当前位置:壹学网>作文>写作素材>名人故事>数学家的故事

数学家的故事

时间:2025-10-01 11:49:38 名人故事 我要投稿

[通用]数学家的故事15篇

数学家的故事1

  索菲·热尔曼(法语:Marie—SophieGermain,1776年4月1日—1831年6月27日),法国女数学家。出身巴黎一个殷实的商人家庭,从小热爱数学,但不为家庭所鼓励。

[通用]数学家的故事15篇

  出身巴黎一个殷实的商人家庭,从小热爱数学,但不为家庭所鼓励。身为女性,热尔曼的故事显出了当时女性求学的困难和自卑。她总不想别人知道她女性的身份,常以假名和其他数学家通信。

  她对拉格朗日的教学很有兴趣,但由于当时的女子不得接近大学,于是以拉白朗(AugustsAntoineLeBlanc)之名,提交课业及论文等。拉格朗日要求见其人一面,于是热尔曼便说明一切,后来拉格朗日成为了热尔曼的导师。

  人物故事

  热尔曼(1776~1831年)出生时法国社会秩序正走向混乱。为了安全,青少年时代的热尔曼整天被父母留在家里学习。热尔曼的父母都是知识渊博的人,父亲给了她良好的生活习惯和自学能力,这些为热尔曼从小打下了很好的基础。

  儿时的她常在爸爸的'书房里流连忘返。当她读到阿基米德被士兵杀害时,仍在研究几何问题的故事时,小热尔曼沉思良久:数学一定魅力无穷!不然阿基米德怎会如此醉心与它?从此小热尔曼就陶醉其中,后来做出了巨大的贡献,成为了第一位凭自己的学术成绩获得“科学院金质奖章”的女性。

  1794年,巴黎创办了一个享誉世界的大学——综合科技大学。这里云集了当时众多数学大师,如拉普拉斯、蒙日、拉格朗日等。这一年,热尔曼已经是一个18岁的大姑娘了,她对这个大学非常神往,于是向父母提出想到综合科技大学深造,父母都支持她这种想法。

  可是热尔曼在学校报名时却碰了壁,原来法国大革命尽管已经爆发5年了,法国对妇女的歧视仍然没有改变,综合科技大学只接受男性学生,或许他们认为只有男人才能从事数学工作。

  难道女人就不能从事数学工作吗?世俗没有让这个坚强的女孩退却,反而坚定了她走自学成才的道路的决心,她发誓要改变世俗对女人的偏见。她比较了欧拉、高斯和拉格朗日的数学著作,她觉得拉格朗日的著作通俗易懂,最适合自学。拉格朗日的著作带给了热尔曼无穷的乐趣,她萌生了写论文的冲动,她要把这些心得体会撰写成数学论文。

  论文写出来了,该寄给谁呢?如果拉格朗日教授能够亲自审读这些文章该多好呢!

  一个女孩子的文章能引起拉格朗日教授的注意吗?很可能教授没看就把它丢到垃圾桶里去呢!思考良久,他主动提出要做热尔曼的指导老师。

  在拉格朗日的指导下,热尔曼进步更快了,她后来成为法国历史上最有名的女数学家,赢得了“数学花木兰”之称。

数学家的故事2

  李冶(1192-1279)是中国古代数学家,原名李治,字仁卿,号敬斋,金代真定府栾城县(今河北省栾城县)人。

  李冶生于大兴(今北京市大兴县),父亲李通为大兴府推官。李冶自幼聪敏,喜爱读书,曾在元氏县(今河北省元氏县)求学,对数学和文学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”1230年,李冶在洛阳考中词赋科进士,任钧州(今河南禹县)知事,为官清廉、正直。1232年,钧州城被蒙古军队攻破。李冶不愿投降,只好换上平民服装,北渡黄河避难。

  经过一段时间的颠沛流离之后,李冶定居于崞山(今山西崞县)之桐川。1234年初,金朝终于为蒙古所灭。金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。他的工作条件是十分艰苦的,不仅居室狭小,而且常常不得温饱,要为衣食而奔波。但他却以着书为乐,从不间断自己的写作。据《真定府志》记载,李冶“聚书环堵,人所不堪”,但却“处之裕如也”。他的学生焦养直说他:“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”。经过多年的艰苦奋斗,李冶的《测圆海镜》终于在l248年完搞。它是我国现存最早的一部系统讲述天元术的著作。

