数学家的故事(精品15篇)
数学家的故事1
高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的'题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学家的故事2
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。是位兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去。在这座号称"之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟者,并且享有"力学之父"的美称。其原因在于他通过大量发现了杠杆原理,又用几何演泽推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的`度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
数学家的故事3
数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。
数学家鲁道夫的小故事
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。
数学家雅谷伯努利的'小故事
瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。
数学家的故事4
泰勒斯(公元前624年至前547年),出生在小亚细亚爱奥尼亚西岸的米利都城的一个奴隶主贵族家庭。他年轻时,曾到很多国家游学。回到家乡米利都后,他创办了希腊最早的哲学学派——爱奥尼亚学派,并继续从事哲学、数学、天文学等学科的研究。恩格斯在他的《自然辩证法》中是这样评述泰斯勒的:他是希腊最古老的哲学家、自然科学家、几何学家,是古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者。
提起埃及这个古老神秘、充满智慧的国度,人们首先想到的金字塔。金字塔是古埃及国王的陵墓,建于公元前20xx多年。古埃及人民仅靠简单的工具,竟能建造出这样雄伟而精致的建筑,真是奇迹!虽历经漫长的岁月,它们如今仍巍峨的送礼者。但是,在金字塔建成的1000多年里,人们都无法测量出金字塔的高度——他们实在太高大了。
约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?
泰勒斯已经观察金字塔很久了:底部是正方形,四个侧面都是相同的等腰三角形(有两条边相等的三角形)。要测量出底部正方形的边长并不困难,但仅仅知道这一点还无法解决问题。他苦苦思索着。
当他看到金字塔在阳光下的影子时,他突然想到办法了。这一天,阳光的角度很合适,他把他底下的所有东西都拖出一条长长的影子。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的`中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去的测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。
当他算出金字塔高度时,围观的人十分惊讶,纷纷问他是怎样算出金字塔的高度的。泰勒斯一边在沙地上画图示意,一边解释说:“当我笔直地站立在沙地上时,我和我的影构成了一个直角三角形。当我的影子和我的身高相等时,就构成了一个等腰直角三角形。二这时金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形。因为这个巨大的等腰直角三角形的两个腰也相等。”他停顿了一下,又说:“刚才金字塔的影子的顶点与我做标记的中心的连线,恰好与这个中点所在的边垂直,这时就很容易计算出金字塔影子的顶点与底面正方形中心的距离了。它等于底面正方形边长的一半加上我刚才测量的距离,算出来的数值也就是金字塔的高度了。”
你能理解泰勒斯的计算方法吗?他利用了相似三角形的性质。要知道泰勒斯身处的年代距离现在有2600多年呢!当时人们所了解的科学知识要比现在少得多。泰勒斯因为善于学习,注意观察,勤于思考,终于解决了困惑人们很多年的难题。其实,你在平时的学习种植要注意了这几点,也可以像泰勒斯一样解决很多难题了。
数学家的故事5
爱奥尼亚最繁盛的城市是米利都(Miletus,小亚细亚西南角海岸)。地居东西方交通的要冲,也是古希腊第一个享誉世界声誉的学者泰勒斯(Thales 约公元前640—546年)的故乡。泰勒斯早年是一个商人,以后游历了巴比伦,埃及等地,很快学会了天文和几何知识。
自然科学发展的早期,还没有从哲学分离出来。所以每一个数学家都是哲学家,就像我国每一个数学家都是历法家一样。要了解人与自然的关系,以及人在宇宙中所处的位置,首先要研究数学,因为数学可以帮助人们在混沌中找出秩序,按照逻辑推理求得规律。
泰勒斯是公认的希腊哲学家的'鼻祖。他创立了爱奥尼亚哲学学派,摆脱了宗教,从自然现象中寻找真理,否认神是世界的主宰。他认为处处有生命和运动,并以水为万物的根源。泰勒斯有崇高的声望,被尊为希腊七贤之首。
泰勒斯在数学方面的划时代的贡献是开始了命题的证明。他所得到的命题是很简单的。如圆被任一直径平分;等腰三角形两底角相等;两条直线相交,对顶角相等;相似三角形对应边成比例;半圆上的圆周角是直角;两三角形两角与一边对应相等,则三角形全等。并且证明了这些命题。
泰勒斯游历了许多地方,他在埃及的时候,应用相似三角形原理,测出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大为惊讶。泰勒斯对于天文也很精通,据说在他的故乡附近曾经存在过两个国家:美地亚国(Media)和吕地亚国(Lydia)。有一年发生了激烈的战争。连续五年未见胜负,横尸遍野,哀声载道。泰勒斯预先知道有日食要发生,便扬言上天反对战争,某月某日将大怒,太阳将被消逝。到了那一天,两军正在酣战不停,突然太阳失去了光辉,百鸟归巢,明星闪烁,白昼顿成黑夜。双方士兵将领大为恐惧,于是停战和好,后来两国还互通婚姻。据考证,这次日食发生在公元前585年5月28日。这大概是应用了迦勒底人发现的沙罗周期,根据公元前603年5月18日的日食推得的。
泰勒斯被誉为古希腊数学,天文,哲学之父,是当之无愧的。
数学家的故事6
波兰伟大的数学家伯格曼(StefanBergman,1898—1977年)总在思考数学问题。有一次伯格曼去西海岸参加一个学术会议,他的一个研究生正好要到那里旅行结婚,他们同乘一辆长途汽车。这位学生明白他的`毛病,事先商量好,在车上不谈数学问题。伯格曼满口答应。伯格曼坐在最后一排,这对年轻夫妇恰巧坐在他前一排。10分钟过后,伯格曼脑子里突然有了灵感,不自觉地凑上前去,斜靠着学生的座位,开始讨论起数学。再过一会儿,那位新娘不得不挪到后排座位,伯格曼则紧挨着他的学生坐下来。一路上他们兴高采烈地谈论着数学。幸好,这对夫妇之后婚姻美满,有一个儿子,还成了著名数学家。
数学家的故事7
2、毕达哥拉斯:毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——巴比伦和印度,以及埃及(有争议),吸收了美索不达米亚文明和印度文明(公元前480年)的'文化。他最早悟出万事万物背后都有数的法则在起作用;认为无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学。他在数论和几何方面都有杰出贡献,尤其以最早发现“勾股定理”(西方称“毕达哥拉斯定理”)著称于世。
数学家的故事8
在中国现代数学洪荒之地,有一位抱定“战士死在沙场幸甚”的开拓者,他就是华罗庚。华罗庚是中国解析数论、典型论、矩阵几何学、自守函数论与多个复变函数论等很多方面研究的创始人与奠基者,也是我国进入世界著名数学行列最杰出的代表者。他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔-加当-华定理”、“华-王方法”、“华氏算子”、“华氏不等式”等。他一生为我们留下了两百多篇学术论文,10部专著,其中8部被国外翻译出版,有些已列入本世纪经典著作之列。他把数学方法创造性地应用于国民经济领域,筛选出了以改进工艺问题的数学方法为内容的“优选法”和处理生产和组织与管理问题为内容的“统筹法”。他是美国科学院历史上第一个当选为外籍院士的中国学者。他还当选为联邦德国巴伐利亚科学院院士;法国南锡大学、美国伊利诺斯大学与香港中文大学授予他荣誉博士学位。他的名字进入美国华盛顿斯密司-宋尼博物馆,被列为芝加哥科学技术博物馆中当今88个数学伟人之一。
