当前位置:壹学网>教案>数学教案>初中数学教案

初中数学教案

时间:2024-09-30 11:02:07 数学教案 我要投稿

【优秀】初中数学教案13篇

  作为一名优秀的教育工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?以下是小编为大家收集的初中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

【优秀】初中数学教案13篇

  初中数学教案 篇1

  今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!

  教学设计示例一——公式

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例二——公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察分析推导计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底,高的三角形面积

  2.已知长方形的长是宽的`1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

  3.已知圆的半径,,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

  (1)求A地到B地所用的时间公式。

  (2)若千米/时,千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积________,周长_____________

  2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

  3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?

  九、布置作业

  (一)必做题课本第xx页x、x、x第xx页x组x

  (二)选做题课本第xx页xx组x

  初中数学教案 篇2

  一、课题

  略。

  二、教学目标

  1.结合具体例子,体会数学与我们的成长密切相关。

  2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

  3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

  4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

  三、教学重点和难点

  重点

  难点

  1.结合具体例子,体会数学与我们的成长密切相关。

  2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

  结合具体例子,体会数学与我们的成长密切相关。

  四、教学手段

  现代课堂教学手段

  教学准备

  教师准备

  录音机、投影仪、剪刀、长方形纸片。

  学生准备

  预习、剪刀、长方形纸片

  五、教学方法

  启发式教学

  六、教学过程设计

  一、导入

  教师活动

  学生活动

  展示图片并播放录音。

  宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

  观察图片,听录音。

  二、板书课题。

  三、导学

  教师活动

  学生活动

  1.现在让我们进入时空的隧道,回忆我们的成长历程:

  出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)

  (师、生共同讨论交流,从具体事例中分析并找出数学信息。)

  2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?

  3.指定若干名学生口答,师生共同系统归纳:

  数与式:认识、计算、方程、解应用题;

  图形:图形的认识、图形的画法、图形的计算;

  统计知识。

  4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

  (1)投影或小黑板展示下列问题:

  ①计算并观察下列三组算式:

  ②已知25×25=625,则24×26=(不要计算)

  ③你能举出一个类似的例子吗?

  ④更一般地,若a×a=m,则(a+1)(a-1)= 。

  (老师点评、表扬)

  (2)投影或小黑板展示教材第13页第4题。

  通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的重大作用。

  布置作业:

  (1)谈一谈你对数学的兴趣、学习数学的`方法以及学习中存在的困难等;

  (2)习题1.1第2、4题。

  1.回忆、交流、积极大胆发言。

  2.回忆、交流。

  3.观察、计算、思考、探索。

  4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

  学生1

  学生2

  学生拼图(略)

  七、练习设计

  课堂基础练习

  1、下列图形中,阴影部分的面积相等的是.

  答案:A与B;C与D

  2、三个连续奇数的和是21,它们的积为

  答案:315

  3、计算:7+27+377+4777

  答案:5188

  课后延伸练习

  1、猜谜语(各打数学中常用字)

  千人分在北上下;②1人立在口上边

  答案:①乘;②倍

  2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

  答案:[5-(1÷5)]×5

  3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

  1 2 3 4 5 6 7 8 9 =100

  答案:123-(45+67-89)=100

  4、把长方形剪去一个角,它可能是几边形?

  答案:三边形,四边形,五边形.

  5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

  答案:

  能力提高训练

  18

  19

  ;v:line from="6554,6900" id="_x0000_s1090" style="POSITION: absolute; mso-wrap-edited: f" to="6554,7320" wrapcoords="0 0 0 20829 0 20829 0 0 0 0">;v:line from="6810,7095" id="_x0000_s1091" style="POSITION: absolute; mso-wrap-edited: f; flip: y" to="6810,7785" wrapcoords="0 0 0 21130 0 21130 0 0 0 0">;v:line from="7214,6795" id="_x0000_s1092" style="POSITION: absolute; mso-wrap-edited: f" to="7214,7560" wrapcoords="0 0 0 21176 0 21176 0 0 0 0">

  答案:7个,边长从大到

  小依次为11、8、

  7、5、3

  1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

  2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

  答案:36

  八、板书设计

  (一)知识回顾(四)例题解析(六)课堂小结

  (二)观察发现例1、例2

  (三)解方程(五)课堂练习练习设计

  九、教学后记

  初中数学教案 篇3

  教学目标:

  1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

  (2)能熟练进行有理数的减法法则。

  2、过程与方法

  通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

  重点、难点

  1、重点:有理数减法法则及其应用。

  2、难点:有理数减法法则的应用符号的改变。

  教学过程:

  一、创设情景,导入新课

  1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=

  —3+(+5)=

  2、-(-2)= -[-(+23)]=,+[-(-2)]=

  3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?

