【精品】小学数学教案合集八篇
作为一位兢兢业业的人民教师,就难以避免地要准备教案,借助教案可以更好地组织教学活动。那么什么样的教案才是好的呢?以下是小编精心整理的小学数学教案8篇,仅供参考,欢迎大家阅读。
小学数学教案 篇1
教材分析
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的.设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的基础,本节课注重引导,指点,会收到很好的效果。
知识与技能:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感态度价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法的分配律。
教学难点:乘法的分配律的推理及运用。
小学数学教案 篇2
比的意义这节课是开启课。是比和比例这一单元的知识核心,对以后的学习有深远的影响。这节课的教学内容是六年制第十二册第47~48页,是该单元的开端。讲好本节课,可以影响一大面,使教师一开始就掌握教学的主动。比的意义是由除法发展而来的,与除法,分数既有联系又有区别。正因为如此,本节课的教学目标确定如下:
理解并掌握比的意义,学会比的读写方法,比的各部分名称;会求比值;能理解比和除法、分数的关系;向学生渗透转化思想。
教学重点:掌握比的意义。
教学难点:把两种量组成比以及在此基础上,进行求比值。
教学关键:理解比和除法的关系。针对上述教学目标,可对教材做如下处理:
一、复旧迁移,导题定向复旧迁移。
主要抓住新旧知识的最佳连结点。即:复习了用除法计算的应用题,为知识的迁移。为学习比的意义平坡架桥。然后由除法转化为另外一种比较两种数量的方法,自然导题定向,提出本节课的教学目标。具体做法是:
1.回答:
(1)分数和除法有什么关系?
(2)除数能否为零?分数的分母能否为零?
2.列式解答:(生口述,师板演)
(1)一面红旗,长3分米,宽2分米。长是宽的几倍?宽是长的几分之几?
(2)一辆汽车,2小时行驶100千米。平均每小时行多少千米?
(3)引入新课刚才复习的这两道题(指板演),都是两种数量进行比较,都是用除法进行计算的,同学们掌握得很好。但是,在日常生活和生产中,两种数量进行比较,还有另外一种方法。这就是今天我们要学习的内容,(板书比)这节课我们要懂得比的意义,会求比值。(板书比的意义)
二、探索发现,总结规律
探索发现,是指在教师的主导作用下,充分发挥学生的主体作用,变重讲轻练为边讲边练,让学生动手、动脑、动口,多种感官参加学习数学知识的活动,实现两次飞跃:一次是从感性到理性的飞跃;一次从理性到实践的飞跃。比如,教学比的意义的时候,要分如下三个层次进行:
1.教学比的意义,比的读写方法,比的各部分名称。
(1)比的意义同学们准确地回答了复习题2中的第1题,用32求出了长是宽的几倍,这是用除法表示长和宽的关系。32也可以写成3比2(板书3比2),表示长和宽的比。问:谁和谁的比是3比2?(长和宽的比是3比2)。32可以表示3比2,23可以表示几比几?(2比3),表示谁和谁的比呢?(表示宽和长的比)。结合第2题,问:1002可以表示为几比几?
表示谁和谁的比?(100比2,表示汽车所行的路程和时间的比。)同学们注意观察这两个例子,谁能说一说什么是比?(答略)教师根据学生的回答概括出:两个数相除又叫做两个数的比。(板书)指名读、齐读比的意义。
(2)比的读写方法除法的运算符号是除号,表示比的符号是什么呢?是比号,写作:(板书),读作比。3比2可以写作3∶2(板书)读作3比2。问:2比3,100比2同学们会写吗?让一名同学到黑板上写,其他同学动手在桌子上写。
(3)比的各部分名称∶是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以比的后项,所得的商叫做比值。(板书如下)3......前项∶......比号2......后项=32=1......比值12
(4)练习(看幻灯银幕)
①说出比的前项、后项和比值。4∶7=47=479∶5=95=14513∶9=139=14915∶29=1529=1529②填空。a.把80本书,分给4个班级,平均每班分到()本书;图书的本数和班级数的比是()。b.学校开运动会,六年一班有10人参加赛跑,7人参加跳高比赛。这个班参加赛跑和跳高的人数的比是()。(5)通过上面两道题的练习,你知道写比时要注意什么吗?小结:写比时,要注意谁比谁,谁是比的前项,谁是比的后项,次序不能颠倒。
2.教学求比值的方法。
(1)问:什么叫比值?(略)比值的定义掌握了,那应该怎样求比值呢?(用比的前项除以比的后项)。同学们知道了比值的求法,下面就练习求比值。
(2)求比值,并说明算理。32∶85∶2512∶150.8∶37(3)小结:比值是一个数,可用整数、小数和分数表示。
3.教学比和除法、分数的'关系。
(1)3∶2=32可见比和除法有着密切的关系,比的各部分相当于除法的什么?(略)(2)分数和除法的关系在复习时同学们回答得很准确,从分数和除法的关系,可以得出比和分数有什么关系呢?(略)结合学生说的比、除法、分数三者的关系,形成比和除法、分数的关系表。
(3)根据比和分数的关系,比也可以写成分数形式。3∶2可写作32,仍读作3比2,不能读作二分之三。
2∶3、100∶2让学生写。
(4)问:比的后项能否为零?为什么?