新中国成立的消息传到美国,他喜泪沾裳。为了重建自己的家园。他毫不犹豫地放弃了美国伊利诺大学终身教授的职务,丢下了优厚的薪俸、汽车和洋房,怀着一腔热诚,携全家,登上一艘轮船于1950年春,回到了祖国的怀抱。
回国后,他在户口簿的文化程度一栏中填上了:“初中毕业”4个字。这对华罗庚来说是个难忘的字眼,而对别人来说又是个费解的事情。这究竟是怎么回事呢?还是让我们来看着他的成才道路吧。
1910年11月12日,华罗庚出生于江苏省金坛县的一个贫苦家庭。父亲开了一个小杂货店,惨淡经营,艰难谋生。华罗庚15岁那年,毕业于金坛县初中,后到上海中华职业学校读书。由于家庭贫寒,交不起饭费,只念了1年,就离开学校,失学了。
华罗庚从小聪明好学,念初中时,在数学课上就表现出了特殊的才华。一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”王老师在读这道题时,读得很慢,声音抑扬顿挫。读完题目后,王老师把目光扫向全班同学,一张张紧张思索的面孔,一道道疑惑不解的目光尽在王老师的视野之内。突然,一个学生站起来,说:“这物品是23个。”这是个熟悉的声音,这声音把同学们从思索和疑惑中唤醒过来。大家用惊异的目光看着他。这个最先说出答案的同学就是少年华罗庚。华罗庚在解这道题时是这样想的:从“七七数之剩二”开始,就是说,七数余二,那么七的倍数再加二定是这个数,不防设这个数是7×3+2=23。再对23进行检验:23被3除,余2;23被5除余3,因此,23符合题目条件。正是由于华罗庚从小勤奋好学,王维克老师加倍看重他的聪明与才华。华罗庚在学校时给王老师留下了很深的印象。
就在华罗庚18岁那年,王维克老师当上了金坛县中学的校长。王校长爱惜人才,把华罗庚请到学校当会计兼做事务工作。从此,华罗庚更忙起来了。他回忆这段时间的经历时说:“除了学校繁重的事务外,早晚还要帮助母亲料理小店的事务。每天晚上大约8点钟才能回家。清理小店的帐目之后,才能钻研数学,常常到深夜。”这就是说,即使在繁忙的事务之后,华罗庚也不忘学习数学,因此,他的数学水平也在不断提高。
华罗庚19岁那年,一个偶然的机会,他借了一本杂志,名叫《学艺》,在这本杂志的第7卷10号上刊登了一篇由苏家驹教授撰写的文章《代数的五次方程式之解法》,引起了华罗庚的浓厚兴趣。通过阅读与思考,华罗庚发现文章中存在着根本性的错误。于是他问王校长,“能不能写文章批评苏教授文章中的错误?”华罗庚的提问得到了王校长的肯定回答:“当然可以,就是圣人,也有错误,有什么不能批评的!”王校长是意大利诗人但丁名著《神曲》的译者。他的一席话给华罗庚以很大的鼓励。于是华罗庚写了一篇逻辑严谨、说理充分的文章,经王校长过目与修改后,寄给了上海的《科学》杂志。文章于1930年发表了。文章一发表,就引起了当时不少人的重视。当时清华大学数学系主任熊庆来教授看到了这篇文章。而且得知这篇文章的作者是一位仅有初中毕业文凭的金坛县初中的青年人,更感到震惊。他看出了华罗庚的才华,马上写信到金坛中学,请华罗庚到清华大学工作。华罗庚接到信后,再三考虑:一方面,他想起在此之前曾因王校长让他在金坛县初中教补习班,由于有人向上告状说王校长任用一个不合格的教员(一个初中毕业生怎么能有资格教初中),王校长不得不辞去校长职位,而且自己也不再教书;另一方面,由于自己家境贫寒,连去北京的路费都有困难,于是回信婉言谢绝了熊教授的邀请。熊教授接到华罗庚的回信后,这位求贤若渴的“伯乐”又写信去催。信中说:如果你不来,我将亲自去金坛拜访你。华罗庚又一次收到熊教授的来信,从中得知其邀请的真切与诚意,觉得自己实在不能辜负熊教授的好意,只好由父亲出面借了路费,应邀到了清华大学。
在清华大学,华罗庚当上了一名助理员。主要职务是管理数学系的图书、收发公文、代领文具、绘制图表等。这样,他可以利用工作之余读书、听课。由于熊教授的安排与指导,华罗庚学业进步很快,学习也更加刻苦,常常自学到深夜。他只用一年半的时间就修完了大学课程,用4个月的时间自学了英语,并能达到读英语数学文献的水平。另外,他还自修了德文,特别是他听了研究生课程后,数学修养有了很大的提高,并不断取得了新的成果。他写的3篇论文,先后在国外数学杂志上发表,清华大学的.教师对他不得不刮目相看。不久,在清华大学的教授会议上决定让他这位只有初中学历的人任清华大学的教师。可见,华罗庚的成才主要是由于他自己努力奋斗的结果。华罗庚在给中学生谈学习数学时说过:“不怕困难、刻苦学习,是我学好数学最主要的经验。”他还说:“我不轻视容易的问题,今天练习了容易的,明天碰到较难的也就容易了。我也不怕难的问题,我时刻准备着在必要时把一个问题算到底。我相信,只要辛勤劳动,没有克服不了的困难、没有攻不破的堡垒。”华罗庚就是这样刻苦学习,才从一个只有初中学历的青年,自学成为一名大学教师的。
1936年熊庆来教授又推荐华罗庚到英国剑桥大学留学。1938年华罗庚回到日本铁蹄下灾难深重的祖国,由熊庆来教授推荐当上了昆明西南联大教授,当时的他年仅28岁。在西南联大期间,华罗庚的生活是清苦的。他们一家住在昆明郊区的一个小村子中的两间小厢楼里,厢楼下是猪栏、牛圈,卫生环境可想而知。华罗庚在回忆这段生活时说:“晚上一灯如豆。所谓灯,乃是一个破香烟罐,放上一个油盏,摘些破棉花做灯芯。为了节省菜油,芯子捻得小小的。晚上牛蹭痒,擦得地动山摇,危楼欲倒!”华罗庚虽然居住在这样的厢楼中,过着艰难的生活,但他还是勤奋努力,不断地耕耘,用3年时间写出了一部数学手稿,名为《堆垒素数论》,华罗庚写完《堆垒素数论》后,自然打算出版成书。于是他又把中文稿译成英文稿,并把中文稿寄到当时的“中央研究院”,但是,中央研究院不但未能给予出版,还把手稿弄丢了。这对华罗庚是一个莫大的打击,3年的心血,付之东流,怎么不使他心疼呢!后来,华罗庚把手头的一份《堆垒素数论》英文稿寄到当时苏联的维诺格拉托夫院士那里,终于由苏联把英文稿译成俄文稿出版了。这本书出版后,引起了世界数学界的震动。新中国成立后《堆垒素数论》(俄文版)又被译成中文,在自己的祖国出版了。像《堆垒素数论》先在别国出版,后在国内出版,在世界出版史上也属于罕见的现象。
华罗庚一共上过9年学,只有一张初中毕业文凭,却成了蜚声中外杰出的数学家。华罗庚的一生是勤奋好学的一生,是自学成才的典范。他的格言“天才在于积累,聪明在于勤奋”披露了这一成功的秘诀。他提出的“树老易空,人老易松,科学之道,戒之以空,戒之以松”的箴言是值得后人永志不忘的。这位开拓中国现代数学研究的巨人,逝世前的遗愿竟是“甚盼尸体能对革命有用,俟墙可作人梯,跨沟可作人桥。”
数学家的故事9
高斯是一对贫穷夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。高斯的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。
当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。高斯曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予高斯一生的天赋。
父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持高斯成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。高斯发现姐姐的儿子聪明伶利,因此高斯就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。
若干年后,已成年并成就显赫的高斯回想起舅舅为高斯所做的一切,深感对高斯成才之重要,他想到舅舅多产的`思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
罗捷雅真的希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
初显天分
高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。
一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。
高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101······1加到100有50组这样的数,因此50X101=5050。
