当前位置:壹学网>作文>写作素材>名人故事>数学家的故事

数学家的故事

时间:2024-12-14 11:49:40 名人故事 我要投稿

【通用】数学家的故事

数学家的故事1

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

【通用】数学家的故事

  后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

  《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。

  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的'三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

  《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

  《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。

  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

  正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

数学家的故事2

  数学是人类认识世界和改造世界的有力工具,也是一片任有志之士自由飞翔的广阔天地。数学的足迹遍及社会的每一个角落。数学家的故事也像数学本身一样,神秘动人,发人深思。下面给同学们讲一讲著名的女数学家索菲·科瓦列夫斯卡娅的故事。

  著名的女数学家索菲·科瓦列夫斯卡娅索菲·科瓦列夫斯卡娅(1850~1891)是俄国人,她一生获得了很多“第一”:她是历史上第一个获得数学博士学位的女性,是第一个获得科学院院士称号的女数学家,此外,她还是除了意大利外世界上第一个担任数学教授的妇女,她对数学做出了卓越的贡献。

  索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。”

  索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的`方式,这对她日后的数学研究非常重要。

  高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等教育。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。

  在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。

  索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。

数学家的故事3

  "数学之神"──阿基米德

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去领悟。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞与卡农的门生,钻研《几何原本》。

  之后阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他透过超多实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

  《砂粒计算》,是专讲计算方法与计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积与它的体积,分别为球表面积与体积的。在这部著作中,他还提出了著名的"阿基米德公理"。

  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线与直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的'定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数与算术级数求与的几何方法。

  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形与立体图形的重心问题。

  《浮体》,是流体静力学的第一部专著,阿基米德将数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

  《论锥型体与球型体》,讲的是确定由抛物线与双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴与短轴旋转而成的球型体的体积。

  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。透过研究发现,这些信件与传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

  正正因他的杰出贡献,美国的E。T。贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿与高斯。但是以他们的宏伟业绩与所处的时代背景来比较,或拿他们影响当代与后世的深邃久远来比较,还应首推阿基米德。

数学家的故事4

  数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装。由于家境贫寒,他经常一天吃两顿饭,为的`是把省下的钱用来买书。他说:“饭可以不吃,书不可以不念。”他平时不看电影,不随便和人闲聊,全身心地投入学习当中。

  那时,宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书。

  在进军“哥德巴赫猜想”时,他居住在6平方米的小屋里,演算全靠自己笔算。他演算的'手稿有几麻袋。就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年终于攻克了“(1+2)”这个堡垒。英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为“陈氏定理”,说它是“筛法”的“光辉顶点”。一位英国数学家写信称赞他:“您,移动了群山!”

数学家的故事5

  祖冲之(公元429—500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。

  祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3。14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的`基础上,经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3。141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。

  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。

数学家的故事6

  苏步青1902年9月出生在浙江省平阳县的一个山村里.虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学.他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂.可量,后来的一堂数学课影响了他一生的道路.

  那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师.第一堂课杨老师没有讲数学,而是讲故事.他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国.中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举.‘天下兴亡,匹夫有责’,在座的每一位同学都有责任.”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用.这堂课的最后一句话是:“为了救亡图存,必须振兴科学.数学是科学的.开路先锋,为了发展科学,必须学好数学.”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘.

  杨老师的课深深地打动了他,给他的思想注入了新的药剂.读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生.当天晚上,苏步青辗转反侧,彻夜难眠.在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭.一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题.现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整.中学毕业时,苏步青门门功课都在90分以上.

