数学家的故事(通用)
数学家的故事1
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天。”他的'确为科学辛劳工作的最后一天,实现了自己的诺言。
有关写数学家的经典故事四
美国的克雷数学研究所于20xx年5月24日在巴黎宣布了众多数学家评选的结果:对七个“千禧年数学难题”的每一个悬赏一百万美元。
“千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。
卡儿,(1596—1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。
笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题——解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
数学家的故事2
今天,我读了著名数学家高斯的故事。高斯出生在德国一个贫苦的家庭,从小喜欢数学,会自己寻找各种方法解答数学问题。高斯每天刻苦研究数学,被公认为“数学之王”。
高斯走上数学之路后,得到了很多人的帮助和支持。高斯的妈妈对高斯充满了希望,给了他莫大的鼓励。高斯的舅舅把大部分精力都放在他身上,用活泼有趣的方法引导高斯做各种问题。他的老师也在高斯身上去倾注了鲜为人知的.心血和汗水。
老师十分重视培养高斯的数学能力,引导他向更高的目标奋进。一个好心的公爵也尽力地资助他从事长期的数学研究。妈妈给他信心,舅舅给他智慧,老师给他知识,公爵给他力量,高斯就像一棵小树苗,阳光温暖着她,雨水滋润着他,这棵树苗在肥沃的数学土地上茁壮成长。
高斯的成功不仅因为有很多人的帮助,更重要的是高斯自身认真的钻研和探究。高斯十岁那年做出了一道极难的加法题:81297+81495+81693+……+100899。这是一个等差数列的求和问题,数学史家门认为,一个年仅10岁的孩子,能独立发现这一方法实属很不平常。我觉得能独立发现这一方法的高斯太聪明了。我也10岁了,我连这个数学方法听都没有听说过,根本没有办法计算出这么难的题目。
我想,我要像高斯一样刻苦学习数学。遇到难题不要急于请教家长,一定要自己多动脑筋,寻求方法,独立解决问题。我还要像高斯一样热爱数学,全身心地投入到数学学习中去,攻克数学堡垒,成为班级中的“数学之王”。
数学家的故事3
暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。数学是一门多彩的学科,不同类型的数学家,有着不同个性与不同的成功箴言。数学家的故事中有几个令我印象深刻,这里就来分享一个小故事:
有一次,陶行知先生在武汉大学演讲。他走向讲台,不慌不忙地从箱子里拿出一只大公鸡。台下的听众全愣住了,不知陶先生要干什么。陶先生从容不迫地又掏出一把米放在桌上,然后按住公鸡的头,强迫它吃米。可是大公鸡只叫不吃。怎么才能让公鸡吃米呢?他掰开公鸡的嘴,把米硬往鸡的嘴里塞。大公鸡拼命挣扎,还是不肯吃。陶先生轻轻地松开手,把鸡放在桌子上,自己后退了几步,大公鸡自己就开始吃起米来。这时陶先生开始演讲:“我认为,教育就像喂鸡一样。先生强迫学生去学习,把知识硬灌给他,他是不情愿学的'。即使学也是食而不化,过不了多久,他还是会把知识还给先生的。但是如果让他自由地学习,充分发挥他的主观能动性,那效果一定好得多!”台下一时间掌声雷动,为陶先生形象的演讲开场白叫好。
从这个小故事中,我有所感悟,对于我们的学生,我们不能强硬的灌输知识,而是利用多种方法,手段,激发学生学习的兴趣,引导他们自主地学习、交流。对于知识的掌握才能更加牢固。那么怎样引导学生自主学习、交流,就需要多看有关教学方面的书以及多看名师的课堂实录,还有每节课的预设、课后的反思都要及时,在反思中改进,才能成长,进步。
数学家的故事4
数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。
数学家鲁道夫的小故事
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的`墓碑上。
数学家雅谷伯努利的小故事
瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。
数学家的故事5
祖冲之
祖冲之(429—500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他个性爱好研究数学,也钟爱研究天文历法,经常观测太阳和星球运行的状况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,能够更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的'年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时刻)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。(企业标语大全)
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不就应改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不好拿空话吓唬人嘛。”宋孝武帝想帮忙戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他以前对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3。1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天能够航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
数学家的故事6
德国著名数学家高斯出生在布劳恩什维格乡下的一个贫苦家庭里,父亲是一家杂货铺里的算账先生。在高斯四五岁的时候,父亲就经常把自己在工作中积累的一些简便算法讲给他听。聪明而又专心的高斯,不仅记住了这些简便的算法,而且能举一反三,灵活运用。
高斯上小学后,对数学更感兴趣了。可是,他的数学老师白尔脱却总认为农村孩子都是些小笨蛋,不但不认真备课,而且还经常无缘无故地训斥学生。
有一天,白尔脱又有点不大高兴。他一走进教室就板着面孔说:“今天你们自己算题,谁先算完,就先回家吃饭。”说完,就在黑板上写下这样一个题目:1+2+3+……+100=? 同学们连忙拿出练习本,低头计算起来。白尔脱呢?则坐到一旁看起小说来了。可他刚看了两页,小高斯就举手报告说:“老师,我算完了。”
“算完了?”白尔脱没好气地挥挥手,“你算得这样快,准错了!”