  1251年,李冶的经济情况有所好转,他结束了在山西的避难生活,回元氏县封龙山定居,并收徒讲学。1257年在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些进步的政治建议。l259年在封龙山写成另一部数学著作-一《益古演段》。1265年应忽必烈之聘,去燕京(今北京)担任翰林学士知制洁同修国史官职,因感到在翰林院思想不自由,第二年辞耿还乡。李冶是一位多才多艺的学者,除数学外,在文史等方面也深有造诣。他晚年完成的《敬斋古今注》与《泛说》是两部内容丰富的著作,是他积多年笔记而成的。《泛说》一书已失传,仅存数条于《敬斋古今注》附录。他还着有《文集》四十卷与《壁书丛制》十二卷,已佚。1279年,李冶病逝于元氏。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。

  所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的`思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题基本解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。例如李冶在东平(今山东省东平县)得到的一本讲天元术的算书中,还不懂得用统一符号表示未知数的不同次幂,它“以十九字识其上下层,曰仙、明、霄、汉、垒、层、高、上、天、人、地、下、低、减、落、逝、泉、暗、鬼。”这就是说,以“人”字表示常数,人以上九字表示未知数的各正数次幂(最高为九次),入以下九字表示未知数的各负数次幂(最低也是九次),其运算之繁可见一斑。从稍早于《测圆海镜》的《铃经》等书来看,天元术的作用还十分有限。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。

  《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的“识别杂记”阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式),这部分内容是对中国古代关于勾股容圆问题的总结。后面各卷的习题,都可以在“识别杂记”的基础上以天元术为工具推导出来。李冶总结出一套简明实用的天元术程序,并给出化分式方程为整式方程的方法。他发明了负号和一套先进的小数记法,采用了从零到九的完整数码。除O以外的数码古已有之,是筹式的反映。但筹式中遇O空位,没有符号O。从现存古算书来看,李冶的《测圆海镜》和秦九韶《数书九章》是较早使用O的两本书,它们成书的时间相差不过一年。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。

  《测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学著作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。李冶清楚地看到这一点,他坚信天元术是解决数学问题的一个有力工具,同时深刻认识到普及天元术的必要性。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,促使他写一本深入浅出、便于教学的书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。李冶大概认识到,天元术是从几何中产生的。因此,为了使人们理解天元术,就需回顾它与几何的关系,给代数以几何解释,而对二次方程进行几何解释是最方便的,于是便选择了以二次方程为主要内容的《益古集》(11世纪蒋周撰)。正如《四库全书·益古演段提要》所说:“此法(指天元术)虽为诸法之根,然神明变化,不可端倪,学者骤欲通之,茫无门径之可入。惟因方圆幂积以明之,其理尤届易见。”李冶是很乐于作这种普及工作的,他在序言中说:“使粗知十百者,便得入室啖其文,顾不快哉!”

  《益古演段》的价值不仅在于普及天元术,理论上也有创新首先,李冶善于用传统的出入相补原理及各种等量关系来减少题目中的未知数个数,化多元问题为一元问题。其次,李冶在解方程时采用了设辅助未知数的新方法,以简化运算。

数学家的故事3

  高斯

  印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的`和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

数学家的故事4

  我国数学家,陈景润的故事!

  陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的.故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程......

  1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些个国家语言对一个数学家来说已是一个惊人突破了,但对陈景润来说只是万里长征迈出的第一步。

  为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。

  作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。……”对于陈景润的贡献,中国的数学家们有过这样一句表述:陈景润是在挑战解析数论领域250年来全世界智力极限的总和。中国改革开放总设计师邓小平曾经这样意味深长地告诉人们:像陈景润这样的科学家,“中国有一千个就了不得”。

数学家的故事5

  祖冲之(公元429—500年)是我国南北朝时期。河北省涞源县人。他从小就阅读了许多天文。数学方面的书籍。勤奋好学。刻苦实践。终于使他成为我国古代杰出的数学家。天文学家。

  祖冲之在数学上的杰出成就。是关于圆周率的计算。秦汉以前。人们以"径一周三"做为圆周率。这就是"古率"。后来发现古率误差太大。圆周率应是"圆径一而周三有余"。不过究竟余多少。意见不一。直到三国时期。刘徽提出了计算圆周率的科学方法——"割圆术"。用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形。 求得π=3.14。并指出。内接正多边形的边数越多。所求得的π值越精确。祖冲之在前人成就的基础上。经过刻苦钻研。反复演算。求出π在3。1415926与3.1415927之间。并得出了π分数形式的近似值。取为约率 。取为密率。其中取六位小数是3.141929。它是分子分母在1000以内最接近π值的.分数。祖冲之究竟用什么方法得出这一结果。现在无从考查。若设想他按刘徽的"割圆术"方法去求的话。就要计算到圆内接16。384边形。这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率。外国数学家获得同样结果。已是一千多年以后的事了。为了纪念祖冲之的杰出贡献。有些外国数学史家建议把π=叫做"祖率"。

  祖冲之博览当时的名家经典。坚持实事求是。他从亲自测量计算的大量资料中对比分析。发现过去历法的严重误差。并勇于改进。在他三十三岁时编制成功了<大明历>。开辟了历法史的新纪元。

  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起。用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同。则积不容异。"意即。位于两平行平面之间的两个立体。被任一平行于这两平面的平面所截。如果两个截面的面积恒相等。则这两个立体的体积相等。这一原理。在西文被称为卡瓦列利原理。但这是在祖氏以后一千多年才由卡氏发现的了纪念祖氏父子发现这一原理的重大贡献。大家也称这原理为"祖暅原理"。

数学家的故事6

  古今中外,数学家给我们人类带来的发展是无可比拟的,下面是关于星星数学家故事,欢迎参考阅读!