  17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着.为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位.获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教.回到浙大任教授的苏步青,生活十分艰苦.面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!” 这就是老一辈数学家那颗爱国的赤子之心

数学家的故事7

  自从我读完了《数学家的故事》,脑子里就会时不时地跳出几个数学家,比如高斯、牛顿、阿基米德、华罗庚。

  我最崇拜的是约翰·伯努利,他1667年8月6日出生于巴塞尔。他不仅自己厉害,还成功教出了一大批出色的数学家,其中包括18世纪最著名的瑞士数学家欧拉、瑞士数学家克莱姆、法国数学家洛必达,以及他自己的儿子丹尼尔和侄子尼古拉二世。

  我也崇拜阿基米德,阿基米德是古希腊哲学家、数学家、力学家、天文学家,与牛顿、高斯并称为世界三大数学家。阿基米德在罗马士兵攻打自己的国家时,没有像其他人一样急着逃跑,因为他还在桌子上聚精会神地解一道数学题。一个罗马士兵突然出现在他的面前,命令他到马塞勒斯去,遭到了阿基米德的严词拒绝,他表示除非解答出问题,并给出证明,否则是不会去的。这句话把罗马士兵激怒了,就这样,阿基米德丧生在罗马士兵的刀剑之下。

  我还崇拜牛顿呢!因为他曾经说过一段经典的话:“我不知道在别人看来,我是什么样的人,但在我自己看来,我不过就像是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的`海洋,却全然没有发现。”在遥远的1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿出生了。牛顿是个早产儿,出生时只有3磅重,接生婆担心牛顿是否能活下来,没想到这样弱小的一个小家伙会长成一位震古烁今的科学巨人。

  除了苹果砸在头上发现了地心引力,牛顿还制造了磨坊的模型、小水钟等。他还发现微积分,对光的研究也有贡献,还构筑力学大厦呢!真是牛呀!

  读完这本《数学家的故事》,我感觉自己全身充满力量。有一次奥数小考试,我被三道难题给难住了,我怎么想都提不出解题方法。这时脑海中似乎传来一个低沉的声音:“潘晨熙,你一定要用尽全部力量,来选取咱们应遵循的道路啊!”哦!原来是笛卡尔爷爷呀!好的,我会尽心尽力做完它们的。“你一定要冷静!”他又说。“我一定会的。”我说。我继续认真审题,啊,我做完了!我要感谢数学家给我的启示,我长大了一定会成为数学家的。

数学家的故事8

  1251年,史天泽驻守真定,他兴教育,劝农桑,广纳贤士。在秋高气爽的暮色中,一位59岁的儒士在学子们的簇拥下踏上了真定路栾城县的故土,他就是金元之际最伟大的数学家李冶。

  一

  李冶家学深厚,博览群书,兼修文学、史学、数学、经学。时人称赞他“经为通儒,文为名家”。

  李冶(1192~1279),字仁卿,号敬斋,元代真定路栾城县(今石家庄市栾城区)人。他出生的年代,正是金朝由盛而衰的历史时期。李冶父亲李?是位博学多才的学者,在大兴府尹胡沙虎手下任推官,母亲姓王。

  泰和八年(1208年),蒙古成吉思汗的军队开始向金朝进攻。李?的上司胡沙虎是金朝臭名昭著的大权奸,“声势炎炎,人莫敢仰视”,动辄打骂同僚,甚至“虐杀不辜”。李?常据理力争,置个人生死祸福于度外。但行走于虎狼之室,不得不小心。他为防不测,把妻儿送回故乡栾城。少年李冶,就到栾城邻县元氏封龙书院求学。

  至宁元年(1213年)胡沙虎篡权乱政,李?被迫辞职,隐居阳翟(今河南禹县),从此不再过问政事。吟诗作画,颇有名声。父亲的正直为人及好学精神对李冶深有影响。

  李冶儿时本名李治,为什么改名李冶?后世有两种解读。一说李冶成年后熟读史书,感慨唐高宗李治助长武则天专权,导致大唐沦为武周,耻与李治同名,故改名李冶。一说金朝曾推崇儒学,禁止平民和古代帝王同名,李冶就把李治减去一点,改名叫李冶。