三、反馈矫正,贯彻始终
是指把系统的某一部分输出的信息回到输入部分的过程。这个过程,除了把信息输送给教师,供教师检查教学效果外,更是学生自我调控的过程。
那么,反馈矫正,贯彻始终,本节课是指在边讲边练之后,还要进行综合练习。综合练习的内容做到由浅入深。先练习写比,又练习判断题,通过正确,错误的对比,使学生明确比、除法、分数三者之间的区别,最后安排发展性练习,写出比并求比值。不但要求写出两个直接量的,还要写出两个间接量的比,如写出速度的比。通过这样的练习,不但让全班同学吃得好,还让尖子学生吃得饱。
小学数学教案 篇3
设计说明
本节课复习的是“图形与几何”领域的知识,注意引导学生构建知识网络,加强学生动手操作能力的培养,把所学知识运用到实际生活中,使复习课的数学课堂鲜活而精彩。
1.引导学生归纳总结,构建知识网络。
复习整理重在引导学生回忆学过的知识,并梳理成知识网络,构建良好的知识体系。由于长方体和正方体的知识点众多,各概念之间的联系十分紧密,学生容易混淆,因此尝试让学生回忆相关知识点,列出复习纲要,利用表格的形式分别对长方体和正方体的特征、表面积和体积的意义等知识进行整理,建构知识网络,从而形成良好的认知结构。
2.注重知识间的融会贯通。
在练习的过程中,如果要将长方体和正方体所有的知识点一一进行练习,那么显然题型过多,题量过大,不利于知识间的比较。因此,本节课在练习时利用“鱼缸”这个素材,把一个个知识点系统地贯穿起来,让学生围绕“鱼缸”这一情境提出相关的问题,并加以解决。这样的'设计不仅能加深学生对各知识点之间的联系与贯通,还能培养学生灵活运用知识的能力。
课前准备
教师准备 PPT课件
教学过程
⊙直接引入,回顾知识
1.直接揭示课题:长方体和正方体及确定位置的复习。
2.整理知识点。
(1)展示整理要求:
①想一想关于长方体、正方体及确定位置的相关知识点。
②概括出各知识点,用自己喜欢的方式表示出来,尽量做到简洁明了,便于记忆。(提示:可以用图表法、树形图法或列举法表示)
(2)小组交流,要求:组长和组员相互介绍自己整理了哪些知识点。比较一下谁整理得简洁明了,便于记忆。
(3)展示学生的学习成果。(投影展示)
长方体和正方体
确定位置必备的要素:确定观测点和方向,同时还要量出距离和角度。
设计意图:复习本节课的重要目的是知识的综合化,因此,复习时要注意对知识进行归纳整理,使之条理化、系统化,并构建知识网络。
⊙归纳整理,系统复习
1.复习长方体和正方体的特征。
长方体和正方体有什么相同点和不同点?它们之间有什么联系呢?怎样整理才能让人很清楚地看出它们之间的异同与联系呢?
(1)学生小组合作整理表格。
(2)展示交流,构建知识网络。
(1)关于表面积、体积和容积,你都知道些什么?你能用自己喜欢的方式把这些知识进行整理吗?