  天穹上万星闪烁,所有的恒星都是一起在东升西落,它们的相对位置始终不会有丝毫的变化。但远在上古时代,无论中、外,都很早就察觉其间还有那么几个“特殊人物”,它们除了也在东升西落外,还在星幕的背景上自西向东(这与地球公转的方向一致,故称“顺行”)缓缓而行,而顺行的速度每天都不相同,因此每天移过的距离都不一样。更奇怪的是,在向东顺行走过一段时日后,总会要“休息”一阵——出现“留”,在留的短时期内,它们的行径与恒星无异,但在此后却会掉过头来反向而动 (称为“逆行”),逆行一些时日后又经历一次“留”再回到顺行状态(图3—1),如此周而复始,循环不已……正是因为它们在星空中这样运动不息,故而在中国古代称它们为“行星”;在西方则叫做“Planet”——译为中文相当于“流浪者”。

  为什么行星的行为如此怪诞、让人难以捉摸?怎样来解说行星的运动?能否对它们的去向做出预报?……正是这一系列的难题,促进了人们对于天象的研究,从而使天文学早早蓬勃地发展起来。

  行星的运动问题,直到牛顿总结得到了万有引力定律之后,才获得圆满的解决。因为地球与其他行星一样,都在绕太阳运转,它们有各自严格的轨道,不得越雷池半步。这些轨道都是扁度不一的椭圆,太阳则稳居在椭圆的一个焦点上。为了决定这些椭圆的'空间位置:必须要同时测出六个量——轨道参数:轨道半长径(a)、椭圆的偏心率(e)、轨道面与黄道面的交角(i)……六个量中,哪一个都不易求得,都必须要做大量细致的实际观测,并进行十分繁复的运算。因而,古代科学家几乎都把此视为畏途。

  相传18世纪大数学家、瑞士的欧拉当年就是因为埋头行星轨道的计算,使视力受到了伤害,到晚年时双目几乎失明。他在1783年9月18日临终之前,还念念不忘他所计算的天王星的轨道(它刚于1781年为英国天文学家赫歇耳所发现),一定要让人把他所算的结果朗读一遍,证明与观测到的情况完全相符,才安详地闭上了他的双眼。

  为了简化行星的轨道计算,各国数学家绞尽脑汁,但问题的进展并不太大,19世纪中叶,英国的亚当斯对未知行星(即后来的海王星)所作的轨道计算之所以会被人束之高阁,就是因为那些权威们根本不相信一个乳臭未干的大学生,会有解决如此复杂难题的能耐。最后的结果是,亚当斯固然是坐失了良机,那些“大人物”也因此终生抱憾不已。

  1801年元旦夜,意大利巴勒莫皇家天文台台长皮亚齐在金牛星座中发现了一个陌生的小星点——即第1号小行星“谷神星”。可当时皮亚齐并不知道这是新型天体,因它比最暗的恒星 (6等星)还暗五六倍。为了弄清真相,第二天他把望远镜又对向了昨晚的方位,他发现,它已向西移过了大约4′左右——这表明,这个不速之客不可能是恒星,应是太阳系中的天体。为了算出它的轨道,皮亚齐决心跟踪观测,果然,它不断向西而去,到第12天居然出现了留!行星的特征表露无遗,然而真是好事多磨,西西里岛的天气不肯帮忙,到2月11日,天空乌云密布,他本人也病倒在床上。等到病愈再去观测时,这颗不明身份的星星却如泥牛人海,不见影踪了!

