当前位置:壹学网>作文>写作素材>名人故事>数学家的小故事

数学家的小故事

时间:2025-10-17 11:49:21 名人故事 我要投稿

数学家的小故事集合(15篇)

数学家的小故事1

  小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。

数学家的小故事集合(15篇)

  小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。

  高斯的'进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。

  值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。

  有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

  人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”

数学家的小故事2

  德国著名大科学家高斯八岁时进入乡村小学读书.教数学的老师喜欢处罚学生。

  有一天,老师说:“你们今天替我算从1加2加3一直到100的和.谁算不出来就罚他不能回家吃午饭.”

  教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算.有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来.

  不到半个小时,小高斯拿起了他的石板走上前去.“老师,答案是不是这样?”

  老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了.”他想不可能这么快就会有答案了.

  可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的”

  数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的.数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

  高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。

  拓展:高斯的生平经历介绍

  著名数学家高斯从小出生在德国一个底层的木匠家庭,他的父亲一心想把高斯培养成园丁或者白领,但是从小就显示出超乎常人数学天赋的高斯被舅舅寄予厚望,是舅舅和社会上一些好心人资助高斯顺利完成了大学学业,之后他才开始在数学领域崭露头角,高斯的生平经历也会着重提到这一段他年少时的遭遇。

  关于高斯的生平经历,当时还不到18岁的高斯就独立发现了用直尺和圆规画出正17边形的方法,他是根据欧几里得留下的方法和古希腊数学家的理论得出的,他也是世界上第一个成功用代数方法解决几何难题的数学家,所以高斯在18岁的时候就已经声名大噪,世人渐渐认可了这位天才数学家的才华。

  而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。

  在高斯中年的时候他还独立发现了谷神星和智神星的运动轨迹,当时高斯独创了一种只需要观测3次就能预测所有行星运动轨迹的新方法,这个方法后来被高斯写在了他的名著《天体运行理论》中,这也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。

数学家的小故事3

  艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的'合著者”。

  诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。

数学家的小故事4

  欧几里得(公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,被广泛的认为是历史上最成功的教科书。

  在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作,成为“几何第一人”。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的.埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。

数学家的小故事5

  高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.当高斯三岁时便能够纠正他父亲的借债账目的'事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.。

数学家的小故事6

  秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。

  在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的'建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。 因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的时间领先,其实想法的成熟,还有待提高。为了解决 “孙子问题”中的不足,秦九韶推广了“孙子问题”的解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。

数学家的小故事7

  夜幕降临,父亲给我找了一道题让我解决:10间教室,每间装6盏灯,关闭5间教室的'灯,剩多少盏?我一听暗自欣喜,对我来说那是易如反掌。毫不犹豫地回答:"简单!用6*10-6*5=30盏灯。"然而,父亲却摇头微笑,我有些不满地质问:"难道答案不是30盏吗?"

  父亲耐心地说:"你理解错了,问题是求总共有多少盏灯,而非亮着的灯数。怎能相减呢?"我顿时茅塞顿开,重新计算:"正确解答应该是6*10=60盏灯!"这时,我想到了另一道智力题,决定考考父亲:"一位渔夫钓鱼,钓到6条无头,9条无尾,8条半个身子的鱼,请问他钓了多少条鱼?"父亲听后苦思冥想,却始终无法得出答案。我自信满满地揭晓谜底:"6条无头即'0',9条无尾即'0',8条半截也是'0',所以渔夫一条鱼也没钓到!"父亲听后捧腹大笑,称赞不已。

  这次的数学小故事,真是既生动有趣又富有挑战性啊!

数学家的小故事8

  王元,是著名数学家华罗庚的学生,现任中国科学院学部委员,数学研究所研究员,主要从事数论研究。几十年来,他的研究成果累累,得到了国际数学界的高度赞扬。他是怎样从一个学习成绩中等的学生成为一位著名的数学家的呢?