  导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)

  二、合作交流,解读探究

  1(-2)-(-10)=8=(-2)+8

  2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?

  3、通过以上列式,你能发现减法运算与加法运算的关系吗?

  (学生分组讨论,大胆发言,总结有理数的'减法法则)

  减去一个数等于加上这个数的相反数

  教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?

  三、应用迁移,巩固提高

  1、P.24例1 计算:

  (1) 0-(-3.18)(2)(-10)-(-6)(3)-

  解:(1)0-(-3.18)=0+3.18=3.18

  (2)(-10)-(-6)=(-10)+6=-4

  (3)-=+=1

  2、课内练习:P.241、2、3

  3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。

  四、总结反思

  (1) 有理数减法法则:减去一个数,等于加上这个数的相反数。

  (2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。

  五、作业

  P.27习题1.4A组1、2、5、6

  备选题

  填空:比2小-9的数是 。

  а比а+2小 。

  若а小于0,е是非负数,则2а-3е 0。

  初中数学教案 篇4

  学情分析:

  高三(7)是我校理科重点班,该班的学生具有良好的数学功底,处于复习阶段的他们目标更明确,学习热情高,课堂投入,思考积极。就本节开课的内容而言,学生已掌握了“对称问题”本质属性,能够从图象和表达式上准确地理解对称问题。但也只是停留在就事论事的基础上,对问题的抽象、归纳概括,引申拓展还缺乏一定的能力和意识。对于周期概念,学生没有什么的问题。

  教材分析:

  1.对称问题是高中数学中比较难的问题,学生一般由于问题的抽象性,同时由于这中间存在关于点对称和关于直线对称这两类问题,而它们的数学表达式又是那么相似,学生如果没有真正理解很难分清谁是谁非。而且在高考的问题中经常会碰到,因此有必要加以澄清和深化理解。

  2.对称问题和周期问题也存在一定的联系,本节可以通过足够的条件阐明这一联系的实质。

  教学目标:

  理解一个函数存在两次对称(可能关于两个点对称或两条直线对称或一个点加上一个对直线)时,如何判断函数具有周期性。

  重点和难点

  具有两次对称问题的抽象函数具有周期性,而且要求求出周期。

  教学方法:

  从简单到复杂,以启发思想为指导,精讲重思,暴露学生的思维,使学生整节课都处于思考之中。

  教学程序:

  一、引入

  师:当一个人站在一面镜子前,面对镜子一定的距离,那么在镜中的像有什么特征?

  生:(物理常识)人和像关于镜子对称。

  师:现在在此人的身后再放一面镜子,镜面对着人的背面,此时在此人面前的镜子中的像又是什么?

  生:如果镜子够大的话,里面将是无数个排列的人。

  师:道理何在?

  生:首先是人在前面镜中的像连同人一起要在后面镜中成像,这一像反过来连同人又在前面镜中成像,这样反反复复,就得到了无数个人像,而且具有周期性(即图象重复出现)。

  师:如果将人看成一段函数,将镜子看成一条对称轴,那么整个函数的图象应该是怎样的(图象具有什么特征)。

  引入课题:对称+对称=?

  二、探究

  回顾:关于图象的对称问题分为两类:一类是关于点对称,另一类是关于直线对称,今天我们来研究一般的函数对称问题,我们从函数表达式来研究,对于直线对称:若f(x)关于x=a对称,则有f(x)=f(2a-x)或f(a+x)=f(a-x);对于点对称:f(x)关于(a,0)对称,则有f(x)=-(2a-x)或f(a+x)=-f(a-x)。

  对于奇函数[f(x)=-f(-x)]和偶函数[f(x)=f(-x)],则是这两类对称中的特例。

  延伸:若是f(a+x)=f(b+x),则函数关于什么对称(关于直线x=(a+b)/2对称)

  提问:请同学们找几个关于直线x=a对称的函数的表达式?