  李冶自幼聪敏,博览群书,兴趣广泛,对文学、史学、数学、经学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”李冶常说:“积财千万,不如薄技在身。”又说:“金璧虽重宝,费用难贮储。学问藏之身,身在则有余。”他年轻时曾与好友元好问一起外出求学,拜文学家赵秉文、杨文献为师。

  正大七年(1230年),李冶赴洛阳应试,被录取为词赋科进士,一举成名,时人称赞他“经为通儒,文为名家”。

  二

  国破家亡的命运,使李冶决绝了仕途,潜心研究学问。

  李冶得中进士,本是走向成功的标志,同年踏进仕途,被授予高陵(今陕西高陵)主簿,但此时金王朝已日薄西山,而崛起于草原的蒙古汗国已日渐强大,成吉思汗之子窝阔台即位后,出兵攻入陕西,李冶任职属地被蒙古军队占领,所以,他被调往钧州(今河南禹县)任知事。公元1232年正月,蒙古军绕过军事重镇潼关(今陕西潼关县北),东下汴京(今河南开封),在三峰山大战,金军大败,不几日,蒙古军攻破钧州城,李冶不愿投降,就换上平民服装,北渡黄河进入山西,这是他一生的重要转折点。仕途的悲凉,国土的沦丧,使得李冶从此走上了流亡之路。

  李冶辗转到了山西的忻县、崞县(今山西宁武、原平)之间,过着“饥寒不能自存”的生活。

  公元1234年正月,金哀宗完颜守绪传位于完颜承麟后自缢而死。末帝完颜承麟也被乱兵所害,金朝灭亡。

  国破家亡的命运,使李冶决绝了仕途,只能潜心研究学问。年过四十岁的李冶经过颠沛流离后,定居崞县桐川。他虽生活艰苦,但有充足的.时间研究学问。漫漫人生路,何处是归途?李冶就在各种学问中充实自己,涉及数学、文学、历史、天文、哲学、医学等。李冶不仅有先进的哲学思想,而且在极为艰苦的条件下坚持做学问。他在桐川的居室十分狭小,常常不得温饱,要为衣食奔波。但他却以著书为乐,潜心学问。他的学生焦养直说他“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”,“手不停披,口不绝诵,如是者几五十年”。

  同时代的学者砚坚评价李冶,只要目睹世间之书,无不熟读,从不遗漏。

  三

  数学虽被古人排在六艺之末,但李冶认为,数学是最有用的学问,于是他致力于数学研究。

  1248年,李冶写成了中国古代数学名著《测圆海镜》,这是中国古代代数学具有划时代意义的著作,是用“立天元一为某某”(即当代数学设x为某某)解析高次方程的数学专著。后世学者们研究认为,李冶这部代数学著作,比欧洲代数高次方程理论要早300多年,是13世纪世界最先进的代数学理论专著。

  金元之际,正是天元术启蒙的时代。天元术是用数学符号列方程的方法。中国列方程的思想可追溯到东汉的《九章算术》。其中第8章《方程》,用文字叙述方法建立二次方程,但没有明确的未知数。唐代王孝通《缉古算术》已能列出三次方程,但完全用几何方法推导方程,难度很大,不易被一般人掌握。

  宋代以前的方程理论一直受几何思维束缚,方程次数不高于三次,高于三次方程就难以用几何解析了。宋仁宗时任左班殿直贾宪写成《黄帝九章算经细草》9卷、《算法?鹿偶??卷,改进了传统开方法,创造了开方作法本源和增乘开方法,对古代数学理论做出了杰出贡献。在欧洲,法国数学家帕斯卡在17世纪初创造了类似的代数学,但是比贾宪晚了600年左右。

  李冶治学,不泥古,不唯书,既善于借鉴前人的成就,又勤于思考。有人问学于李冶,李冶回答:“学有三:积之之多不若取之之精,取之之精不若得之之深。”坚持去其糟粕,取其精华,善于发现,勤于思考。