  皮亚齐手头一共只有区区41天的观测资料,按当时的水平,只有这一些数据是无法算什么轨道的,而要想在茫茫星空中去找一个轨道未知的天体,真比大海捞针还难。幸亏此时数学界升起了一颗熠熠生辉的大明星,那就是被后人誉为“数学王子”的德国青年数学家高斯。为了计算轨道,他创造发明了一种崭新的方法,用他这种新方法,最少可以只用3个晚上的资料,便能解决问题。于是皮亚齐的难题到他那儿也就迎刃而解了,小行星也就应运而生。据说,高斯计算这颗星的轨道时,大约只花了一个小时。后来有人问及此事时,他不无幽默地说道:“一切都不用奇怪,倘若我不用新的方法,我的眼睛也会像欧拉那样累瞎的。”

  人类发现小行星这段曲折的故事,生动地说明了这样一个道理:天文学家离不开数学家缜密的计算,但如若没有天文学家辛勤观测得到的资料,数学家也是英雄无用武之地。在科学发展史上,类似的例子真是不胜枚举。

数学家的故事7

  "数学之神"──阿基米德

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去领悟。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞与卡农的门生,钻研《几何原本》。

  之后阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他透过超多实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

  《砂粒计算》,是专讲计算方法与计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积与它的体积,分别为球表面积与体积的。在这部著作中,他还提出了著名的"阿基米德公理"。

  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线与直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数与算术级数求与的几何方法。

  《平面的平衡》,是关于力学的最早的'科学论著,讲的是确定平面图形与立体图形的重心问题。

  《浮体》,是流体静力学的第一部专著,阿基米德将数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

  《论锥型体与球型体》,讲的是确定由抛物线与双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴与短轴旋转而成的球型体的体积。

  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。透过研究发现,这些信件与传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

  正正因他的杰出贡献,美国的E。T。贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿与高斯。但是以他们的宏伟业绩与所处的时代背景来比较,或拿他们影响当代与后世的深邃久远来比较,还应首推阿基米德。

数学家的故事8

  1978年夏天的一个黄昏,我在挪威首都奥斯陆(Oslo)的皇家公园散步。从公园的“阿贝尔丘”可以看到底下不远的热闹街市的一角,天还没有黑,可是五颜六色的霓虹灯已亮。

  天刚下一场雨,半边天是黑沉沉,另外一边却是清澈明净。一条彩虹出现在黑云的一边,红、橙、黄、绿、青、蓝、紫的颜色在黑灰的天空的背景衬托下显得非常的漂亮。

  我走向园里挪威著名雕塑家古斯达夫·维克朗(Gustav Vige-land 1869—1943)的著名作品——阿贝尔纪念像。看看这个艺术家遗留下来的艺术巨构。

  阿贝尔是19世纪挪威出现的最伟大数学家,一生在贫穷的环境挣扎,他在生之日希望能有一个固定的职业使他能安定生活和做研究,并且希望能和他喜爱的一个女郎结婚。可是命运像是要和他作对,他所期望的东西全落空,最后肺病夺去了他的生命,死时才26岁!

  维克朗是一个木匠的'儿子,年青时也曾经在贫穷困苦的环境中学习艺术。当后来成名了,知道阿贝尔的故事非常感人,于是要为这个悲惨的天才立像,在1908年整个铸成。维克朗在奥斯陆城北的Frogner公园留下的“生命之树”的雕塑,使奥斯陆在世界上以这公园闻名,吸引了许多旅客。

  挪威天才数学家——阿贝尔

  我看看天边的彩虹,颜色已渐渐消淡,太阳是快下去了。难道说世界美丽的东西就像彩虹是不能长久留下来吗?我躺在草地上,看那高大的铜像及它上面的蓝空。回想阿贝尔的一生,我像听到他在倾述他的悲惨的身世,像是控诉这人世间对他的冷漠。

  穷人孩子多奇志

  阿贝尔(N.H.Abel)生在一个大家庭里,家里有七个兄弟姊妹,父亲是挪威芬杜(Findo)小乡村的穷牧师。阿贝尔在家里排行第二,小时和哥哥由他父亲教导识字,小学教育基本上是由父亲教,因为他们没有钱像其他人请家庭教师来教。

  在13岁时他和哥哥被送到克里斯汀尼亚(Christinia,后来就是挪威的奥斯陆)市的天主教学校读书。这是一间古老的学校,一些官员把孩子送到这里读书,而且有一些奖学金给无法交学费的人,阿贝尔也得到一点奖学金。

  在阿贝尔进入学校时这学校已降低水准,因为这里刚成立一所新大学,大部份好的教师和有经验的教师转到大学去教书了,学校只剩下水准较差和新的教师。在最初的一二年他们兄弟的成绩还算不错,而且获得书奖。可是后来教师枯燥的教学方式,高压的手法,使得他们兄弟的成绩下降了,哥哥更糟是神经衰弱起来,最后不能读书要送回家去,以后恶化起来一生不能做事。

  1817年发生的一件事情,可说是阿贝尔一生的转折点。教数学的教师是一个好酒如命但又粗暴的家伙,对于成绩不好的学生常讥笑嘲讽,而且常体罚,有一个学生被严重打伤,最后病倒而死去。在许多人向学校当局抗议下,这教师被解职,而由一个比阿贝尔大七岁的非常年青的教师洪波义(Bernt Michael Holm- boe)代替。

