当前位置:壹学网>教案>数学教案>高中数学教案万能

高中数学教案万能

时间:2025-01-03 09:30:14 数学教案 我要投稿
  • 相关推荐

高中数学教案万能模板

  作为一名优秀的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。那么优秀的教案是什么样的呢?以下是小编帮大家整理的高中数学教案万能模板,仅供参考,大家一起来看看吧。

高中数学教案万能模板

高中数学教案万能模板1

  教学目标:

  1、理解流程图的选择结构这种基本逻辑结构、

  2、能识别和理解简单的框图的功能、

  3、能运用三种基本逻辑结构设计流程图以解决简单的问题、

  教学方法:

  1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知、

  2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构、

  教学过程:

  一、问题情境

  1、情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

  其中(单位:)为行李的重量、

  试给出计算费用(单位:元)的一个算法,并画出流程图、

  二、学生活动

  学生讨论,教师引导学生进行表达、

  解算法为:

  输入行李的重量;

  如果,那么,否则;

  输出行李的重量和运费、

  上述算法可以用流程图表示为:

  教师边讲解边画出第10页图1—2—6、

  在上述计费过程中,第二步进行了判断、

  三、建构数学

  1、选择结构的概念:

  (1)先根据条件作出判断,再决定执行哪一种

  (2)操作的.结构称为选择结构、

  如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行、

  2、说明:

  (1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点、

  3、思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案万能模板2

  重点难点教学:

  1、正确理解映射的概念;

  2、函数相等的两个条件;

  3、求函数的定义域和值域。

  一、教学过程:

  1、使学生熟练掌握函数的概念和映射的定义;

  2、使学生能够根据已知条件求出函数的定义域和值域;3、使学生掌握函数的三种表示方法。

  二、教学内容:

  1、函数的'定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

  (),yf_A

  其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x、

  2、构成函数的三要素定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

  一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  4、区间及写法:

  设a、b是两个实数,且a

  (1)满足不等式axb?的实数x的集合叫做闭区间,表示为[a,b];

  (2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

  5、函数的三种表示方法①解析法②列表法③图像法

高中数学教案万能模板3

  一、指导思想与理论依据

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二、教材分析

  三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)、本节是第一课时,教学内容为公式(二)、(三)、(四)、教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、 、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)、同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求、为此本节内容在三角函数中占有非常重要的地位、

  三、学情分析

  本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容、

  四、教学目标

  (1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

  (2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

  (3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

  (4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观、

  五、教学重点和难点

  1、教学重点

  理解并掌握诱导公式、

  2、教学难点

  正确运用诱导公式,求三角函数值,化简三角函数式、

  六、教法学法以及预期效果分析

  “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究、下面我从教法、学法、预期效果等三个方面做如下分析、

  1、教法

  数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质、

  在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦、

  2、学法

  “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情、如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题、

  在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习、

  3、预期效果

  本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题、

  七、教学流程设计

  (一)创设情景

  1、复习锐角300,450,600的三角函数值;

  2、复习任意角的三角函数定义;

  3、问题:由,你能否知道sin2100的值吗?引如新课、

  设计意图

  自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的'办法、

  (二)新知探究

  1、让学生发现300角的终边与2100角的终边之间有什么关系;

  2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

  3、Sin2100与sin300之间有什么关系、

  设计意图

  由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫、

  (三)问题一般化

  探究一

  1、探究发现任意角的终边与的终边关于原点对称;

  2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

  3、探究发现任意角与的三角函数值的关系、

  设计意图

  首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二、同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

  (四)练习

  利用诱导公式(二),口答下列三角函数值、

  (1)、;(2)、;(3)、 、

  喜悦之后让我们重新启航,接受新的挑战,引入新的问题、

  (五)问题变形

  由sin3000= —sin600出发,用三角的定义引导学生求出sin(—3000),Sin150 0值,让学生联想若已知sin3000= —sin600,能否求出sin(—3000),Sin150 0)的值、学生自主探究

高中数学教案万能模板4

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1、以故事形式入题

  2、多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1、命题“同位角相等,两直线平行”的条件与结论各是什么?