  王元出生在一个知识分子的家庭,很早就受到启蒙教育。他不特别聪明,更不是神童,但是他同大多数有成就的人一样是通过苦学才获得成功的。王元的小学、初中时代,是在战乱与艰难中度过的。4岁上学,那时他还是个天真活泼的小孩,一心只想玩,结果连续留级了两年。上中学时学习成绩只是中等水平。

  这样一个成绩中等的学生,却有一个十分突出的特点:兴趣广泛,求知欲强。凡是他兴趣所及,都肯花费时间刻苦钻研。开始,他喜欢看小说,不管多厚的本本,他都要想方设法看完它。他看别人拉二胡,自己也动了心,成为二胡的爱好者。由于他抓紧时间苦练,又肯动脑筋琢磨演奏技巧,不久就成为出色的二胡演奏者。后来,他又喜欢画画和游泳。他经常带着画板出去写生。画累了,就脱下衣服跳到湖里痛痛快快地游泳。广泛的兴趣,养成他不怕困难和一种强烈进取的精神。只要他感兴趣的项目,他总比别人学得好。

  1948年,王元高中毕业考入浙江英士大学数学系。浙大是我国老一辈数学家陈建功、苏步青多年执教的地方,数学教育卓有传统。二位教授自30年代起就坚持办高年级学生读书讨论班,对于培养学生独立科学研究的能力极有帮助。浙大的教学环境激发了王元对数学真正的兴趣。大学四年级时他在读书讨论班上报告了A·E·英哈姆的《素数分布论》。1952年,王元从浙江大学毕业,因成绩名列前茅,被推荐到中国科学院数学研究所,一年后又被分配到该所数论组。

  王元有幸能在华罗庚教授的直接指引下开始其科研生涯。他到数论组是华罗庚亲自挑选的。王元在华罗庚领导的研究集体里边学习,边工作。为了攀登世界数学高峰,华罗庚举办了一个数论讨论班,王元参加了这个班的学习。华罗庚在讨论班指导,总是先把讲稿发给大家,然后叫大家报告、讨论。还有一个规矩,报告人讲完以后,必须回答别人提出的问题。如果答不出来,就要你把问题写在黑板上,站在台上思考,学生们把这种情况叫做“挂黑板”。

  华罗庚在当时已经预测到赛尔伯格筛法和列尼克方法在数论中可能发展,可能是解决哥德巴赫猜想问题的一个有效办法。讨论班也就这一方面的问题开展探讨。有一天,轮到王元报告了,题目是赛尔伯格筛法。这实际上是一个二次型求极小值问题,它要联系到凑平方。王元在黑板上凑平方的时候,忽然紧张起来,左凑右凑也整不出来。他的问题在黑板上被整整挂了一个小时才解决。

  王元被“挂黑板”以后,牢牢记住华罗庚的话,当前世界上从事这方面工作的人很多,掌握并钻研筛法意义很大。王元前进的目标明确了,他大胆地选择跟筛法有关的哥德巴赫猜想问题作为自己的主攻方向。他放弃一切休息日和文娱活动,更加专心致志地攻读。不久,他和一个外国科学家一起,写了两篇有关筛法研究的论文,在数学研究中初露头角。以后,王元又就同一个问题写了几篇论文,华罗庚看后狠狠地批评了王元一顿,他语重心长地说:“你有了速度很好,但还要有加速度,只在原水平的基础上工作,永远也不会有更好的成绩。”

  王元很快就明白了华罗庚这番话的道理。他知道,物体要做加速运动,需要外力;科学研究要有加速度,需要勇于开拓。王元关于筛法与哥德巴赫猜想的研究,确立了他作为著名数论家的地位,王元主编的《哥德巴赫猜想》,全面总结了哥德巴赫猜想研究的发展与现状,其中包括他本人的工作。以后与华罗庚开始了长达20年的`师生合作,取得了辉煌的成果。他的代表性著作有《数论在近似分析中的应用》、《哥德巴赫猜想》及《在中华人民共和国普及数学法》(以上与华罗庚合作)。王元对哥德巴赫猜想有精深研究,他首先证明了每个充分大的偶数为一个素因子不超过2与一个素因子个数不超过3的整数之和。这一成果在1984年获得国家自然科学一等奖;他又与华罗庚一起提出了计算多重积分的新方法,国际上称为“华—王方法”。

  王元是在新中国成立以后,华罗庚教授亲自培养下成长起来的一代数学家,也是国际上公认的以华罗庚为首的“中国数论学派”的重要成员。“勤奋出天才”是王元的座右铭。他认为科学研究特别是基础研究在很大程度上靠积累,王元所做的读书笔记就达3400页,他从事科学研究而付出的辛劳由此可见一斑。王元又是一位谦逊的学者,研究哥德巴赫猜想的经历使他深深体会到,科学研究如同攀登无限的梯级,一个人无论达到多高,也总是在前人的基础上前进。因此他说:“恰如其分地估计自己不要过分陶醉于自己已经做了些什么,始终有个危机感,这样就永远不存在自满的可能性。”他认为,这种态度来源于对整个数学知识海洋的客观认识。