  洪波义学过一些纯数学,而且曾当过挪威著名天文学家汉斯丁教授(Chrisoffer Hansteen)的助教。对中学数学课他是驾轻就熟,他和以前的教师不一样,采用较新颖不死板的方法教书:他采取让学生发挥独立的工作能力的教学方法,并且给一些适合他们的数学问题鼓励他们去解决。

  阿贝尔很喜欢这个新来的教师,他发现数学并不像以前那样枯燥无味,而且很高兴他能解决一些同学不能解决的问题。第一学年末,洪波义在学生的报告书上对阿贝尔的批评是:“一个优秀的数学天才”。

  阿贝尔对数学的热忱越来越高,洪波义鼓励他,给他一些特别问题,而且借给他看他在大学时学习的课本。洪波义后来回忆道:“从这时开始阿贝尔沉迷进数学,他以惊人的热忱和速率向这门科学进军。在短期间他学了大部分的初级数学,在他的要求下,我私人教授他高等数学。过了不久他自己读法国数学家泊松(Poisson)的作品,念德国数学家高斯(Gauss)的书,特别是拉格朗日的书。他已经开始研究几门数学分支。”

  对一个16岁的孩子,小说和诗歌再不吸引他的兴趣了,他到图书馆只找纯数学和应用数学的书来看:牛顿的书,天文学的书,达朗贝尔(d’Alembert)的力学的书,他把自己研究的一些东西记在一本大簿子里。这时他发现欧拉对二项式定理只证明有理数指数的情形,于是他给了对一般情形都成立的证明。

  在学校他和同学相处很好,他并不因为教师对他的称赞而恃才傲物。由于他身体不太好,脸色苍白衣服破旧像长期工作的裁缝,同学给他的外号是:“裁缝阿贝尔”。

  敢于着手解难题

  在他中学的最后一年,他开始考虑当时出名的数学难题——五次方程的一般解问题。

  求一元四次方程的根的公式是16世纪的热门问题,这被意大利的数学家Ferro,Tartaglia,Cardeno和Ferrari解决了。

  可是以后的几百年数学家们摸索找寻一元五次或者更高次方程的根的一般公式。条件是:用加、减、乘、除和开几次方的代数运算及方程的系数来表示这公式。但没有人能成功。

数学家的故事9

  奥古斯丁·路易斯·柯西(1789—1857),法国数学家、物理学家、天文学家。他是数学分析严格化的开拓者,复变函数论的奠基者,也是弹性力学理论基础的建立者。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系。这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献。

  1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义。当今所有微积分的教科书都还(至少是在本质上)沿用着柯西等人关于极限、连续、导数、收敛等概念的定义。他对微积分的解释被后人普遍采用。柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”。在定积分运算之前,强调必须确立积分的存在性。他利用中值定理首先严格证明了微积分基本定理。通过柯西以及后来魏尔斯特拉斯的艰苦工作,使数学分析的'基本概念得到严格的论述。从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念、运动和直观了解的完全依赖中解放出来,并使微积分发展成现代数学最基础最庞大的数学学科。1857年5月23日柯西在巴黎病逝。他临终的一句名言“人总是要死的,但是,他们的业绩永存。”这句话长久地叩击着一代又一代学子的心扉。

数学家的故事10

  恩师难忘 .欧拉1707年4月15日生于瑞士的巴塞尔。父亲是一位乡村穷牧师,一心想让聪颖的欧拉学习神学,以承父业。因此,父亲从小就让儿子读圣经,作祷告,对儿子进行严格的宗教教育。而欧拉最喜爱的是数学,为了不使父亲伤心,小欧拉常常等到父亲熟睡后,再偷偷地起来做数学题,或者在数学书外面套一张圣经的书皮,以逃避父亲的注意。

  父命难违。1720年,13岁的欧拉还是按照父亲的意愿,考入了瑞士的一所名牌大学——巴塞尔大学学神学。当时,享誉世界的数学家、物理学家约翰贝努里(1667——1748)正在校执教。他除了讲授数学基础课外,还给少数高材生个别授课。约翰旁征博引、生动风趣、极富魅力的数学讲座,吸引了许多外系学生来旁听。欧拉是约翰教授的最忠实的听众,总是早早地坐在最前一排,闪烁着一双天真无邪的大眼睛,聚精会神地听讲。在约翰教授的影响下,欧拉对数学的兴趣与日俱增。