  由于李冶摆脱了几何思维的束缚,在方程解析方面取得了突破,他利用天元术熟练地列出六次方程,并完整解决了分式方程问题,用纯代数方法降低方程次数,他还发明了负号和一套相当简明的小数记法。在国外,直到16世纪末,小数才有了更好的记法。由于李冶掌握了一套完整的数字符号及性质符号,他的方程已能用符号表示,改变了用文字描述方程的旧面貌,可称为“半符号代数”。大约300年后,类似的半符号代数才在欧洲产生。

  李冶的《测圆海镜》共12卷,收入170多个问题,都是已知直角三角形中各线段、利用天元术求内切圆和旁切圆的直径问题。第一卷开头,李冶列出了一幅“圆城图式”,提出了170个与“圆城图式”有关的问题,根据已知条件,分别计算出15个直角三角形各边之长,绘出各三角形的容圆公式,计算出勾股和、勾股差,然后计算出勾弦和、勾弦差等。其中19题列出三次方程,13题列出四次方程,还有些题列出六次方程,还成功地用代数方法降低方程次数。《测圆海镜》的成书标志着天元术的成熟,李冶也正是因其在天元术方面的贡献,被后人誉为“宋元数学四大家”。

  元代数学家朱世杰说:“以天元演之,明源活法,省功数倍。”清代阮元说:“立天元者,自古算家之秘术;而《海镜》者,中土数学之宝书也。”

  四

  李冶既是一代鸿儒,又有实用数学的杰出成就。他曾在封龙书院讲学,学子纷至沓来,以聆听李冶教诲为乐事。

  李冶写成《测圆海镜》后,到太原住了一个时期,藩府的官员曾请他出仕为官,他坚决谢绝了。后来,他到了山西平定,在那里,李冶与一代词人元好问受到当地人的敬仰。平定侯聂?也很尊重李冶和元好问,他经常把他们接到自己府邸做客。时人常常将二人并称“元李”。至元二年(1265年),平定州创建“四贤堂”,以祭祀金元时期文坛领袖,“四贤”就是指杨云翼、赵秉文、元好问和李冶,可见李冶在当时名声之高、影响之大。

数学家的故事9

  欧拉1707年4月15日生于瑞士巴塞尔,1783年9月18日卒于俄国圣彼得堡。他生于牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。他以旺盛的精力投入研究,在俄国的.14年中,他在分析学、数论和力学方面作了大量出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。欧拉这个时期在微分方程、曲面微分几何以及其他数学领域的研究都是开创性的。1766年他又回到了圣彼得堡。

数学家的故事10

  在中国现代数学洪荒之地,有一位抱定“战士死在沙场幸甚”的开拓者,他就是华罗庚。华罗庚是中国解析数论、典型论、矩阵几何学、自守函数论与多个复变函数论等很多方面研究的创始人与奠基者,也是我国进入世界著名数学行列最杰出的代表者。他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔-加当-华定理”、“华-王方法”、“华氏算子”、“华氏不等式”等。他一生为我们留下了两百多篇学术论文,10部专著,其中8部被国外翻译出版,有些已列入本世纪经典著作之列。他把数学方法创造性地应用于国民经济领域,筛选出了以改进工艺问题的数学方法为内容的“优选法”和处理生产和组织与管理问题为内容的“统筹法”。他是美国科学院历史上第一个当选为外籍院士的中国学者。他还当选为联邦德国巴伐利亚科学院院士;法国南锡大学、美国伊利诺斯大学与香港中文大学授予他荣誉博士学位。他的名字进入美国华盛顿斯密司-宋尼博物馆,被列为芝加哥科学技术博物馆中当今88个数学伟人之一。

  新中国成立的消息传到美国,他喜泪沾裳。为了重建自己的家园。他毫不犹豫地放弃了美国伊利诺大学终身教授的职务,丢下了优厚的薪俸、汽车和洋房,怀着一腔热诚,携全家,登上一艘轮船于1950年春,回到了祖国的怀抱。