  生:f(4a-x)=f(6a+x)

  下面研究当函数具有两次对称时,结果有什么特征?

  问题设计:

  ①函数f(x)

  (1)是偶函数

  (2)关于x=a对称

  分析:由条件(2),可得f(a+x)=f(a-x),又由条件(1),所以f(x+a)=f(x-a)。

  (以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定义f(x)=f(T+x),所以f(x)是以|2a|为周期的函数

  ②函数f(x)

  (1)是奇函数

  (2)关于x=a对称

  分析:由条件(2),可得f(x)=f(2a-x)又由条件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函数f(x)是以|4a|为周期的函数,

  以此类推,

  ③函数f(x)满足

  (1)是偶函数

  (2)关于(a,0)对称

  ④函数f(x)满足

  (1)是奇函数

  (2)关于(a,0)对称

  ⑤函数f(x)满足

  (1)关于x=b对称

  (2)关于x=a对称

  ⑥函数f(x)满足

  (1)关于(a,0)对称

  (2)关于(b,0)对称

  ⑦函数f(x)满足

  (1)关于x=a对称

  (2)关于(b,0)对称

  (师生共同完成)

  学生练习:见复习参考书

  评教:

  教材处理恰当

  1.前面的课堂教学中已经讲了关于图象平移,伸缩的问题,对于对称问题在前面也分析了关于含绝对值的.函数图象问题(y=|f(x)|,y=f(|x|))。

  2.今天这堂课分析非绝对值的对称问题,主要是关于点对称和直线对称的问题。

  3.下一节殷老师构思,将一个函数的对称变成两个函数的对称问题,即如:函数f(x)和函数f(-x)的关系;函数f(x)和函数f(2a-x)的关系;函数-f(x)和函数f(2a+x)的关系,即对照这堂课的内容,将一个函数变成两个函数,再寻找二者关系,以便通过其中一个函数来解决另一个函数问题。如:已知函数-f(x)的图象,画出函数f(2a+x)的图象及分析其性质。

  (点评:对于教学任务的分析是一个教师的教学水平的重要标志,同样的一个教师对教材的处理各不相同,当然所得的结果也各不相同,我们评一节课好坏,同时也要关注这堂课的前述及后续,只有知道前后的内容,才能把握上课之人想法,教学思路,处理教材的能力,我认为这样的处理比较有逻辑性,能够帮学生梳理知识,使学生对知识的结构比较清晰,符合建构主义观点。这对高考复习内容较多的情况下更容易帮助学生的理解,体现上课老师对教材具有较高的处理水平。)

  引入贴近生活

  数学知识通常被学生认为是最没用的,枯燥乏味的,原因是学生在实际生活中的问题很少能够和数学联系起来,而通常这样的联系确定很难寻找,现在的新教材就加强了这一方面的联系,这堂课殷老师就以是实际生活中常见的照镜子一事引入,这里我觉点有两个地方比较不错:

  (1)将数学知识和实际联系起来,因此说联系还是有的,主要我们没有仔细体会,没有这种思维习惯,这样有联系的问题学生就感兴趣,自然投入更多了;

  (2)更为重要的是,这个引入不但引出了主题,还成功地解决了难点(抽象思维能力),如果是直接给出问题,学生可能不会想到结论是什么,但是由镜子引入,学生就很容易理解为什么函数具有周期性,为接下来从函数表达式上来分析埋下了垫脚石。对于问题情境的设置恰当与否,决定了能否激发学生的求知欲望,能否积极主动地参与到课堂教学中。

  可改进之处:对于照镜子问题,在实际生活同时用两面镜子,可能不多,因此学生要推断也只凭想象再结合物理知识,可能有学生想出来,那么他对这一问题的理解就凭老师的讲解,还是存有疑惑,如果能现实操作,理解会更深,当然不可能真的取来两面大镜子,我们可借助于“几何画板”数学教学软件,它对于对称问题,操作简单,下面是本人做的图片:

  (三)问题设计巧妙

  函数f(x)满足

  (1)是偶函数

  (2)关于x=a对称

  ②函数f(x)满足

  (1)是奇函数

  (2)关于x=a对称

  ③函数f(x)满足

  (1)是偶函数

  (2)关于(a,0)对称

  ④函数f(x)满足

  (1)是奇函数

  (2)关于(a,0)对称

  ⑤函数f(x)满足

  (1)关于x=b对称

  (2)关于x=a对称

  ⑥函数f(x)满足

  (1)关于(a,0)对称

  (2)关于(b,0)对称

  ⑦函数f(x)满足

  (1)关于x=a对称

  (2)关于(b,0)对称

  题组、变式训练是提高学生思维能力,分析问题解决问题能力的常用方法

  (1)学生能通过辨析达到对问题真正理解,对于突破难点起关键作用。

  (2)通过一连串的结论,使学生在以后拿到类似的问题,会引起重视,究竟是其中哪一种。

  同时这里的问题设计遵循了由易到难,特殊到一般的过程,这和学生的思维认识规律相符合。

  可改进之处:对于这类问题,当然有必要让学生理解,对于一连串问题的理解经过思考和老师的分析是可以理解但是学生的抽象思维能力还是有待于提高的,到最后可能在头脑里的印象还是比较模糊了,谁是谁非。⑤⑥⑦三个例子均可让学生自己来演练,以便让每个学生有独立思考的机会。以提高学生独立解决问题的能力,和真正检测学生对刚才问题的理解程度。

  (四)善于捕捉归纳

  在教学中处处留心,总能发现点什么,对于平时的练习也是一样,通过平时作问题,从问题中发现规律,进行提练、归纳。这节课的问题设计来自殷老师平时的留心观察,这一点确实提醒我们这些年青教师,要善于观察、思考、发现问题,总结规律。

  (五)分析透彻易懂

  课堂45分钟的效率如何是学生学好每一门课程的关键,教师分析有没有到位,直接影响着学生的听课效率,讲得多并不是好事,讲少了怕学生听不懂,这是很多新教师关心的问题,老教师上课时知道讲到哪就够了,知道学生在哪儿可能有疑惑,就重点讲解,有些地方一带而过,这节课很多地方分析的非常清楚,比如在讲解,关于直线对称和点对称时

  求表达式,他这样讲解f(x)关于x=a对称,为什么会f(x)=f(2a-x)

  (1)两点关于x轴对称,纵坐标(函数值y)没变,所以f()=f()(f()表示函数值)

  (2)横坐标原来为x,对称后变了,由中点坐标公式得,x1=2a-x,所以f(x)=f(2a-x),讲解关于点(a,0)对称时求表达式,由于纵坐标变为原来相反数,所以f()=一f(),同样横坐标也可以由中点公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。

  (六)暴露学生思维

  本节课应该说学生的思维还是比较活跃的,在老师的帮助下,学生表现比较积极、投入,课堂气氛活跃,学生能够根据自己的理解提出方案,对于问题的解答反映还是比较快的,但是也不排除有个别学生可能由于问题的抽象性,对于问题的本质缺乏充分的认识及自身理解水平的问题,对于问题的下一步是什么,如何思考没有想法。

  可改进建议:由于课堂容量较大,教师可能考虑到时间的问题,对于后几个问题没有让学生有充分的时间思考,有些思维慢,或理解不够的学生可能跟不上,在下面没有反应,建议教师事先出张学案,将要研究的问题罗列出一张提纲,让学生在课前去思考,这样上课的听课效率可能会更好。

  初中数学教案 篇5

  生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

  侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

  底面:棱柱有上、下两个底面,形状相同。

  侧面:棱柱的'侧面都是平行四边形。

  立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

  棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

  特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

  圆柱:上、下两个面都是圆形,侧面展开图是长方形。

  圆锥:底面是圆形,侧面展开图是扇形。

  截面:用一个平面去截一个几何体,截出的面。

  球:用一个平面去截,截面图形是圆形。

  正方体的截面:可以是正方形、长方形、梯形、三角形。

  圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

  展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

  从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

  初中数学教案 篇6

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程(师生活动) 设计理念

  探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的'数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  也可以教师说出一些数,让学生进行判断。