  慧眼识才。毕竟,欧拉当时只是一个13岁的孩子,个子比一般学生矮一头,大学生们谁也没有把他放在眼里,更没有引起约翰教授的注意。有一次,约翰在讲课时,无意中提到一个当时数学家还没有解决的难题。没有想到,这个瘦小的孩子课后交来了一份关于难题的解答,尽管还有不甚严谨之处,但构思非常精巧,论述恢弘大气,约翰非常惊喜。他当即决定,每星期在家单独为欧拉授课一次。欧拉在以后的自传中回忆道:“我找到了一个把自己介绍给著名的约翰贝努里教授的机会。……他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学著作,尽我所能地去研究它们。如果我遇到什么困难和障碍,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切困难。……无疑,这是在数学学科上获得及时成功的'最好的方法。”欧拉的聪颖勤奋也深深地吸引了教授的儿子尼丹尔,两人从此结为终身好友。

  1722年,欧拉在巴塞尔大学获学士学位。第二年,16岁的欧拉又获哲学硕士学位,成为这所古老的大学有史以来最年轻的硕士。父亲执意要欧拉放弃数学,把精力用在神学上。迷恋数学的欧拉既不肯放弃数学,又不愿公然违抗父亲的意志。在这决定人生方向的关键时刻,约翰教授登门做说服工作。教授动情地对固执的父亲说:“亲爱的神甫,您知道我遇到过不少才气洋溢的青年,但是要和您的儿子相比,他们都相形见绌。假如我的眼力不错,他无疑是瑞士未来最了不起的数学家。为了数学,为了孩子,我请求您重新考虑您的决定。” 父亲被打动了。欧拉当了约翰的助手。从此,欧拉和数学终身相伴。

数学家的故事11

  以往常认为祖冲之是中国古代最伟大的数学家,但他的数学著作《缀术》由于隋唐算学馆的学官“莫能究其深奥,是故废而不理”,早已失传,而我们所知道的他的两项数学贡献——将圆周率精确到8位有效数字以及与儿子祖暅共同完成的球体的体积公式推导,却都由刘徽为其提供了方法上的解说。

  魏景元四年(263)刘徽撰《九章筭术注》,至今恰好1750周年。

  《九章筭术》是中国古代最重要的数学著作,它系统总结了中国先秦至西汉的数学成就,奠定了中国传统数学的基本框架及其以算法为主的特点。其分数四则运算、方程(多元一次线性方程组)解法和对面积与体积的计算等长期领先于世界水平。刘徽的注十分难读,长期未得到理解,学术界因此把他看成是依附于《九章筭术》的二流数学家,这是极不公正的。

  刘徽是中国数学史上批评《九章筭术》最多的数学家

  《九章筭术注》原十卷,第十卷“重差”系自撰自注,后以《海岛算经》为名单行,与《九章筭术》并列于《算经十书》。刘徽还撰《九章重差图》一卷,已失传。刘徽生平不详,根据有关史料,其籍贯是淄乡,属今山东省邹平县。他大约生于3世纪20年代后期或稍后,完成《九章筭术注》时,年仅30岁上下。

  汉末至魏晋是我国继春秋战国百家争鸣之后第二次思想大解放时期。刘徽深受思想界辩难之风的影响,注《九章筭术》的宗旨是“析理以辞,解体用图”。反对谶纬迷信,是他治学的一大特点,如《世本》有“隶首作数”的说法,但刘徽说“其详未之闻也”。汉代盛行谶纬,如大科学家张衡也未能免俗,刘徽批评张衡“欲协其阴阳奇耦之说而不顾疏密矣”,而他自己的数学知识中,没有任何猜测或神秘的成分。

  刘徽也不迷信古人。《九章筭术》最迟在东汉已被官方奉为经典,刘徽为之作注,推崇之余还指出了它的若干不准确甚或错误之处,他是中国数学史上批评《九章筭术》最多的数学家。

  刘徽还敢于承认自己的不足,并寄希望于后学。他设计了牟合方盖,指出得到解决球体积公式的正确途径。然而他功亏一篑,没能求出牟合方盖的体积,便老老实实地说:“欲陋形措意,惧失正理,敢不阙疑,以俟能言者。”正反映了科学家本色。

  刘徽还善于灵活运用数学方法,反对“胶柱调瑟”,而常常在《九章筭术》的原文之外提出新的方法与思路。甚至有时他明知自己提出的新方法不如原来的简便,但仍如此,用他自己的话说,是为了“广异法也”。

  证明割圆术和“刘徽原理”

  刘徽除了发展出入相补原理、率的思想和重差术的重大贡献之外,最重要的是他对割圆术和“刘徽原理”的证明。

  20世纪70年代末之前半个世纪,刘徽的割圆术和对圆周率的计算是中国数学史界讨论最多的课题。但遗憾的是,所有的著述都忽视了其主旨——证明《九章筭术》的圆面积公式,且大部分对其求圆周率程序的表述也背离了刘徽注本身。