  回国后,他在户口簿的文化程度一栏中填上了:“初中毕业”4个字。这对华罗庚来说是个难忘的字眼,而对别人来说又是个费解的事情。这究竟是怎么回事呢?还是让我们来看着他的成才道路吧。

  1910年11月12日,华罗庚出生于江苏省金坛县的一个贫苦家庭。父亲开了一个小杂货店,惨淡经营,艰难谋生。华罗庚15岁那年,毕业于金坛县初中,后到上海中华职业学校读书。由于家庭贫寒,交不起饭费,只念了1年,就离开学校,失学了。

  华罗庚从小聪明好学,念初中时,在数学课上就表现出了特殊的才华。一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”王老师在读这道题时,读得很慢,声音抑扬顿挫。读完题目后,王老师把目光扫向全班同学,一张张紧张思索的面孔,一道道疑惑不解的目光尽在王老师的视野之内。突然,一个学生站起来,说:“这物品是23个。”这是个熟悉的声音,这声音把同学们从思索和疑惑中唤醒过来。大家用惊异的目光看着他。这个最先说出答案的同学就是少年华罗庚。华罗庚在解这道题时是这样想的:从“七七数之剩二”开始,就是说,七数余二,那么七的倍数再加二定是这个数,不防设这个数是7×3+2=23。再对23进行检验:23被3除,余2;23被5除余3,因此,23符合题目条件。正是由于华罗庚从小勤奋好学,王维克老师加倍看重他的聪明与才华。华罗庚在学校时给王老师留下了很深的印象。

  就在华罗庚18岁那年,王维克老师当上了金坛县中学的校长。王校长爱惜人才,把华罗庚请到学校当会计兼做事务工作。从此,华罗庚更忙起来了。他回忆这段时间的经历时说:“除了学校繁重的事务外,早晚还要帮助母亲料理小店的事务。每天晚上大约8点钟才能回家。清理小店的帐目之后,才能钻研数学,常常到深夜。”这就是说,即使在繁忙的事务之后,华罗庚也不忘学习数学,因此,他的数学水平也在不断提高。

  华罗庚19岁那年,一个偶然的机会,他借了一本杂志,名叫《学艺》,在这本杂志的第7卷10号上刊登了一篇由苏家驹教授撰写的文章《代数的五次方程式之解法》,引起了华罗庚的浓厚兴趣。通过阅读与思考,华罗庚发现文章中存在着根本性的错误。于是他问王校长,“能不能写文章批评苏教授文章中的错误?”华罗庚的提问得到了王校长的肯定回答:“当然可以,就是圣人,也有错误,有什么不能批评的!”王校长是意大利诗人但丁名著《神曲》的译者。他的一席话给华罗庚以很大的鼓励。于是华罗庚写了一篇逻辑严谨、说理充分的文章,经王校长过目与修改后,寄给了上海的《科学》杂志。文章于1930年发表了。文章一发表,就引起了当时不少人的重视。当时清华大学数学系主任熊庆来教授看到了这篇文章。而且得知这篇文章的作者是一位仅有初中毕业文凭的金坛县初中的青年人,更感到震惊。他看出了华罗庚的才华,马上写信到金坛中学,请华罗庚到清华大学工作。华罗庚接到信后,再三考虑:一方面,他想起在此之前曾因王校长让他在金坛县初中教补习班,由于有人向上告状说王校长任用一个不合格的教员(一个初中毕业生怎么能有资格教初中),王校长不得不辞去校长职位,而且自己也不再教书;另一方面,由于自己家境贫寒,连去北京的路费都有困难,于是回信婉言谢绝了熊教授的邀请。熊教授接到华罗庚的回信后,这位求贤若渴的“伯乐”又写信去催。信中说:如果你不来,我将亲自去金坛拜访你。华罗庚又一次收到熊教授的来信,从中得知其邀请的真切与诚意,觉得自己实在不能辜负熊教授的好意,只好由父亲出面借了路费,应邀到了清华大学。