  集合的概念不必深入展开。

  创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数 这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业

  1, 必做题:教科书第18页习题1.2第1题

  2, 教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

  初中数学教案 篇7

  教学目标:

  利用数形结合的数学思想分析问题解决问题。

  利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

  在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

  教学重点和难点:

  运用数形结合的思想方法进行解二次函数,这是重点也是难点。

  教学过程:

  (一)引入:

  分组复习旧知。

  探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

  可引导学生从几个方面进行讨论:

  (1)如何画图

  (2)顶点、图象与坐标轴的交点

  (3)所形成的三角形以及四边形的面积

  (4)对称轴

  从上面的问题导入今天的课题二次函数中的图象与性质。

  (二)新授:

  1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

  再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

  再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

  2、让同学讨论:从已知条件如何求二次函数的解析式。

  例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

  (三)提高练习

  根据我们学校人人皆知的船模特色项目设计了这样一个情境:

  让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的`最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

  让学生在练习中体会二次函数的图象与性质在解题中的作用。

  (四)让学生讨论小结(略)

  (五)作业布置

  1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

  (1)求二次函数的解析式;

  (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。

  2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

  3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

  (1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

  (2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

  初中数学教案 篇8

  1.初中数学教案模板

  1.课题

  填写课题名称(初中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书

  2.初中数学教案格式

  课程编码:______________________________________

  总学时 / 周学时: /

  开课时间: 年 月 日 第 周至第 周

  授课年级、专业、班级:___________________________

  使用教材:_______________________________________

  授课教师:_______________________________________

  1.章节名称

  2.教学目的

  3.课时安排

  4.教学重点、难点

  5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)

  6.复习巩固与作业要求

  7.教学环境及教具准备

  8.教学参考资料

  9.教学后记

  3.初中数学教案范文

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的'应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授

  问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得44x+64=328

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2。

  四、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业

  教科书第3页,习题6.1第1、3题。

  初中数学教案 篇9

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的.形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

  初中数学教案 篇10

垂线

  教材分析

  《垂线》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册第四章相交线。垂线是平面几何所要研究的基本内容之一,是七年级上册第四章“图形的初步认识”的主要内容。垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系、三角形的高、切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用。垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一。它作为学习几何的基础内容,对以后学生利用准确合理的构造画出垂线来分析几何关系、解决几何综合问题及相关实际问题具有重要意义。

  实验教材将本节内容分两课时,与九年义务教育教材相比,虽然缩短了一课时,但更注重对学生实际操作能力的培养,更注重渗透变换的思想。“做一做”这种探究性活动,为培养学生的参与意识和创新意识提供了机会。垂线的画法是学生学习本节内容的一个难点。结合学生所学的知识及生活实际,有效地引导学生认知和感受知识的发生发展过程;精心设计投影片和变式训练,并恰到好处地利用运动变化,体现画垂线的思维过程,在掌握垂线概念的基础上,使学生顺利自然地突破画垂线的难点。

  学生分析

  我校属农村城镇中学,学生全部享受九年义务教育,实行电脑随机分班,未进行筛选。学生智力水平参差不齐,基础和发展均不平衡。经过一学期的实践,学生基本上适应了以学习小组方式参与探究活动与班级学习方式相结合的学习方法,不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。

  设计理念

  针对教材内容和学生实际,组织学生实践、感悟出两直线互相垂直的概念,引导学生分析解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识发现抽象的概念,使学生成为探求知识的主体。同时利用问题探究式的方法让学生对新课加以巩固理解。在探究垂线的性质时,采取小组学习形式,可增强学生之间的合作互助,弥补教师在大班额教学中对弱势学生关注的不足。初步探索在农村中学中如何进行研究性学习。

  教学自标

  1.了解两条直线互相垂直的概念;知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

  2.培养提高观察、理解能力,几何语言能力,画图能力,抽象思维能力和运用知识解决实际问题的能力。

  3.培养辩证唯物主义思想及不断发现、探索新知识的精神。

  4.通过创设情境,利用变式训练和多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的氛围。

  教学重点:

  两直线互相垂直的有关性质。

  教学难点:

  过直线上(外)一点作已知直线的垂线。

  【学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要成和各种教学原则,以及本节的教材内容与学生的实际确定的。】