布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西能教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
得到资助
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的教师们和慈母把他推荐给伯伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。
布伦兹维克公爵卡尔·威廉·斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。
1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。
公爵继续慷慨资助高斯的研究,使得他能在1803年谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。
公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
数学家的故事10
1、高斯:德国数学家﹑物理学家和天文学家。他的成就遍及数学的各个领域,在数论﹑非欧几何﹑微分几何﹑超几何级数﹑复变函数论以及椭圆函数论等方面均有开创性贡献;他有“数学王子”的美誉。另外他成功地计算出谷神星的运行轨迹。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的.新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。
数学家的故事11
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行,在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
泰勒斯最先证明了如下的定理:
1。圆被任一直径二等分。
2。等腰三角形的两底角相等。
3。两条直线相交,对顶角相等。
4。半圆的`内接三角形,一定是直角三角形。
5。如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。
这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理,相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
数学家的故事12
莱布尼兹(1646—1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
一、生平事迹
莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的着述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。
20岁时,莱布尼兹转入阿尔特道夫大学。这一年,他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。1673年,莱布尼兹被推荐为英国皇家学会会员。此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。
1716年11月14日,莱布尼兹在汉诺威逝世,终年70岁。
二、始创微积分
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早能够追溯到希腊由阿基米德等人提出的.计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673~1676年间也发表了微积分思想的论着。以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼兹大体上完成的,但不是由他们发明的”(xxx:《自然辩证法》)。
然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我证明我已经明白确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不一样,除了他的措词和符号而外。”(但在第三版及以后再版时,这段话被删掉了。)因此,之后人们公认牛顿和莱布尼兹是各自独立地建立微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自我创立微积分学的思路,说明了自我成就的独立性。
三、高等数学上的众多成就
莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为之后的数学理论奠定了基础。
莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在之后的研究中,莱布尼兹证明了自我结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。
四、丰硕的物理学成果
莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一齐运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了“关于笛卡儿和其他人在自然定律方面的显着错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时光和运动的区别一样,但是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。能够说莱布尼兹的物理学研究一向是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。
五、中西文化交流之倡导者
莱布尼兹对中国、的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向上帝会来华传教士格里马尔迪了解到了许多有关中国的状况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料修改成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的礼貌仿佛这天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备透过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时光哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在那里,莱布尼兹不仅仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。
莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。他的虚心好学、对中国文化平等相待,不含“欧洲中心论”偏见的精神尤为难能可贵,值得后世永远敬仰、效仿。
数学家的故事13
一、数学的发源地:古希腊
华人中最杰出的数学家陈省身最近去世了。在弥留之际,他一直在说:“送我去希腊。”就像麦加是伊斯兰的圣地,恒河是佛教徒心中的圣地一样,数学家和哲学 家心中的圣地就是希腊。古希腊群星璀璨,亚里士多德,苏格拉底,阿基米德这样的博学而又智慧的大家让其它民族望尘莫及。有记载第一位哲学家和数学家是泰勒斯,哲学是从泰勒斯开始的,他预言过一次日蚀,所以我们就很幸运地能够根据这件事实来断定他的年代;据天文学家说,这次日蚀出现于公元前585年。他第一次证明了在圆上,直径所对应的圆周角是90度,这也标志这几何学的诞生和证明的开始。希腊人中能产生那么多哲学家和数学家,几乎可以肯定的是那里的公民有辩论的自由,他们崇尚逻辑思维而不是崇尚武力。
毕达哥拉斯算是希腊数学家中的一个杰出的人物,他创立的有理数的概念至今对于一些受过高等教育的中国人还是一个难的东西。说它难,其实不难,关键是学习知识太功利,彻底搞清这个概念远远比背诵一段政治容易。我上【高等数学】课时,几乎年年有人问我:“老师,学习这个有什么用?”希腊的欧几里德碰到谁问他这个问题,从兜里拿出一个硬币,告诉仆人:“把这个硬币给他,他问学几何有什么用,学几何不能赚钱,让他拿这个硬币走吧!”
