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……”
导师接过他的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这真是你自己做出来的?” 高斯有些疑惑地看着激动不已的导师,回答道:“当然,但是,我很笨,竟然花了整整一个通宵才做出来。”导师请高斯坐下,取出圆规和直尺,在书桌上铺开纸,叫高斯当着他的面做一个正17边形。
高斯很快地做出了一个正17边形。导师激动地对高斯说:“你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!” 多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。”
这个故事告诉我,问题有时并没有表面上那么困难。我们不能仅仅拘泥于课本上的知识,而应开拓我们的创造力。在常规知识的基础下去进行非常规的思考,有时会有更意想不到的结果。
【数学家高斯的故事】相关文章:
数学家高斯的故事11-07
(经典)数学家高斯的故事08-20
数学家高斯的故事(荐)03-14
(荐)数学家高斯的故事02-26
数学家高斯的故事(通用)02-10
数学家高斯的故事【精】01-31
数学家高斯的小故事01-28
【合集】数学家高斯的故事08-17
【精】数学家高斯的故事05-26
数学家高斯的故事(优)05-12