  《九章筭术》提出了圆面积公式:“术曰:半周半径相乘得积步。”刘徽之前的推导方法实际上没有证明这个公式,而他提出了使用极限思想和无穷小分割的证明方法。他首先从圆内接正6边形开始割圆,逐步得到正12、24、48……边形。圆内接正多边形的面积,小于圆面积,但分割至“不可割”之时,上述两者便会完全“合体”。另外,如果以圆半径与圆内接正多边形的边心距之差乘其边长,则得到的圆内接正多边形面积大于圆面积。但此两者合体时,便不会出现这种情况。换言之,刘徽从上界序列与下界序列的极限两个角度,求出了圆面积。刘徽说:“以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂。”他将与圆合体的正无穷多边形再分割成以圆心为顶点,以每边为底的无穷多个小等腰三角形。由于每个小等腰三角形的高与其底的乘积是其面积的2倍,则将它们全部相加,就是2个圆面积。而所有这些小等腰三角形的底边之和是圆周长,那么一个圆的面积就是圆周长的一半乘半径,这便证明了《九章筭术》中的圆面积公式。

  接着刘徽说,“此以周、径,谓至然之数”,而此数就是圆周率。刘徽仍从直径为2尺的圆的内接正6边形开始割圆,利用勾股定理,计算出各多边形的边长以及正192边形的面积的整数部分平方寸作为圆面积的近似值,代入刚刚证明了的圆面积公式,反求出圆周长的近似值6尺2寸8分,即“以半径一尺除圆幂,倍所得,六尺二寸八分,即周数”。“令径二尺与周六尺二寸八分相约,周得一百五十七,径得五十”,也就是说圆周率为157/50,相当于3.14。

  近代数学大师高斯曾提出一个猜想:多面体体积的解决不借助于无穷小分割是不是可能的?这一猜想构成了希尔伯特1900年的《数学问题》的第3问题的基础。实际上,早在1600多年前,刘徽在证明《九章筭术》中的'阳马和鳖腝的体积公式时,就接触了高斯猜想和希尔伯特第3问题。

  中国古代在多面体分割中,开始从一个长方体沿相对两棱剖开,得到两个楔形体,叫做堑堵。再将一个堑堵从一个顶点到底面一边剖开,得到一个锥体,其高的垂足在底面的一角上,叫做阳马;剩下的便是四面皆为勾股形的四面体,叫做鳖腝。为了证明《九章筭术》中的体积公式,刘徽提出了一个重要原理:“邪解堑堵,其一为阳马,一为鳖腝。阳马居二,鳖腝居一,不易之率也。”刘徽仍使用极限思想和无穷小分割方法证明了这个原理。

  “刘徽原理”是其多面体体积理论的基础。刘徽将此理论建立在无穷小分割的基础上,这与现代数学的体积理论惊人地一致。

  刘徽对演绎推理的发展

  中国古代数学缺乏演绎推理,一直是学术界的主流看法。事实上,只要读懂刘徽注就会发现,他在数学命题的证明中主要使用了演绎法,涉及了演绎逻辑最重要的推理形式。比如对“盈不足术”刘徽注云:“注云若两设有分者,齐其子,同其母。此问两设俱见零分,故齐其子,同其母。”这个推理完全符合三段论的规则,是其第一格的AAA式。

  刘徽注中还有数学归纳法的雏形。比如在对“刘徽原理”的证明中,刘徽首先通过第一次分割证明了在整个堑堵的3/4中阳马与鳖腝的体积之比为2∶1。他进一步认为第一次分割可以无限递推,说:“按余数具而可知者有一、二分之别,即一、二之为率定矣。其于理也岂虚矣。若为数而穷之,置余广、袤、高之数各半之,则四分之三又可知也。半之弥少,其余弥细。至细曰微,微则无形。由是言之,安取余哉?”

  人们常说《九章筭术》建立了中国古代的数学体系。这种提法似是而非。实际上《九章筭术》仅构筑了中国传统数学的基本框架,直到刘徽完成《九章筭术注》,中国传统数学才形成了理论体系。方法的改变,必然导致一个学科内部结构的相应改变。刘徽的注释不是对《九章筭术》数学框架的简单补充,而是对其的根本改造。

数学家的故事12

  在当年的金坛,华罗庚最喜欢去的地方,还是灯节、船会、庙会等场所,凡是这些热闹的`地方都少不了他的身影。城东有座青龙山,山上有个庙。每逢庙会,庙中的“菩萨:”便头插羽毛,打扮得花花绿绿,骑着高头大马进城来。一路上,人们见到“菩萨”就磕头行礼,祈求幸福。华罗庚伸直脖子,望着双手合十的“菩萨”,心里暗自琢磨:“‘菩萨’果真万能吗?”当庙会散了,人们也陆续回家,华罗庚却跟着“菩萨”去了青龙山,想探个究竟,看一看“菩萨”的真面目。