  在清华大学,华罗庚当上了一名助理员。主要职务是管理数学系的图书、收发公文、代领文具、绘制图表等。这样,他可以利用工作之余读书、听课。由于熊教授的安排与指导,华罗庚学业进步很快,学习也更加刻苦,常常自学到深夜。他只用一年半的时间就修完了大学课程,用4个月的时间自学了英语,并能达到读英语数学文献的水平。另外,他还自修了德文,特别是他听了研究生课程后,数学修养有了很大的`提高,并不断取得了新的成果。他写的3篇论文,先后在国外数学杂志上发表,清华大学的教师对他不得不刮目相看。不久,在清华大学的教授会议上决定让他这位只有初中学历的人任清华大学的教师。可见,华罗庚的成才主要是由于他自己努力奋斗的结果。华罗庚在给中学生谈学习数学时说过:“不怕困难、刻苦学习,是我学好数学最主要的经验。”他还说:“我不轻视容易的问题,今天练习了容易的,明天碰到较难的也就容易了。我也不怕难的问题,我时刻准备着在必要时把一个问题算到底。我相信,只要辛勤劳动,没有克服不了的困难、没有攻不破的堡垒。”华罗庚就是这样刻苦学习,才从一个只有初中学历的青年,自学成为一名大学教师的。

  1936年熊庆来教授又推荐华罗庚到英国剑桥大学留学。1938年华罗庚回到日本铁蹄下灾难深重的祖国,由熊庆来教授推荐当上了昆明西南联大教授,当时的他年仅28岁。在西南联大期间,华罗庚的生活是清苦的。他们一家住在昆明郊区的一个小村子中的两间小厢楼里,厢楼下是猪栏、牛圈,卫生环境可想而知。华罗庚在回忆这段生活时说:“晚上一灯如豆。所谓灯,乃是一个破香烟罐,放上一个油盏,摘些破棉花做灯芯。为了节省菜油,芯子捻得小小的。晚上牛蹭痒,擦得地动山摇,危楼欲倒!”华罗庚虽然居住在这样的厢楼中,过着艰难的生活,但他还是勤奋努力,不断地耕耘,用3年时间写出了一部数学手稿,名为《堆垒素数论》,华罗庚写完《堆垒素数论》后,自然打算出版成书。于是他又把中文稿译成英文稿,并把中文稿寄到当时的“中央研究院”,但是,中央研究院不但未能给予出版,还把手稿弄丢了。这对华罗庚是一个莫大的打击,3年的心血,付之东流,怎么不使他心疼呢!后来,华罗庚把手头的一份《堆垒素数论》英文稿寄到当时苏联的维诺格拉托夫院士那里,终于由苏联把英文稿译成俄文稿出版了。这本书出版后,引起了世界数学界的震动。新中国成立后《堆垒素数论》(俄文版)又被译成中文,在自己的祖国出版了。像《堆垒素数论》先在别国出版,后在国内出版,在世界出版史上也属于罕见的现象。

  华罗庚一共上过9年学,只有一张初中毕业文凭,却成了蜚声中外杰出的数学家。华罗庚的一生是勤奋好学的一生,是自学成才的典范。他的格言“天才在于积累,聪明在于勤奋”披露了这一成功的秘诀。他提出的“树老易空,人老易松,科学之道,戒之以空,戒之以松”的箴言是值得后人永志不忘的。这位开拓中国现代数学研究的巨人,逝世前的遗愿竟是“甚盼尸体能对革命有用,俟墙可作人梯,跨沟可作人桥。”

数学家的故事11

  “人去瑶池竟渺然,空斋长夜思绵绵。一生难得相依侣,百岁原无永聚筵……”这是数学家苏步青在步入百岁之际,为他仙逝的妻子苏(松本)米子写的诗。米子是一位伟大的日本女性,也是最先取得中国国籍的外籍人士之一。苏步青与她风风雨雨60载,成就了一段感人至深的世纪绝恋。