  王元成为国际数学界享有声誉的数学家,他的成才之路是与勤奋、刻苦、谦逊的态度及不停顿地向科学高峰进击的精神分不开的。

数学家的小故事9

  爱迪生是一位伟大的发明家,他从小就爱动脑筋,常常想出一些好主意。有,他靠自己的聪明救了妈妈的命。

  那一年,爱迪生刚满七岁。一天,妈妈忽然肚子痛,疼得在床上直打滚。爸爸急忙骑马到几十里外去请医生。太阳快落山的`时候,医生终于来了。一检查,原来妈妈得的是急性阑尾炎,需要马上做手术。上医院已经来不及了医生决定在家里做手术。

  医生环顾四周,迟疑了片刻,说:“房间里光线太暗没法做手术。”爸爸说:“那就多点几盏油灯。”医生还是摇头,连连说不行。大家急得团团转。

  突然,爱迪生一溜烟似的奔出大门。不一会儿,他回来了,捧着一面明晃晃的大镜子,身后还跟着好几个小男孩,每个人都捧着一面大镜子。爸爸一见又急又气,斥责道“什么时候了,还胡闹!”爱迪生委屈地说:“我没胡闹,我想出办法了。不信您瞧!”爱迪生让小伙伴们站在点燃的油灯旁边,由于镜子把光聚在一起,病床上一下子亮堂起来了。爸爸恍然大悟,医生也露出满意的笑容。

  手术做得很成功,妈妈得救了。医生夸奖爱迪生,说:“今天多亏了你这个小家伙,他真是个聪明的孩子!”

数学家的小故事10

  数学是人类认识世界和改造世界的有力工具,也是一片任有志之士自由飞翔的广阔天地。数学的足迹遍及社会的每一个角落。数学家的故事也像数学本身一样,神秘动人,发人深思。下面给同学们讲一讲著名的女数学家索菲·科瓦列夫斯卡娅的故事。

  著名的女数学家索菲·科瓦列夫斯卡娅索菲·科瓦列夫斯卡娅(1850~1891)是俄国人,她一生获得了很多“第一”:她是历史上第一个获得数学博士学位的女性,是第一个获得科学院院士称号的女数学家,此外,她还是除了意大利外世界上第一个担任数学教授的妇女,她对数学做出了卓越的贡献。

  索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的.房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。”

  索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的方式,这对她日后的数学研究非常重要。

  高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等教育。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。

  在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。

  索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。

数学家的小故事11

  欧拉1707年4月15日生于瑞士巴塞尔,1783年9月18日卒于俄国圣彼得堡。他生于牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。他以旺盛的精力投入研究,在俄国的.14年中,他在分析学、数论和力学方面作了大量出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。欧拉这个时期在微分方程、曲面微分几何以及其他数学领域的研究都是开创性的。1766年他又回到了圣彼得堡。

数学家的小故事12

  春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的.鸡是多少只吗?

  来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“

  家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

  趣味数学小故事:数学天才高斯

  高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

  1+2+3+ ..... +97+98+99+100 = ?

  老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

  高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

  1+2+3+4+ ..... +96+97+98+99+100

  100+99+98+97+96+ ..... +4+3+2+1

  =101+101+101+ ..... +101+101+101+101

  共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于<5050>

  从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

数学家的小故事13

  勾股圆方图

  最为精彩的是附录于首章的勾股圆方图,短短500余字,概括了《周髀算经》、《九章算术》以来中国人关于勾股算术的成就,其中包含了:

  勾股定理(这里以a,b,c分别代表直角三角形的勾、股、弦三边之长)a^2+b^2=C^2

  及其变形b^2=c^2-a^2=(c-a)(c+a),a^2=c^2-b^2=(c-b)(c+b),c^2=2ab+(b-a)^2;