毕达哥拉斯是历史上最有趣味而又最难理解的人物之一。不仅关于他的传说几乎是一堆难分难解的真理与荒诞的混合,而且即使是在这些传说的最单纯最少争论的形式里,它们也向我们提供了一种最奇特的心理学。他建立了一种宗教,主要的教义是灵魂的轮回和吃豆子的罪恶性。他的宗教体现为一种宗教团体,这一教团到处取得了对于国家的控制权并建立起一套圣人的统治。但是未经改过自新的人渴望着吃豆子,于是就迟早都反叛起来了。
毕达哥拉斯在代数上的主张是认为数是万物之源,并且认为一切数都能写成两个自然数相除的形式。毕达哥拉斯的在几何上最伟大的发现,或者是他的及门弟子的最伟大的发现,就是关于直角三角形的命题;即直角两夹边的平方的和等于另一边的平方,即弦的平方。埃及人已经知道三角形的边长若为3,4,5的话,则必有 一个直角。但是第一个给出严格证明的却是毕达哥拉斯,因此这个定理也被冠以他的名字。这个定理在中国被称作勾股定理,不过至今没有得到广泛的承认。
然而不幸,毕达哥拉斯的定理立刻引到了不可公约数(无理数)的发现,这似乎否定了他的全部哲学。他的一个学生用毕达哥拉斯定理证明了:当正方形的边长是 1时,对角线长度不能用任何两个整数相除来表示,也就是说不是有理数。这刚好否定了毕达哥拉斯关于数的存在都是有理的(rational)的想法,这个学生的发现导致了他的丧命:被教众抛进了大海。这次事件被称作数学历史上的第一次危机,它否定了一切数都是有理数的结论。直到18-19世纪,关于微积分严 格性的讨论才对第一次数学危机给出了解答。
二、不懂几何者不许入内和阿基米德的裸奔
现在中学生学习的平面几何,都是来源于两千多年前的一本奇书:《几何原本》,它是古希腊数学家欧几里得的一部不朽杰作,是当时整个希腊数学方法和数学思想的结晶,其内容和形式对几何学本身和数学的发展有着不可估量的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经翻译和修订的次 数更是不胜枚举,自1482年第一个印刷本出版以来,至今已有一千多种不同的版本。除了《圣经》之外,没有任何著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》却有着超越民族、种族、宗教信仰、文化意识方面的影响,是《圣经》所无法比拟的。《几何原本》的希腊原始抄本现在已经流失了,它的所有现代版本都是以希腊评注家泰奥恩编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、 立体几何及算术理论的系统化知识。
《几何原本》对于数学的影响是不可估量的,它是人类历史上第一次采用公理化的体系来讨论数学。就是先假定一些命题是不加证明而认可的,所有的定理 和结论都是建立在这些公理的逻辑演绎之上。至今中学生所学的平面几何和立体几何都没有超出《几何原本》的范围,因此可以说这是对人类思想影响最远的数学书。现代数学的公理化方法都是来源于欧几里德的这本书《几何原本》。
古人学习几何更是困难,据说当学到‘一个等腰三角形的两个底角相等’这个定理时,好多人就无论怎样都学不会了,因此这个定理又叫‘驴子的梯子’, 指它难住了一大批人。直到现在,平面几何的一些知识或者立体几何的一些定理仍然难住了一大批人,大概学习数学需要一些天赋吧。因此当国王多禄米向欧几里德 讨教学习几何的捷径时,欧几里德告诉他:“在几何里面,没有为国王提供的捷径。”
在数学上,古希腊人提出“三大问题”:三等分任意角;倍立方,求作一立方体,使其体积是已知立方体的二倍;化圆为方,求作一正方形,使其面积等于 一已知圆。这些问题的难处,是作图只许用直尺(没有刻度的尺)和圆规。这类问题直到近代群论的出现,才得以得到解决,这三个问题都是不可解的。
阿基米德就是学习《几何原本》的学生中最杰出的一位。他11岁便离开家乡到当时希腊文化中心的亚历山大城去学习《几何原本》,按辈份他应该是欧几 里德的徒孙。他在数学和物理上所创造的奇迹使他成为人类历史上最杰出的科学家。一个著名的故事是:叙拉古的亥厄洛国王委托金匠造一顶纯金的皇冠,但是怀疑 里面被掺了银子,当然不可能通过把皇冠割开来检验这个王冠,于是便请阿基米德鉴定一下。一次当他洗澡时正在冥思苦想,这时水漫溢到盆外,于是悟得不同质料 的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤 里卡!尤里卡!”(我发现了),于是便开始在大街上裸奔起来了,一直跑到家里。
他在数学上的发现创造更是数不胜数,阿基米德螺线,抛物线上的弓形求面积方法含有现代积分思想,求圆的面积,球的表面积和体积的公式,圆周率的求 法和误差估计,等等,直到现在,全世界活着的人中,至少还有百分之六十的人数学知识比不上两千年前的阿基米德。
阿基米德的死也具有传奇色彩,甚至可以编成一部精彩的电影。公元前212年,罗马军队攻入叙拉古,并闯入阿基米德的住宅,他们看见一位老人在地上埋头作几何图形,士兵们将沙盘踩坏。阿基米德怒斥士兵:“不要弄坏我的图!”士兵拔出短剑,刺死了这位旷世绝伦的大科学家,阿基米德竟死在愚蠢无知的罗马士兵手里。还有一个版本是他死前说的话是:“让我做完最后一道题。”