2.长方体和正方体的表面积、体积、容积。
(2)学生独立整理。
(3)展示交流,构建知识网络。
小学数学教案 篇4
教学目标:发现除法中被除数、除数和商的变化规律。具体做到,发现被除数不变,商随着除数的扩大(缩小)而缩小(扩大);除数不变,商随着被除数的扩大(缩小)而扩大(缩小);被除数和除数同时乘上或除以相同的数(0除外)时,商不变。并会根据这些规律计算除法算式。
教学重点:被除数、除数和商的变化规律。
教学难点:学生在观察时,对于被除数不变,除数扩大了商反而缩小的规律是比较难理解的。
教学过程
一、 课前研究
课前小研究
研究者 班级___________
一、计算下面两组题,我能发现规律。
(1)
200 ÷ =
比较一下这些式子之间,我发现了被除数、除数和商有这样的变化规律:被除数不变,除数(填怎么变) ,商(填怎么变) 。
(2)
÷8=
比较一下这些式子之间,我发现了被除数、除数和商有这样的变化规律:被除数(填怎么变) ,除数不变,商(填怎么变) 。
二、 继续探索:
我又发现了被除数、除数和商有这样的变化规律:被除数(填怎么变) ,除数(填怎么变),商(填怎么变) 。
三、堂上学习
1、交流汇报,抓住以下几个问题:
板书:变、不变……
转折:刚才我们发现,当被除数不变时,商和除数的变化方向是相反的.;而除数不变时,商和被除数的变化方向是一致的。为什么会这样呢?你能解释一下吗?可以举个生活中的例子(讨论)
(1)为什么被除数不变,除数变大了,商会变小?
(2)为什么除数不变,被除数变大了,商会变大?
(可举生活中的例子:一包糖果100颗,平均分给一个班上的50个同学,每人多少颗?现在糖果不变,但分给两个班的同学,每人的糖果是多了还是少了?为什么?
如果还是分给一个班的50人,现在拿来3包糖果,每个人得到多了还是
少了?为什么?
如果糖果拿来2包,分的班也变成2个班,每人得到的多了还是少了?为什么?)
小结:被除数也就是要分的总数,当被除数不变,除数乘上几,商反而要除以几;当除数不变,被除数乘上几,商也会乘上几。当被除数和除数同时乘上或除以相同的数时,商不变。
四、巩固练习
1、从上到下,根据第1题的商写出下面两题的商。
72÷9= 36÷3= 80÷4=
720÷90= 360÷60= 80÷40=
7200÷900= 3600÷600= 800÷400=
2、根据第三个规律,把下面的除法算式改写成比较简单的算式:
38700÷900=387÷( )
45000÷600=( )÷6
3200÷80=320÷( )
81000÷900=8100÷( )
3、根据2500÷50=50你能写出多少个商相同的除法算式?(小组完成)
五、课堂总结
今天我们学习了那些内容?谁愿意分享你的收获。
小学数学教案 篇5
教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的'关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)
5.质疑辨析,深化认识。
【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2.从下列各比中找出最简整数比,并简述理由。
3:4; 18:12; 19:10; ; 0.75:2。
(二)初步应用。
1.化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=( ):( )。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2.化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像 : 和0.75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16; 48:40; 0.15:0.3;
【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(PPT课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )
【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
小学数学教案 篇6
课题一:乘法的意义和乘法交换律
教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1—5题。
教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
教学重点:乘法的意义和乘法交换律
教学难点:用乘法交换律验算乘法
教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。
教学过程:
一、复习
教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。
教师出示复习题。
1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?
2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?
3.小荣家养鸭45只,养的鸡是鸭的`3倍,小荣家养鸡多少只?
4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?
先让学生默读题目,然后教师提问:
“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。
教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。
二、新课
1.教学例1。
出示例1的插图,再提问:
“要求盘里的一共有多少个鸡蛋可以怎样求?”
“还可以怎样求?”
学生回答后教师板书:
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:5×6=30(个)
“乘法算式 5乘以6表示什么?”(6个5相加)
“乘法算式中的被乘数5是加法算式中的什么数?”(相同的加数。)
“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)
“解答这道题用加法计算简便,还是用乘法计算简便?”
“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”
“你能说出乘法是什么样的运算吗?”
教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。
“乘法算式中乘号前面的数叫什么数?表示什么?”
“乘法算式中乘号后面的数叫什么数?表示什么?”
“被乘数和乘数又叫什么数?”