  课前准备

  课前准备教具:多媒体、投影仪、自制的可旋转的两根木条等。

  生活经验准备:旗杆与旗台边线线的垂直关系;红十字会标志。

  以往知识准备:两条直线相交,产生两对对顶角,且对顶角相等。

  教学流程

  一、创设问题情境。

  师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图哪一幅更漂亮、更匀称?这是什么原因?(教师用多媒体或投影仪展示。)

  (学生众说纷纭,教师应给予充分的肯定。)

  师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。

  生:……

  师:让我们共同探索图甲这种特殊情况。

  【借助于教具、模型、实物、图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认知方式。】

  二、回顾再现。

  对顶角相等两条直线相交只有一个交点。如图1,直线AB和CD相交,交点为点O,有四个小于平角的角,且。

  三、提高。

  教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转时的变化情况,并用数学语言进行描述。

  【教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

  师:两直线相交,有两组分别相等的角,当一个角等于90°时,其他三个角有什么变化?可能产生四个相等的角吗?如图2,同时演示教具,将直线CD绕着点O旋转,当时,是多少度?

  生:……

  师:你们的依据是什么?

  生:……

  (学生的答案很丰富:用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励。)

  【这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。】

  四、提升。

  教师引导学生归纳出:两条直线互相垂直,两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

  师:(1)如图2,直线AB和CD相交,交点为O,,记为,垂足为点O。“ ”读作“AB垂直于CD”或“CD垂直于AB”。

  (2)两条直线,垂足为点O,则。

  【实现数学的三大语言??文字语言、符号语言和几何语言之间的切换,并板书,以突出其重要性。】

  五、再探究。

  师:请同学们举一些日常生活中互相垂直的直线的例子;

  生:……

  【希望实现将数学知识在实际生活中的运用,并为后继学习数学知识增加感性认知。】

  师:请同学们用三角尺或量角器:

  (1)经过直线 AB 外一点 P ,画直线与已知直线 AB 垂直,且讨论这样的直线有几条。

  (2)设这一点在直线 AB 上,重作上述过程。

  【学生分组或独立探索,教师巡视指导。】

  教师引导学生归纳结论:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

  【通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。】

  师:请同学们互相交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义。

  (学生讨论交流,教师巡视)

  教师引导归纳出:

  (1)靠已知直线??找待过定点??画已知直线的垂线(一靠、二过、三垂直)。

  (2)有一条并且只有一条,没有第二条。

  师:如图5,请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

  【探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。】

  六、学生探索。

  学生分小组测量,讨论,归纳。如图6所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?(抽小组代表发言。)

  七、总结归纳。

  教师总结归纳:只有线段AB最短,且当AB与DC垂直时,才最短。

  教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,

  提高:线段AB的长度就是点A到直线DC的距离。

  思考:点A到直线DC的距离与点A到点C的距离有什么区别?

  点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

  【从生活实际.从学生感兴趣、熟悉的问题引导学生发现里线的第二个性质,提高学生学数学的兴趣,并适当体现学数学??用数学??发现教学的思想。】

  八、较量(练习)。

  1.第170页第1、2、3题。

  2.应用。

  【带有竞争性质的练习使学生在相互竞争中,在实践中应用本节课的知识,分享获取成功的喜悦,并促进学生形成积极向上的心理品质。】

  (1)某村庄在如图7所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

  (2)教材第170页“做一做”。

  (3)体育课上怎样测量跳远成绩。

  【学以致用,学生做个小小设计师.兴趣盎然,把这节课引入高潮。】

  学生重温“两条直线互相垂直的概念”和“如何过已知直线上或已知直线外的一点作惟一的`垂线”两个知识点。

  3.第174页第1、2题。

  4.学校的位置如图8所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

  课后反思

  1.本节课主要采用了“问题探究式”的教学方法,鼓励学生去发现、分析并解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识中发现抽象的概念,使他们成为探求知识的主体,同时还利用学生较量形式让他们对学习内容加以巩固理解。并设计了变式训练习题和开放性习题,来帮助学生逐步树立转化的思想和发展性思维,这对提高学生的能力是非常重要的。学生是课堂的主人,教师从引导学生设疑??感知??概括??应用的每一个环节,注意学生的积极参与、积极思维,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣,适合七年级学生的认知心理。