  有通过开带从平方a^2+(b-a)a=1/2[c^2-(b-a)^2]求勾a开平方a=[c^2-(c^2-a^2)]^1/2求勾a开带从平方(c-a)^2+2a(c-a)=c^2-a^2求勾弦差c-a的.方法,以及:c=(c-a)+a,c+a=b^2/(c-1),c-a=b^2/(c+a),c=[(c=a)^2+b^2]/2(c+a),a=[(c+a)^2-b^2]/2(c+a)等公式,与上述公式对称,也有求b,c-b,c+b及由c-b,c+b求c,b的公式,又有由勾弦差、股弦差求勾、股、弦的公式:a=[2(c-a)(c-b)]^1/2+(c-b),b=[2(c-a)(c-b)]^1/2+(c-a),c=[(2(c-a)(c-b)]^1/2+(c-b)+(c-a)以及勾股差b—a与勾股并b+a的关系式(a+b)^2=2c^2—(b-a)^2,a+b=[2c^2-(b-a)^2]^1/2,b-a=[2c^2-(b+a)^2]^1/2,进而由此给出了求a,b的公式b=1/2[(a+b)+(b-a)],a=1/2[(a+b)-(b-a)],最后给出了由弦与勾(或股)表示的股(或勾)弦并与股(或勾)弦差之差:(c+b)-(c-b)=[(2c)^2-4a^2]^1/2(c+a)-(c-a)=[(2c)^2-4b^2]^1/2

  赵爽用出入相补方法对上述公式作了证明。这些公式大都与《九章算术》及其刘徽注所阐述的相同,证明方法也类似,只是最后两个公式为刘徽注所没有,所用术语也与刘徽稍异。可见,这些知识是汉魏时期数学家们的共识。《畴人传》说勾股圆方图注“五百余言耳,而后人数千言所不能详者,皆包蕴无遗,精深简括,诚算氏之最也”。

数学家的小故事14

  从前有一只小鸡,她非常喜欢使用乘法,因为她觉得,世界上所有的数学问题,乘法都可以一一解决,上二年级时,她为自己能提早学会乘法而感到骄傲,而除法,小鸡并不去好好学习,而是向同学们展示自己所会的乘法,她认为,学除法其实很难,所以每次当选数学课代表时,都不是小鸡当选,而是小鹿当选。狗老师也发现了这点,一次下课时,狗老师把小鸡叫到办公室,认真地对她说:“你是不是不想学除法?”小鸡点点头,并对狗老师说:“我觉得学除法很难,老师。”狗老师摇摇头,说“其实,只要你会被乘法口诀表,学除法就变成了一件非常非常简单的一件事,可小鸡却不相信,她问狗老师:这是真的吗?狗老师点点头,并让小鸡回到班里好好学习乘法,小鸡回到班里,她对自己的朋友说:我以后要好好学习,长大当和吴文俊一样的大数学家。同学们都哈哈大笑,他们瞧不起小鸡,小鸡被激怒了,她立刻拿起书,她想让同学们知道,她一定能超过那些骄傲的同学们的。

  小鸡现在在复习除法,你瞧她,她是多么的认真,她一定要遵守诺言,让同学们看看,小鸡以后一定是最最棒、像吴文俊一样伟大的、令人们敬佩的大数学家!

  数学家的小故事

  苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

  那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的`教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

  杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。

数学家的小故事15

  出入相补原理

  即2ab+(b-a)^2=c^2,化简便得a^2+b^2=c^2。其基本思想是图形经过割补后,其面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。例如√(2(c-a)(c-b))+(c-b)=a,√(2(c-a)(c-b))+(c-a)=b,√(2(c-a)(c-b))+(c-a)+(c-b)=c等等。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的'证明。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。

  赵爽自称负薪余日,研究《周髀》,遂为之作注,可见他是一个未脱离体力劳动的天算学家。一般认为,《周髀算经》成书于公元前100年前后,是一部引用分数运算及勾股定理等数学方法阐述盖天说的天文学著作。而大约同时成书的《九章算术》,则明确提出了勾股定理以及某些解勾股形问题。赵爽《周髀算经注》逐段解释《周髀》经文。

【数学家的小故事】相关文章:

[精选]数学家的小故事12-21

数学家的小故事05-25

(经典)数学家的小故事10-26

【精选】数学家的小故事10-05

数学家的小故事10-09

数学家的小故事07-29

关于数学家的小故事12-06

数学家的小故事(优)12-23

【精品】数学家的小故事12-01

(优选)数学家的小故事12-16