教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。
2.教学乘数是1和0的乘法。
(1)教学一个数和1相乘。
教师在黑板上写出三个算式:1×3、3×1、1×1。
“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。
“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。
“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1 不能相加,1乘以1就表示1个1还是1,算式是1×1=1。
“这三个乘法算式都和哪个数有关系?”(都和1有关系)
下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:
6×1= 1×8= 1×10= 123×1=
“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。
教师边说边板书:一个数和1相乘,仍得原数。
(2)教学一个数和0相乘。
教师在黑板上写出三个算式0×3 = 3×0 = 0×0=
“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3 = 0表示3个0相加的和是0。
“3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。板书:3×0=0
“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。
“这三个算式都和哪个数有关系?”(都和0有关系)
“一个数和0相乘它们的积有什么特点?”
教师边说边板书,一个数和0相乘,仍得0。
3.教学乘法交换律。
让学生再看例2的插图,然后教师提问:
“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)
“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。
教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。
“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。
“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。
“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。
“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”
学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。
“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a
“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。
三、巩固练习
1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。
2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。
四、作业
练习十三的第1、2、5题。
小学数学教案 篇7
教学内容:
人教版九年义务教育六年制小学数学第十册 P58~59页
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断的能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:
理解质数和合数的意义。
教学难点:
判断一个数是质数还是合数的方法。
教具:
多媒体课件。
教学过程:
一、准备复习,创设情境。
1、求7和10的约数。
2、25有几个约数?
二、探究发现,理解新知。
(一)教学例1
1、出示例1,写出下面每个数所有的约数(1~12)。
(1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。
(2)例1反馈。
(3)同学们观察一下这些数约数的特点:思考:在自然数范围内,按照每个数的.约数个数的特点进行分类,可以分为哪几类?先独立分类,再小组交流。
(4)学生汇报分类情况。
2、比较每类数约数的特点,教学质数与合数的定义。
(1)先观察有2个约数的数。谁能发现,它们的约数有什么特点呢?归纳特点,给出质数的定义。
(2)第三种类型的数与质数的约数比较,又有什么不同?概括合数的定义。
(3)1既不是质数,也不是合数。
(4)举出质数的例子?
(5)举出合数的例子。
3、自然数按照每个数的约数的多少,又可以怎样分类?
(二)教学例2
1、出示例2。判断下面各数,哪些是质数,哪些是合数?
17、22、29、35、37、87。
(1)同桌先交流一下,再汇报。
(2)37为什么是质数?87为什么是合数?
(3)小结。
(三)看书质疑
(四)游戏。
(五)出示100以内质数表。学生练习记质数。
三、巩固练习,发展提高。
1、在自然数1~20中:
(1)奇数有————,偶数有————;
(2)质数有————,合数有————。
2、下面的判断对吗?
(1)所有的奇数都是质数。( )
(2)所有的偶数都是合数。( )
(3)在自然数中,除了质数都是合数。( )
(4)一个合数,至少有3个约数。( )
3、猜一猜,老师的电话号码是多少。
四、总结。
(略)
五、作业:
62页1~2。1
小学数学教案 篇8
学 科 数学
教学目标:
1.通过练习,使学生熟练掌握两位数乘整十数的口算和笔算,以及两位数乘两位数的笔算,提高学生的计算能力。
2.在解决问题中进一步体会用两步连乘解决实际问题的特点,提高学生分析数量关系、确定解题思路的能力。
教学重点:两位数乘两位数的笔算方法。
教学难点:运用两步连乘解决实际问题。
教学准备:
教学过程:
一、知识再现
1.口算。
40×20 300×8 10×70 50×80
70×50 63×10 9×200 400×6
教师用出示题目,让学生快速说出得数,随机抽取几题指名学生说说口算方法。
2.根据13×2=26,快速说出以下算式的得数。
130×2 13×200 130×20
二、基本练习
1.完成教材第13页“练习二”第2题。
出示题目,让学生在练习本上列竖式计算。
指名上台板演,说说计算方法,展示正确的书写格式及得数。
2.完成教材第13页“练习二”第3题。
出示情境图,让学生先找出题中的已知条件和所求问题,再找出有联系的两个条件,说说可以先算什么。
让学生独立列式,全班交流。
3.完成教材第13页“练习二”第4、5题。
让学生默读题目,理解题意。
提问:要先算什么?再算什么?怎样列式?
学生计算,集体交流算法。
三、综合练习
1.完成教材第14页“练习二”第6题。
让学生读题,找出已知条件和所求问题。
提问:你能找出有联系的条件吗?想想它们能算什么?