关于阿基米德在数学史上的地位,美国的数学史学家E.T.贝尔在《数学人物》上是这样评价阿基米德的:“任何一张开列有史以来三位最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较, 还应首推阿基米德。”
三、牛顿时代就有马甲
从古希腊数学到近代微积分的产生,中间经历了漫长的停滞不前的年代。期间,各国都产生了一些杰出数学家和一些成果,但是这些成果都是零星的非本质的。期间中国最引以自豪的数学家是祖冲之,他计算出圆周率到小数点后7位。
在十七世纪中叶以后,数学知识的火山似乎在一夜之间爆发了。其中以微积分为代表的变量数学彻底改变了人们的数学思想和方法,解决了物理上提出的大 量问题,并且给出了用传统方法想都不敢想的问题的解法。在微积分发现的优先权的争执上,英国数学家和大陆数学家产生了严重纠纷。牛顿于是用了好多编造的名字来‘证明’莱布尼茨的`知识不是原创而是抄袭牛顿的。其言辞之尖刻、辱骂之恶毒令人难以想像。莱布尼茨死后,牛顿还津津乐道的向别人讲述怎样用马甲使莱布尼茨伤透了心,并沾沾自喜。
这个时代,法国的贝努力(Bernoulli)家族是一个数学家族,三代出现了十多位杰出的数学家。这个家族人的脾气都不太好,最奇怪的他们是开 始都不是从事数学,可是到后来全部迷上了数学。父亲因为儿子得了数学大奖,嫉妒之下竟然一脚从窗户把儿子踹到了室外。
1696年,约翰.贝努力( John Bernoulli)在《教师学报》的杂志上面提出最速降线问题,公开针对他的哥哥雅克比.贝努力(Jacobi.Bernoulli),这两个人在学术 让一直相互不忿,据说当年约翰求悬链线的方程,熬了一夜就搞定了,雅克比做了一年还认为悬链线应该是抛物线,实在是很没面子。那个杂志是莱布尼茨主办的, 影响很大,欧洲的所有杰出数学家都尝试这来做这个问题。到最后,Jhon收的了5份答案,有他自己的,莱布尼茨的,还有一个罗必达侯爵的,然后是他哥哥 Jacobi的,最后一份是盖着英国邮戳匿名的。
这个问题陈述起来很简单,就是平面上有两个点A,B,这两个点连线既不是水平也不是垂直,试寻找连接这两个点的曲线,使得靠自身重力的一个小球能 用最快时间从这点滑到那点(摩擦阻力不计)。
据说当年牛顿已经从科学第一线退了下来,揽到了皇家造币厂厂长的肥缺。劳累了一天以后,回家在壁炉前看到了贝努力的题,,熬夜到凌晨4点,就搞定 了。贝努力看到这个匿名送来的答案,说道:“我看到了狮子露出来了利爪。”在这么多解答当中,约翰的应该是最漂亮的,类比了费马光学原理作了出来,用光学 一下做了出来。但是从影响来说,弟弟的做法真正体现了变分思想。这个思想是把每条曲线看作一个变量,进而在每条曲线上所用时间便是曲线的函数,这就是泛 函。类似于微积分求最大最小值的办法,把微积分推广到一般函数空间去,这就是【变分法】。不过变分法真正成为一门理论还要属于约翰的弟子欧拉和法国的拉格 朗日。
贝努力一家在欧洲享有盛誉,有一个传说,讲的是丹尼尔.贝努力(Daniel Bernoulli,他是约翰.贝努力的儿子)有一次正在做穿越全欧洲的旅行,他与一个陌生人聊天,他很谦虚的自我介绍:“我是丹尼尔 .贝努力。”那个人当时就怒了,说:“我是还是伊萨克.牛顿呢。”从此之后在很多的场合丹尼尔都深情的回忆起这一次经历,把他当作他曾经听过的最衷心的赞 扬。
牛顿去世后,有人写诗赞美他:
宇宙和自然的规律隐藏在黑夜里
神说:让牛顿降生吧
于是一切都成了光明。
贝努力家族对数学最大的贡献还不是在数学本身,而是发现了欧拉。
四、数学英雄欧拉(Euler)
要问在历史上这些数学家中我最佩服谁,那肯定是欧拉。
欧拉小学就被开除了,因为他问的问题太多,给老师太多的难堪。有人说欧拉是先会算术后会说话的,高斯也是这样,高斯一岁时就能发现父亲账本上计算的错误,不过这肯定是传说。但是欧拉很小就知道等周原理:在周长固定的所有图形,面积最大的一定是圆。
大名鼎鼎的约翰.贝努力是欧拉父亲的朋友,第一次见到六岁的欧拉就被欧拉问住了:“我知道一个数6,它有因数1,2,3,6,加起来是6的2倍; 还有一个数28,有因数1,2,4,7,14,28,加起来也是28的2倍,还有多少这样的数?”这类数叫做完全数,还是欧拉,最终给出了偶数完全数的表 达式,那是后来的事情了。对于奇数的情形,谁要是能正确证明有或者没有,现在肯定能拿到数学最高奖。欧拉17岁获得了瑞士巴赛尔大学的硕士学位,欧拉太专 注数学,以至于贝努力不得不规定,吃饭时间不许看书。他19岁时被俄罗斯卡德琳娜女王邀请到彼得堡科学院从事研究。
欧拉解决的问题实在太多了,解决问题过程中创造出的方法不知开创了多少个数学分支。欧拉因为解决著名的七桥问题开创了拓扑学,歌德巴赫猜想是因为 歌德巴赫和欧拉的通信而出名的。任何一个正整数都一定能写成不超过四个平方数之和是欧拉最早证明的,这可是将近两千年无人解决的问题。数论,几何,力学, 天体力学,到处留下欧拉的足迹。现代数学的符号和表达式,如三角,指数,e,I,π等等,都是欧拉创立的。历史上第一本流行的微积分教科书也是欧拉写的。 后来所有的微积分教科书,或者是抄袭欧拉的,或者是抄袭抄袭欧拉的。