  2、把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3、原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、

  学生活动:

  口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等、

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础、

  (三)新课讲解:

  1、命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2、把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3、把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  例1及例2

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真、

  原命题真,逆否命题也真

  引导学生讨论原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明,同学们踊跃发言。

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的`关系

  (1)、原命题为真,它的逆命题不一定为真、

  (2)、原命题为真,它的否命题不一定为真、

  (3)、原命题为真,它的逆否命题一定为真

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”

  其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  同学们,生活中处处是数学,期待我们善于发现的眼睛

  五、作业

  1、设原命题是“若断它们的真假、,则”,写出它的逆命题、否命题与逆否命题,并分别判

  2、设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假、

高中数学教案万能模板5

  一、教学目标

  1、知识与技能

  (1)掌握斜二测画法画水平设置的平面图形的直观图。

  (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

  2、过程与方法

  学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

  3、情感态度与价值观

  (1)提高空间想象力与直观感受。

  (2)体会对比在学习中的作用。

  (3)感受几何作图在生产活动中的应用。

  二、教学重点、难点

  重点、难点:用斜二测画法画空间几何值的直观图。

  三、学法与教学用具

  1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

  2、教学用具:三角板、圆规

  四、教学思路

  (一)创设情景,揭示课题

  1、我们都学过画画,这节课我们画一物体:圆柱

  把实物圆柱放在讲台上让学生画。

  2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

  (二)研探新知

  1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

  画水平放置的多边形的直观图的`关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

  练习反馈

  根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

  2、例2,用斜二测画法画水平放置的圆的直观图

  教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

  教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

  3、探求空间几何体的直观图的画法

  (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD—A’B’C’D’的直观图。

  教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

  (2)投影出示几何体的三视图、课本P15图1、2—9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

  4、平行投影与中心投影

  投影出示课本P17图1、2—12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

  5、巩固练习,课本P16练习1(1),2,3,4

  三、归纳整理

  学生回顾斜二测画法的关键与步骤

  四、作业

  1、书画作业,课本P17练习第5题

高中数学教案万能模板6

  教学目标:

  (1)了解集合、元素的概念,体会集合中元素的三个特征;

  (2)理解元素与集合的"属于"和"不属于"关系;

  (3)掌握常用数集及其记法;

  教学重点:

  掌握集合的基本概念;

  教学难点:

  元素与集合的关系;

  教学过程:

  一、引入课题

  军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  阅读课本P2—P3内容

  二、新课教学

  (一)集合的有关概念

  1、集合理论创始人康托尔称集合为一些确定的、不同的东西的`全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

  2、一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

  3、思考1:判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流;

  (3)非负奇数;

  (4)方程的解;

  (5)某校20xx级新生;

  (6)血压很高的人;

  (7)著名的数学家;

  (8)平面直角坐标系内所有第三象限的点

  (9)全班成绩好的学生。

  对学生的解答予以讨论、点评,进而讲解下面的问题。

  4、关于集合的元素的特征

  (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

  (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

  (3)无序性:给定一个集合与集合里面元素的顺序无关。

  (4)集合相等:构成两个集合的元素完全一样。

  5、元素与集合的关系;

  (1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A

  (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA

  例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A

  4A,等等。

  6、集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C、、、表示,集合的元素用小写的拉丁字母a,b,c,、、、表示。

  7、常用的数集及记法:

  非负整数集(或自然数集),记作N;

  正整数集,记作N或N+;

  整数集,记作Z;

  有理数集,记作Q;

  实数集,记作R;

  (二)例题讲解:

  例1、用"∈"或""符号填空:

  (1)8 N;(2)0 N;

  (3)—3 Z;(4)Q;

  (5)设A为所有亚洲国家组成的集合,则中国 A,美国A,印度A,英国A。

  例2、已知集合P的元素为,若3∈P且—1P,求实数m的值。

  (三)课堂练习:

  课本P5练习1;

  归纳小结:

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。

  作业布置:

  1、习题1、1,第1— 2题;

  2、预习集合的表示方法。

高中数学教案万能模板7

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的标准方程及有关运用

  教学难点:

  标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:⒈说出下列圆的方程

  ⑴圆心(3,—2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x—2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2—6x+4y+12=0

  ⒊判断3x—4y—10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x—4y—7=0相切,求这个圆的.方程

  三、引伸提高,讲解例题

  例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法)

  练习:1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

【高中数学教案万能】相关文章:

高中数学教案06-28

高中数学教案[经典]10-26

(通用)高中数学教案07-27

高中数学教案15篇(经典)11-14

高中数学教案[集锦15篇]11-11

高中数学教案[共15篇]11-29

高中数学教案15篇(优选)07-27

(热门)高中数学教案15篇06-28

高中数学教案【共15篇】07-25

高中数学教案合集【15篇】07-25