让学生用自己的方法解决问题,教师评讲时展示不同的解题方法,并指明说说每道算式表示的意义。
2.完成教材第14页“练习二”第7题。
学生读题,列式解答,集体交流。
3.完成教材第14页“练习二”第8题。
出示图片,引导学生看懂图意。
提问:要求“买5件大衣一共要多少元?”必须知道什么条件?怎么求?
让学生独立列式解答,全班交流。
四、反思总结
通过本课的学习,你学会了什么?获得了什么收获?
五、课堂作业
第一单元 两位数乘两位数
课题:复习 第 8 课时 总第 课时
教学目标:
1.熟练掌握两位数乘整十数的口算方法以及两位数乘两位数的笔算方法。
2.通过复习,体会解决问题策略的多样性,提高学生运用所学知识解决实际问题的能力。
3.进一步发展数学思维,感受数学与生活的联系,增强自主探究的意识。
教学重点:熟练地掌握口算的方法以及两位数乘两位数的笔算方法。
教学难点:运用相关知识解决实际问题。
教学准备:
教学过程:
一、知识系统整理
提问:第一单元即将结束,通过这一单元的学习,你学会了哪些知识?
引入:这节课我们将通过系统地整理,复习这一单元所学的知识。
二、查漏补缺训练
1.完成教材第15页“复习”第1题。
让学生先口算,再说说口算方法。
师小结:
(1)两位数乘整十数,计算时先算0前面的数的乘积。然后数一下两个乘数的末尾一共有几个0,再在这个积的末尾添上几个0。
(2)两位数乘一位数的口算,用一位数分别去乘两位数中的每一位,并注意进位。
2.完成教材第15页“复习”第2题。
让学生独立计算,指名上台板演。
教师要通过具体的计算引导学生归纳出:
(1)计算时要注意相同数位对齐,先用第一个乘数的每一位数去乘第二个乘数的个位数字,所得积的末位对齐乘数的个位;再用第一个乘数的每一位数去乘第二个乘数的十位数字,所得积的末位对齐乘数的十位。最后把两个积加起来。哪一位上乘得的积满几十,就向前一位进几。
(2)引导:计算时,你通常会出现什么样的错误,你想提醒同学们注意什么?
3.完成教材第15页“复习”第3题。
指名估算,并引导学生回忆估算的方法:用四舍五入法把不是整十、整百的数看作最接近它的整十、整百的数来算。一般是先找出两个乘数的近似数,再把这两个近似数相乘。
将全班分成四大组,每组完成一题,再互相检验,看看和估算的结果是否接近。
4.完成教材第16页“复习”第8题。
引导学生观察表格,明确表格填写的要求。
学生独立完成,再组织比较,说说发现了什么。
5.完成教材第16页“复习”第10题。
(1)出示第一组题,先让学生计算,再组织对比,交流上下两题之间的联系。
(2)出示第二组题,先让学生独立计算,再组织对比上下两题之间的联系。
(3)出示第三组题,先让学生独立计算,再交流上下两题的联系。
6.完成教材第16页“复习”第11题。
(1)出示第一组题,组织学生观察题目,得出规律并填空。
归纳规律:当第二个乘数分别是3的1倍、2倍、3倍……时,积分别是111、222、333……
(2)出示第二组题,组织学生观察题目,得出规律并填空。
归纳规律:当第二个乘数分别是7的1倍、2倍、3倍……
三、综合运用提升
1.完成教材第15页“复习”第4题。
出示表格,让学生算一算、填一填,再说说表中数量之间的关系。
得出:单价×数量=总价
2.完成教材第15页“复习”第5题。
出示情境图,让学生读懂题意。
引导学生汇报交流:不可能是第一种,第一种是48元,48×19大约是1000元,超过800元,可能是第二种38元的篮球,38×19大约是800元,且低于800元,第三种是28元,28×19大约是600元,不需要付800元,所以是第二种篮球。
追问:买篮球一共要用多少元?应找回多少元?
3.完成教材第16页“复习”第7题。
让学生读题,找出已知条件和所求问题,并说说要求“电视机多少台”需要先求什么。
4.完成教材第17页“复习”第12、13题。
让学生默读题目,理解题意。
引导:先确定已知条件和所求问题,再找出有联系的两个条件,想想可以算出什么,再进行计算。
学生独立完成后教师评讲。
5.完成教材第17页“复习”第15题。
让学生先根据学过的方位知识,弄清图中几处地点的相应位置关系。然后再根据计算的结果在平面图上指一指或画一画。最后全班交流,订正。
四、反思总结
通过本课的学习,你有哪些收获? 还有哪些疑问?