欧拉研究数学,就像人在呼吸,鸟在飞翔一样自由和自在。
欧拉早就发现了‘变分发‘,可是当他发现法国人拉格朗日也有这类思想时,就把自己的藏起来不发表,把出名的机会留给年轻人。
欧拉由于看书过多,年轻时就瞎了一只眼睛,到59岁时,他的左眼也逐渐失明了。正当他抢在完全失明前抢救资料时,一场大火烧毁了他的一切资料。
欧拉大部分工作是在失明以后完成的,包括四平方定理。
欧拉的两个学生因为计算一个无穷级数答案不一样发生争执,失明的欧拉用心算找出了小数点后第50位的错误,结果证明这两个学生都算错了。这就是欧拉。
五、天妒英才
下面要说到两个英年早逝的数学家,伽罗瓦和阿贝尔,不过要先从一个故事说起。
凡是受过初中教育的人都知道,任何一个一元二次方程都可以用求根公式求出它的解,这大概是很久就有的公式了。其中根和系数的关系被称作韦达定理, 有着广泛的应用。然而三次方程和四次方程甚至更高阶方程的求解公式一直不被人们所知。在文艺复兴时期,有个叫塔塔利亚的业余数学家首先得到了这个公式,不过他秘而不宣,这是当时搞研究的人的一个传统。可是,这个消息还是在寻求公式的一些业余数学家之间流传着。
有一个叫卡当的业余研究者找到了塔塔利亚,恳求得到塔塔利亚的真传。这个卡当在赌博上也不是一般的赌徒,是他在赌博中提出了概率的思想,他还热衷于炼金术,星象学。塔塔利亚肯定被卡当打动了,也许卡当常跪不起,也许甜言蜜语,总之塔塔利亚告诉了他自己知道的一些公式。卡当学到手求解公式后就离开了塔塔利亚,甚至把对塔塔利亚许下的诺言抛到了九霄云外,写出了一本术,名字叫做‘大术’,介绍了三次方程四次方程的求解方法。于是卡当声名雀起,因为他在书中宣称这些公式是他自己发现的。
两个人的争执开始了,解决争端的方法很简单,来一场决斗:两人各自给对方出20道题,看谁先解出来。塔塔利亚大获全胜,卡当一道题都没有解出来, 因为塔塔利亚教他时留了一招,没有把公式的一般情况告诉卡当。这大概是人类历史上的第一场数学竞赛,参赛这只有两个人,这个故事发生在四百多年前。不过至今这些公式还被称作卡当公式,而塔塔利亚连名字都没有留下来,塔塔利亚只是一个外号,意大利语意思是‘结结巴巴的人’的意思。
历史就像一条河流,沉到河里的往往是金子,浮在河面上的往往是水草和马粪。
三次四次方程求根公式得到了以后,人们寻求五次和五次以上方程的求解公式。可是欧拉高斯等杰出数学家都没有找到求解公式,成了当时数学的难题。有 两个青年匆匆的来到了这个世界,又匆匆的离开了,也许他们来到人世的目的就是为了给我们一些惊讶和慨叹。 尼尔斯·亨利克·阿贝尔(N.H.Abel)1802年8月5日出生在挪威一个名叫芬德的小村庄。阿贝尔幸运的碰到了一个有数学头脑却无多大数学成果的老师,老师很快发现他的数学才能,使得他很早就接触到了微积分。在中学的最后一年,阿贝尔开始试图解决困扰了数学界几百年的五次方程问题。在19岁那年,他证明了一般五次方程求解公式不存在,就是说,不能用方程系数和开根号的有限多次运算来表示方程的根。阿贝尔认为这结果很重要,便自掏腰包在当地的印刷馆印 刷他的论文。因为贫穷,为了减少印刷费,他把结果紧缩成只有六页的小册子。阿贝尔满怀信心地把这小册子寄给国内外的一些数学家,包括数学王子的高斯,希望 能得到一些反应。可惜他的文章太简洁了,没有人能看懂。高斯收到这小册子时觉得不可能用这么短的篇幅证明这个世界著名的问题―――连他还没法子解决的问 题。他看都没看一眼,就把它扔在书堆里了。阿贝尔的另一篇论文是他在欧洲旅行时通过别人转交给大数学家柯西(Cauchy)手里,柯西连看都没看就扔到纸篓里。
阿贝尔饥寒交迫的回到了挪威,还欠了一身债,最后在绝望中死去,年仅27岁。他活着最大的理想是在大学里当一个讲师,可是到死都没有实现。看看现在大学里教授成堆,博士成群,可是这个群体再也没有疯疯癫癫的学者,没有目光深邃的思想者,没有疯狂的怪癖人物了。
伽罗瓦(Evariste Galois)1811年10月25日生于巴黎附近的一个小城。1829年他两次投考巴黎综合工科学校,却因思想激进,两次被拒绝录取,最后只好进入高等师范学校学习。1829年5月,17岁的他写出了关于五次方程的代数解法的论文,论文中首次引入“群”的概念。他把论文寄给经由柯西,请他交给法兰西科学 院审查。柯西对此根本不屑一顾,把这个中学生的文章给弄丢了。1830年2月伽罗瓦再次将他的研究成果写成一篇详细的论文,寄给科学院秘书傅立叶,不料当年5月傅立叶病死,伽罗瓦的文稿再次被丢失。1831年伽罗瓦第三次将论文送交法国科学院。泊松院士看了4个月,最后在论文上批道:“完全无法理解”。可惜这些大数学家的傲慢和自大,使得伽罗瓦的理论被埋没了将近50年。
伽罗瓦因为政治激进,被阴谋的政客们用一件小事怂恿和一个军官决斗。在决斗前一个晚上,他急切地写着他的遗言。想在死亡来临之前尽快把他的思想中那些有意义的东西写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间。”接着伽罗瓦又写下一个潦草的大纲。他在天亮之前那最后几个小时写出的东西,一劳永逸地给一个折磨了数学家几个世纪的难题题找到了真正的答案,开创了数学上的一个重要的分支―――群论。