  2.本节课采用不同的反馈手段和反馈练习。(1)设计变式习题、图形、开放性习题。每次较量主要解决一个重点问题,同时使教师及时了解学生对数学知识的掌握情况,及时发现问题并及时矫正,扫清后续学习的障碍。(2)较量方法。如:笔答、口答、板演、快速抢答等,以增加反馈层面。通过练习较量使大多数学生的学习情况都能及时反馈给教师,使教师心中有数。(3)及时矫正。对每次较量情况进行小组评定和教师点评,对学生中的创新解答及时给予肯定。创造了轻松、愉悦的学习环境。

  3.但笔者根据上述设计进行教学后,认为“点到直线的距离”放在这里,值得商榷。这是因为:(1)此部分内容与小学距离过大。在小学学习中,对于“点到直线的距离”,学生仅通过一些特殊图形有了一点感性认识,并未上升到点到线的距离的高度。(2)在本节内容教学中,让学生参与实践、体验,其难度较大。其理由是:本节教学内容量大;设计了较多的动手实践活动;作为学生课后实践探索的习题,如能充分利用学生资源(如与家长、同伴),在实际生活中交流、感悟,收效会更好。

  摘自海南出版社《新课标优秀教学设计与案例》

  初中数学教案 篇11

  一、教材分析

  本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

  二、设计思想

  本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

  八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的`学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

  三、教学目标:

  (一)知识技能目标:

  1、理解同类项的含义,并能辨别同类项。

  2、掌握合并同类项的方法,熟练的合并同类项。

  3、掌握整式加减运算的方法,熟练进行运算。

  (二)过程方法目标:

  1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

  2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

  3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

  (三)情感价值目标:

  1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

  2、通过学习活动培养学生科学、严谨的学习态度。

  四、教学重、难点:

  合并同类项

  五、教学关键:

  同类项的概念

  六、教学准备:

  教师:

  1、筛选数学题目,精心设置问题情境。

  2、制作大小不等的两个长方体纸盒实物模型,并能展开。

  3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

  学生:

  1、复习有关单项式的概念、有理数四则运算及去括号的法则)

  2、每小组制作大小不等的两个长方体纸盒模型。

  初中数学教案 篇12

  课题:一次函数

  教学目标:1.知道一次函数与正比例函数的意义

  2.能写出实际问题中正比例函数与一次函数关系的解析式.

  3.掌握“从特殊到一般”这种研究问题的方法

  教学重点:将实际问题用一次函数表示.

  教学难点:将实际问题用一次函数表示.

  教学方法:讲解法

  教学过程:

  一.复习提问

  1.什么是函数请举例说明.

  2.购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么

  3.在上述式子中变量是谁.常量是谁自变量又是谁

  二.讲解

  在前面我们遇到过这样一些函数:

  y=xs=30t

  y=2x+3y=-x+2

  这些函数都使用自变量的一次式来表示的`,可以写成y=kx+b的形式

  一般的,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.

  特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数.

  例一:

  一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.

  (1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;

  (2)求3.5秒时小球的速度.

  分析:v与t之间是正比例关系.

  解:(1)v=2t

  (2)t=3.5时,v=2×3.5=7(米/秒)

  例二:拖拉机工作时,油箱中有油40升.如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式.

  分析:t小时耗油6t升,从原油油量中减去6t,就是余油量.

  解:Q=40-6t

  课堂练习:

  P961,2

  小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

  作业:P971。2。3。4。

  初中数学教案 篇13

  八、 板书 设计

  6.2? 不等式的解集

  一、1.不等式的.解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.

  2.解不等式:求不等式解的过程

  二、在数轴上表示不等式的解集

  1.    2.

  三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.

【初中数学教案】相关文章:

初中数学教案01-10

初中数学教案05-28

初中数学教案(荐)07-19

初中趣味数学教案11-15

人教版初中数学教案05-26

(优选)初中数学教案07-06

初中数学教案优秀06-18

初中数学教案(15篇)03-25

初中数学教案15篇(优)07-01

初中数学教案[集锦15篇]07-04