五、课堂作业
第一单元 两位数乘两位数
课题:有趣的乘法计算 第 9 课时 总第 课时
教学目标:
1.探索两位数乘两位数中特殊数相乘所得得数的规律,并能初步运用这一规律进行一些计算。
2.让学生经历探索规律的过程,通过比较,理解并掌握找规律的方法,培养学生初步的观察、推理能力。
教学重点:观察并发现数学的秘密,找出事物的简单规律的方法,并学会运用规律。
教学难点:能利用所得的规律进行计算。
教学准备:
教学过程:
一、谈话引入
谈话:同学们,在两位数乘两位数的计算中,有很多有趣的规律。这节课,我们一起去发现这些有意思的'规律。
二、交流共享
1.探究乘数是11的乘法计算。
(1)出示题目:24×11 53×11
谈话:一个两位数和11相乘的得数有什么共同的特点?我们先列式计算。
学生用竖式计算,指名板演。
2 4 5 3
× 1 1 × 1 1
2 4 5 3
2 4 5 3
2 6 4 5 8 3
提问:把积的每一位上的数和原来的两位数相比,你有什么发现?和小组内的同学互相说一说。
学生交流汇报:
①24×11=264,所得的积的个位上的数,与原来两位数个位上的数一样,是4;积百位上的数,与原来两位数十位上的数一样,是2;积十位上的数,等于原来两位数个位与十位上数的和,是2+4=6。
②53×11=583,所得的积个位上的数,和原来两位数个位上的数一样,是3;积百位上的数,与原来两位数十位上的数一样,是5;积十位上的数,等于原来两位数个位与十位上数的和,是5+3=8。
(2)引导学生根据发现的规律,猜测62×11的积。
提问:猜一猜62×11等于几?
追问:我们的猜测是否正确?请用竖式验证一下。
师小结:两位数与11相乘,积的规律可以概括为“两头一拉,中间相加”。
(3)出示题目:比一比,看谁算得快。
23×11 16×11 43×11
让学生根据发现的规律快速地说出答案。
(4)出示题目:64×11
提问:试着算一算,有什么发现?
学生用竖式计算,指名板演。
追问:说说你有什么发现?
再问:为什么百位上的数“6”变成“7”,多了1是从哪里来的?
(5)试一试:59×11 67×11
2.小结:一个两位数与11相乘时,可以把这个两位数的十位上的数字写在积的百位上,个位上的数字写在积的个位上,再把两个数字之和写在积的十位上,十位上的数如果满10,要向百位进1。
3.提问:你能出一些像这样的算式考考大家吗?
学生出题,指名回答,集体订正。
三、反馈完善
1.探究两个乘数十位相同,个位相加是10的两位数乘两位数乘法。
(1)出示题目:22×28 35×35 56×54
让学生观察这些算式,在小组交流说说算式里的两个两位数的特点。
引导:像这样的算式,老师能直接算出得数,即22×28=616、35×35=1225、56×54=3024,请同学们用竖式计算,验证老师的计算是否正确。
学生列竖式计算,教师板书相应过程。
(3)你随便出这样的算式老师还能一下子说出得数。
让学生试着出题。
(4)追问:究竟这里面藏着什么秘密呢?观察这些得数,它们有什么特点?把你们的发现和小组里的同学说一说。
根据学生的汇报,教师小结:当两个两位数,十位上的数相同,个位上的数之和为10时,它们的乘积的末两位等于两个乘数个位上的数相乘,积的末两位前面的数等于十位上的数同其本身加1之和的积。
2.试一试。
(1)先直接写出下面各题的得数,再用竖式计算验证。
15×15 43×47 69×61
(2)直接写出下面各题的得数,并比较每组的两道题,说说有什么发现,和同学交流。
24×26= 44×46= 74×76=
25×25= 45×45= 75×75=
3.让学生同桌互相出题,写两道这样的算式互相考一考,说出得数。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
【小学数学教案】相关文章:
小学数学教案(经典)08-13
小学数学教案【精选】07-06
小学数学教案(精选)07-20
小学数学教案03-04
小学数学教案[精选]04-16
小学数学教案(经典)08-21
小学数学教案【经典】07-23
苏教版小学数学教案09-30
小学数学教案【热】01-13
【精】小学数学教案01-14