伽罗瓦在决斗中被打成重伤,死在家里,年仅21岁。
尽管阿贝尔和伽罗瓦创造的群论是纯粹的抽象代数,可是却在后来量子力学中得到了很好的运用。利用对称群理论,人们能够事先预测晶体的种类,群论还会出现在意想不到的地方。比如玩魔方,就可以利用群论的知识。
数学家的故事14
杨辉
字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。
(一)主要著述
杨辉一生留下了大量的著述,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。
《详解九章算法》现传本已非全帙,编排也有错乱。从其序言可知,该书乃取魏刘微注、唐李淳风等注释、北宋贾宪细草的《九章算术》中的80问进行详解。在《九章算术》9卷的基础上,又增加了3卷,一卷是图,一卷是讲乘除算法的,居九章之前;一卷是纂类,居书末今卷首图、卷l乘除,卷2方田、卷3粟米、卷4衰分的衰分、反衰诸题、卷6商功的诸同功问题已佚。卷4衰分下半卷、卷5少广存《永乐大典》残卷中,其余存《宜稼堂丛书》中。从残本的体例看,该书对《九章算术》的详解可分为:一、解题。内容为解释名词术语、题目含义、文字校勘以及对题目的评论等方面。二、明法、草。在编排上,杨辉采用大字将贾宪的法、草与自己的详解明确区分出来。三、比类。选取与《九章算术》中题目算法相同或类似的问题作对照分析。四、续释注。在前人基础上,对《九章算术》中的80问进一步作注释。杨辉的“纂类”,突破《九章算术》的分类格局,按照解法的性质,重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。
杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
11
121
1331
14641
15101051
1615201561
.....................................
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
《日用算法》,原书不传,仅有几个题目留传下来。从《算法杂录》所引杨辉自序可知该书内容梗概:“以乘除加减为法,秤斗尺田为问,编诗括十三首,立图草六十六问。用法必载源流,命题须责实有,分上下卷。”该书无疑是一本通俗的实用算书。
《乘除通变本末》三卷,皆各有题,在总结民间对等算乘除法的改进上作出了重大贡献。上卷叫《算法通变本末》,首先提出“习算纲目”,是数学教育史的重要文献,又论乘除算法;中卷叫《乘除通变算宝》,论以加减代乘除、求一、九归诸术;下卷叫《法算取用本末》,是对中卷的`注解。
《田亩比类乘除捷法》,其上卷内容是《详解九章算法》方田章的延展,所选例子非常贴近实际。下卷主要是对刘益工作的引述。杨辉在《田亩比类乘除捷法》序中称“中山刘先生作《议古根源》。……撰成直田演段百间,信知田体变化无穷,引用带从开方正负损益之法,前古之所未闻也。作术逾远,罔究本源,非探喷索隐而莫能知之。辉择可作关键题问者重为详悉著述,推广刘君垂训之意。”《田亩比类乘除捷法》卷下征引了《议古根源》22个问题,主要是二次方程和四次方程的解法。
《续古摘奇算法》上卷首先列出20个纵横图,即幻方。其中第一个为河图,第二个为洛书,其次,四行、五行、六行、七行、八行幻方各两个,九行、十行幻方各一个,最后有“聚五”“聚六”:聚八”“攒九”“八阵”“连环”等图。有一些图有文字说明,但每一个图都有构造方法,使图中各自然数“多寡相资,邻壁相兼”凑成相等的和数。卷下评说《海岛》也有极高的科学价值。
杨辉著作大都注意应用算术,浅近易晓。其著作还广泛征引数学典籍和当时的算书,中国古代数学的一些杰出成果,比如刘益的“正负开方术”,贾宪的“开方作法本源图”“增乘开方法,”幸得杨辉引用,否则,今天将不复为我们知晓。
(二)主要研究成果
杨辉的数学研究与数学教育工作之重点在于改进筹算乘除计算技术,总结各种乘除捷算法,这是由当时的社会状况决定的。唐代中期以后,社会经济得到较大发展,手工业和商业交易都具有相当的规模,因而,人们在生产、生活中需要数学计算的机会,较前大大增加,这种情况迫切要求数学家们为人们提供便于掌握、快捷准确的计算方法。为适应社会对数学的这种需求,中晚唐时期出现了一些实用的算术书籍。但是,这些书籍除了《韩延算术》,被宋人误认为《夏侯阳算经》而刊刻流传到现在外,都已失传。《韩延算术》大约编写于公元770年前后,书中介绍了很多乘除捷法的例子。比如,某数乘以42可以化为某数乘以6,再乘以7;某数除以12可以化为某数除以2,再除以6。对于更复杂的问题可同样处理。通过将乘数、除数分解为一位数,可以使运算在一行内实现,简化了运算,提高了速度。韩延还介绍了其他一些简捷算法。比如“身外添加四”、“隔位加二”。北京科学家沈括也总结了增成、重因等捷算法。