数学家的故事13

  勒内·笛卡尔1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了"普遍怀疑"的主张。黑格尔称他为"现代哲学之父"。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓"欧陆理性主义"哲学。堪称17世纪的.欧洲哲学界和科学界最有影响的巨匠之一,被誉为"近代科学的始祖"。

  笛卡尔对数学最重要的贡献是创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在他的著作<几何>中,笛卡尔向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡儿引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。 此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。

  少年时期他上过一所环境优雅的耶稣会学校──尖塔中学。二十岁在普瓦提埃大学获得法律学学位。虽然笛卡尔受过良好的教育,但他却认为除了数学以外任何其它领域的知识皆是有懈可击的。从此,他没有继续接受正规教育,而是决定漫游整个欧洲,开阔视野,见悉世面。由于笛卡尔的家庭经济富裕,足以使他囊满无挂,悠哉游哉。

  从1616年到1628年,笛卡尔做了广泛的游历。他曾在三个军队中(荷兰、巴伐利亚和匈牙利)短期服役,但从未参加任何战斗。观光过意大利、波兰、丹麦及其它许多国家。在这些年间,系统陈述了所发现真理的一般方法。五十二岁时,决定用此方法将世界做个综合性的描述。1629年写了<思维指南录>一书,概述了他的方法。在1630年到1634年期间,笛卡尔运用自己的方法研究科学。为了能学到更多的解剖学和生理学知识,亲自做解剖。在光学、气象学、数学及其他几个学科领域内都独立从事过重要研究。

  1649年,笛卡尔接受了瑞典女王克里斯蒂的慷慨之邀,来到斯德哥尔摩做她的私人教师。笛卡尔喜欢温暖的卧室,总是习惯晚些起床。当他得知女王让他清早五点钟去上课,他深感焦虑不安。笛卡尔担心早上五点钟那刺骨的寒风会要了他的命。果然不出所料,他很快就患了肺炎,1650年2月,在他达瑞典仅四个月后,被病魔夺去了生命。

数学家的故事14

  1718年约翰 贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量.”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示.

  1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”

  18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.”他把约翰 贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”.不难看出,欧拉给出的'函数定义比约翰 贝努利的定义更普遍、更具有广泛意义.

数学家的故事15

  “七七”事变后,浙江大学被迫西迁。在这国难当头,举校西迁时,苏步青接到一封加急电报:岳父松本先生病危,要苏步青夫妇去日本仙台见最后一面。苏步青把电报交给妻子说:“……你去吧,我要留在自己的祖国。”苏步青妻子苏松本说:“我跟着你走。”但因妻子刚分娩不久,不能随行内迁,苏步青把妻子送平阳乡下避难,直到1940年暑假,由竺可桢校长特批一笔路费,才将妻子和女儿接到湄潭。

  在湄潭的日子里,师生的生活极其艰苦,大学教授靠工资也难以糊口。苏步青买了一把锄头,每天下班回家或休息日,就开荒种菜,有一次,湄潭菜馆蔬菜馆供应不上,就从苏步青菜地里要去几筐花菜。还有一天傍晚,竺校长来到他住的破庙前,看见苏步青正挑水种菜,苏松本背着儿子烧饭。细心的竺校长见锅里全是萝卜、地瓜干,就问苏步青。苏步青解释说:“我家孩子多,薪水全拿来买米也不够吃。地瓜干蘸盐巴,我们已吃了几个月了。”竺可桢惊愕了。于是,他特许苏步青两个读中学的儿子,破例吃在中学、住在家里(因为苏家拿不出被褥)的特殊待遇。

  生活上的困难每况愈下,苏步青的一个小儿子因营养不良,出世不久就死去了。苏步青把他埋在湄潭的山上,在小石碑上刻着“苏婴之冢”几个字。然而,生活上的困难吓不倒有意志、有毅力的人,浙大的教学和科研依然有条不紊地进行。苏步青也是带着困难走上讲台的。当他回身在黑板上画几何图形时,学生们就会议论苏老师衣服上的“三角形、梯形……”的.补丁,还有屁股上的“螺旋形曲线”!晚上,苏步青把桐油灯放在破庙的香案上写教材,终于用自己坚忍不拔的意志完成了《射影曲线概论》一书。1994年夏,笔者有幸在青岩看到苏步青迁徙途中住过的小庙,一种崇敬之情油然而生,令人难以忘怀。

【数学家的故事】相关文章:

数学家的故事08-06

[经典]数学家的故事07-10

数学家的故事12-01

数学家的故事09-29

数学家的故事(精选)07-26

数学家的故事07-30

[中国史上的数学家故事] 数学家的故事05-23

有关写数学家的经典故事 数学家的经典故事04-13

数学家华罗庚的故事01-06

关于数学家的故事05-13