“错不了,我已经验算过了。”高斯理直气壮地说。
白尔脱走到高斯座位前,拿起他的练习本一看,答案是“5050”,果然一点不差。
“你是怎么算的?”他惊奇地问。
高斯一板一眼地回答说:“我发现,这个题目一头一尾挨次的.两个数相加,都是 101,总共有 50 个 101,所以答数就是 50×101=5050。”
“真妙呀!”白尔脱兴奋地拍了一下桌子,接着面对全体同学说:“没想到,你们当中竟会出现数学神童!”
从此,白尔脱改变了对农村学生的看法。他尤其喜欢高斯,经常对高斯进行个别辅导。在白尔脱的精心培养下,高斯对数学的兴趣越来越浓,造诣越来越深,十七岁时,就发现了数论中的二次互反律。
数学家的故事7
埃拉托色尼的故事
20xx多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275—前194)。
埃拉托色尼博学多才,他不仅仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。
细心的埃拉托色尼发现:离亚历山大城约800公里的.塞恩城(今埃及阿斯旺附近),夏日正午的阳光能够一向照到井底,因而这时候所有地面上的直立物都就应没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物构成的夹角所造成。从地球是圆球与阳光直线传播这两个前提出发,从假想的地心向塞恩城与亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物构成的夹角。按照相似三角形的比例关联,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,与实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说与智慧。
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小与海陆分布。埃拉托色尼还用经纬网绘制地图,最早将物理学的原理与数学方法相结合,创立了数理地理学。
数学家的故事8
华蘅芳(1833~1902) 中国清末数学家、翻译家和教育家。字若汀,生于道光十三年,卒于光绪二十八年。江苏常州金匮(今无锡市)人。出生于世宦门第。少年时酷爱数学,遍览当时的各种数学书籍。青年时游学上海,与著名数学家李善兰(字秋纫)交往,李氏向他推荐西方的代数学和微积分,他刻苦自学,这对他走上数学道路有重要的影响。咸丰十一年(1861)为曾国藩擢用,和同乡好友徐寿(字雪村)一同到安庆的军械所,绘制机械图并造出中国最早的轮船“黄鹄”号。他曾三次被奏保举,受到洋务派器重,一生与洋务运动关系密切,成为这个时期有代表性的科学家之一。同治四年(1865)曾国藩、李鸿章合奏创设江南制造局,华蘅芳参加了该局的计划和开创工作。同治七年(1868)江南制造总局内开设翻译馆,华蘅芳与徐寿积极从事,为介绍西方先进的科学技术,分门别类地进行系统译述,对近代科学知识特别是数学知识在中国的传播,起到了重要的作用。
华蘅芳先后在江南制造总局和天津机器局担任提调,光绪二年(1876)在上海格致书院担任教习。他在晚年转向教育界,从事着述和教学。他对数、理、化、工、医、地以及音乐等学科有广博的学识,并注重科学研究。他编写了深入浅出的数学讲义和读本,以专着《学算笔谈》进行数学评论,对于培养人才和普及科学殊多贡献,成为有声望的一代学者。光绪十三年(1887)他曾在天津武备学堂中任教习,光绪十八年(1892)在湖北武昌主讲两湖书院。他的学生江蘅、杨兆]等以及胞弟华世芳(字若溪,1854~1905)受到他的影响都成为数学家。
华蘅芳的治学精神反对历来算家喜“炫其所长而匿其所短”、只讲算法而“秘匿”算理的风气;他注重数学教育,曾说“吾果如春蚕,死而足愿矣”,把发展数学的希望寄托于后学;在数学评论中阐明了他的数学教学思想,象“观书者不可反为书所役”等精辟见解,表明他的.方法论中已具有辩证的内容;华蘅芳的哲学观点散见于着述之中,兼有唯心、唯物的成分,尚未形成思想体系。
华蘅芳官至四品,但非从政。他不慕荣利,穷约终身,坚持了科学、教育的道路,与李善兰、徐寿齐名,同为中国近代科学事业的先行者。
数学家的故事9
公元1902年9月23日,那是一个普通的日子,可对祖辈从福建同安逃荒到浙江平阳带溪村的苏祖善家来说,那是一件难得的大喜、大吉的日子。真是老天有眼,天官赐福。苏祖善家添了一丁,夫妻俩笑得合不拢嘴,终于有了世代务农的“接班人”。可苏祖善夫妻俩从未上过学,尝够没有文化的苦,望子成龙心切,于是给儿子选取“步青”为名,算命先生还说上一番好话,以“步青”为名,将来定可“平步青云,光宗耀祖”。