杨辉生活在南宋商业发达的苏杭一带,进一步发展了乘除捷算法。他说:“乘除者本钩深致远之法。《指南算法》以‘加减’、‘九归’、‘求一’旁求捷径,学者岂容不晓,宜兼而用之。”在前人的基础上,他提出了“相乘六法”:一曰“单因”,即乘数为一位数的乘法;二曰“重因“,即乘数可分解为两个一位数的乘积的乘法;三曰“身前因”,即乘数末位为一的两位数乘法,比如257×21=257×20十257,实际上,身前因就是通过乘法分配律将多位数乘法化为一位数乘法和加法来完成。四曰相乘,即通常的乘法;五曰“重乘”,就是乘数可分解为两因数的积,作两次相乘;六曰“损乘”,是一种以减代乘法,比如,当乘数为9、8、7时,可以10倍被乘数中,减去被乘数的—、二、三倍。杨辉还进一步发展了唐宋相传的求一算法,总结出了“乘算加法五术”、“除算减法四术”。求一实际上就是通过倍、折、因将乘除数首位化为一,从而用加减代乘除。杨辉的“乘算加算加法五术”,即“加一位”、“加二位”、“重加”、“加隔位”、“连身加”。乘数为11至19的,用加一位;乘数为l0l至199的,用加二位法;乘数可分为两因数的积,且可用加一或加二时,称为重加;乘数为101至l09时,用隔位加;乘数为21至29、20l至299时,用连身加。例如,342×56的计算,用现代符号写出,便是:342×56=342×112十2=(34200十342×l2)十2=(34200十3420十342×2)十2。其“除算减法四木”即“减一位”、“减二位”、“重减”、“减隔位”,用法与乘算加法类似。
北宋初年出现的一种除法——增成法,在杨辉那里得到进一步的完善。增成法的优点在于用加倍补数的办法避免了试商,但对于位数较多的被除数,运算比较繁复,后人改进了它,总结出了“九归古括”,包含44句口诀。杨辉在其《乘除通变算宝》中引《九归新括》口诀32句,分为“归数求成十”、“归数自上加”,“半而为五计”三类。
客观上讲,杨辉不遗余力改进计算技术,大大加快了运算工具改革的步伐。随着筹算歌诀的盛行,运算速度大大加快,以至人们感觉到摆弄算筹跟不上口诀。在这样的背景下,算盘便应运而生了,及至元末,已经广为流行。
纵横图,即所谓的幻方。早在汉郑玄《易纬注》及《数术记遗》都记载有“九宫”即三阶幻方,千百年来一直被人披上神秘的色彩。杨辉创“纵横图”之名。在所著《续古摘奇算法》上卷作出了多种多样的图形。图ll是四阶纵横图;图12是百子图,即十阶纵横图。其每行每列数之和为50—5(对角线数字之和不是505);图13是“聚八”图,杨辉按“二十四子作三十二子用”设子的这种幻方共有四圈,每圈数字之和为100;图14是“攒九”图,用前33个自然数排列,达到“斜直周围各一百四十七”的效果。杨辉不仅给出了这些图的编造方法,而且对一些图的一般构造规律有所认识,打破了幻方的神秘性。这是世界上对幻方最早的系统研究和记录。自杨辉以后,明清两代中算家关于纵横图的研究相继不断。
杨辉的另一重要成果是垛积术。这是杨辉继沈括“隙积术”之后,关于高阶等差级数求和的研究。在《详解九章算法》和《算法通变本末》中记叙了若干二阶等差级数求和公式,其中除有一个即沈括的当童垛外,还有三角垛、四隅垛、方垛三式,用现今的记号表示就相当于下面三式:
上述三式可由沈括之刍童公式推出。
对数学重新分类也是杨辉的重要数学工作之一。杨辉在详解《九章算术》的基础上,专门增加了一卷“纂类”,将《九章》的方法和246个问题按其方法的性质重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。
杨辉不仅是一位著述甚丰的数学家,而且还是一位杰出的数学教育家。他一生致力于数学教育和数学普及,其著述有很多是为了数学教育和普及而写。《算法通变本末》中载有杨辉专门为初学者制订的“习算纲目”,它集中体现了杨辉的数学教育思想和方法。
数学家的故事15
德国一俄国数学家。1690年3月兜旧生于普鲁士的柯尼斯堡(现为苏联的加里宁格勒);1764年11月20日卒于莫斯科。
哥德巴赫是一位牧师的儿子,在柯尼斯堡大学学习医学和数学。1710年他周游欧洲(这是有条件的.人常常采取的一种增长阅历的方式)。1725年他定居俄国,成为圣彼得堡帝国科学院的数学教授; 1728年担任了早逝的彼得二世(彼得大帝的孙子)的宫廷教师。
哥德巴赫之所以在数学上负有盛名,是由于他在1742年给欧拉的一封信中提到所谓“哥德巴赫猜想”。(哥德巴赫与当时的数学家常有书信往来) 这个猜想是“任何一个大于2的偶数均可表示为两个素数(素数是指:一个只能分成1和它本身相乘的数。比如:3=1*3,17=1*17等)之和。”例如4=2+2;6=3+3;8=3十5;10=3+7:12=5+7;等等。数学家们已经对大到10.000甚至更大的一些偶数进行实际验证,发现这个猜想是正确的;并且没有人指望发现例外。可是问题在于两个多世纪以来没有一位数学家能够证明这个猜想。这样简单的、显然正确的事实,为什么不能证明呢?这是数学家们所受到的挫折之一.
【数学家的故事】相关文章:
[经典]数学家的故事02-27
数学家的故事07-30
数学家的故事(精选)07-26
数学家的故事07-29
[中国史上的数学家故事] 数学家的故事05-23
有关写数学家的经典故事 数学家的经典故事04-13
数学家的故事(热门)07-26
[合集]数学家的故事07-23
有趣的数学家故事(经典)08-02
数学家的故事【通用】07-12