名字毕竟不是“功名利禄”的天梯。正当同龄人纷纷背起书包上学的时候,苏祖善交给儿子的却是一条牛鞭。从此,苏步青头戴一顶父亲编的'大竹笠,身穿一套母亲手缝的粗布衣,赤脚骑上牛背,鞭子一挥,来到卧牛山下,带溪溪边。苏步青家养的是头大水牛,膘壮力大,从不把又矮又小的牧牛娃放在眼里。有一次,水牛脾气一上来,又奔又跳,把苏步青摔在刚刚砍过竹的竹园里。真是老天庇佑,他跌在几根竹根中间,未有皮肉之苦,逃过一劫。
放牛回家,苏步青走过村私塾门口,常被琅琅的书声所吸引。有一次,老师正大声念:“苏老泉,二十七,始发愤,读书籍。”他听后,就跟着念了几遍。此后,他竟记住了顺口溜,放牛时当山歌唱。
苏祖善常听儿子背《三字经》、《百家姓》,心存疑惑。有一次,正好看见儿子在私塾门口“偷听”,为父的心终于动了,夫妻一合计,决定勒紧裤带,把苏步青送进了私塾。
数学家的故事10
塞乐斯是古希腊第一位闻名世界的大数学家。他原是精明商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,勇于探索。他的家乡离埃及不太远,所以他常去埃及旅行。他游历埃及时,曾用一种巧妙的.方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
数学家的故事11
中国现代数学家陈景润的故事
陈景润(1933-1996)福建福州人,1953年毕业于厦门大学数学系,中国科学院数学研究所研究员。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。50年代对高斯圆内格点、球内格点、塔里问题与华林问题作了重要改进。60年代以来对筛法及其有关重要问题作了深入研究,1966年5月证明了命题“1+2”,将200多年来人们未能解决的哥德巴赫猜想的证明大大推进了一步。这一结果被国际上誉为“陈氏定理”;其后又对此作了改进,将最小素数从原有的80推进到16,深受称赞。
陈景润是世界著名解析数论学家之一,他在50年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改进。60年代后,他又对筛法及其有关重要问题,进行广泛深入的研究。
1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的'草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(aweil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”
陈景润于1978年和1982年两次收到国际数学家大会请他作45分钟报告的邀请。这是中国人的自豪和骄傲。他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前。
数学家的故事12
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,
就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的'数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学家的故事13
杨辉
杨辉,中国南宋时期杰出的家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
杨辉的数学研究与教育的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的'还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
数学家的故事14
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的.大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E。T。贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
数学家的故事15
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的'一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.
数学魔术家
【数学家的故事】相关文章:
数学家的故事(精选)07-26
数学家的故事07-30
数学家的故事07-29
[经典]数学家的故事02-27
有关写数学家的经典故事 数学家的经典故事04-13
[中国史上的数学家故事] 数学家的故事05-23
数学家陈景润的故事02-08
数学家的故事【荐】12-07
(推荐)数学家的故事12-05
关于数学家的故事12-08