  数学家苏步青的跨国绝恋在仙台喜结连理

  1924年春天,苏步青作为唯一一个中国留学生报考了著名的仙台东北帝国大学数学系,并以第一名的成绩被录取。帝国大学是日本知名的大学,苏步青年年拿第一名,自己还有一些研究课题在进行,自然成了学校的名人。

  这时,他对学校的另一位名人松本米子产生了一种特别的关注。米子是帝国大学松本教授的女儿,她不仅相貌才华出众,而且精通插花、书法与茶道,还爱好音乐,尤其是弹得一手好古筝。在一次晚会结束后,苏步青与米子认识了。米子对苏步青其实一直是很仰慕的,他的睿智与赤诚尤其让她感动。后来两个人经常花前月下携手而行。

  1927年,东北帝国大学数学系聘请正在攻读研究生的苏步青担任代数课讲师,这使他成为该校历史上第一个兼任过讲师的外国留学生。两个人的恋情成了学校里公开的秘密,不少人为他们祝福;而那些平素追求米子的人则怀有一种嫉妒心理,对米子说:“苏步青是个中国乡巴佬,家里很穷,再说学习好的人不一定将来就会有出息。你跟了他是不会有好日子过的。”但米子不为所动。苏步青受不了一些男生的敌意,他也不想让米子再被别人纠缠,经过商量,他们决定尽快结婚。

  米子的母亲是一位善良的日本家庭主妇,她认为苏步青是一个可以托付终身的人。松本教授虽然也很喜欢苏步青,却觉得他毕竟是中国人,出身又低微,所以对这段婚姻一直很不赞同。在米子的坚持下,最终松本教授还是妥协了。1928年,这对异国青年终于走到了一起,在仙台市喜结连理。松本米子自此改从夫姓成为苏米子。

  追随夫君到中国

  米子全身心地当起了家庭主妇。为了不影响苏步青,她甚至把自己的古筝、书法等特长都荒废了,只留下了茶道和插花,因为这两种爱好有益苏步青的身体和精神。婚后一年,即1929年,米子生了个女孩。1931年初苏步青已有41 篇仿射微分几何和有关方面的研究论文出现在日本、美国和意大利等国的数学刊物上,成了日本乃至国际数学界榜上有名的人物。松本一家都希望苏步青留在日本工作,东北帝国大学也向他发出聘书。苏步青有自己的难处。出国之前,他曾与学长陈建功相约,学成归国,在故乡建设一流的数学系。现在陈建功已先期学成回国,自己是去是留,成了困扰他心灵的难题。

  细心的米子早就发现他整天唉声叹气,茶饭不思。一天吃过晚饭,从不吸烟的苏步青在抽闷烟,米子便问他有什么心事。苏步青把心里话和盘托出,他不想因一己之私,留在东瀛。令他想不到的是,米子听到了他的打算,并没有阻止,反而鼓励说:“青,我支持你的决定。首先我是爱你的,而你是爱中国的,所以我也爱中国。我支持你回到我们都爱的地方去,不论你到哪我都会跟着你的。”短短数语,使苏步青格外感动:米子是一个识大体的女人!有了妻子的支持,苏步青一人先回杭州。浙江大学的条件远比他想象的差,不但聘书上写明的月薪比燕京大学聘任他为教授的待遇相去甚远,而且由于学校经费紧张,他虽然名为副教授,却连续四个月没有拿到一分钱。幸亏还有在上海兵工厂当工程师的哥哥及时帮助,否则苏步青就要靠当东西维持生计了。为了养家,苏步青打算再回到日本去。

  风声传到了浙大校长邵裴子耳中。这位惜才如命的教育家当夜就敲开了苏步青的房门:“不能回去!你是我们的宝贝……”邵校长情急之中,这话脱口而出。苏步青不敢相信自己的耳朵。“真的,千真万确,你是我们的宝贝!”邵校长激动地说。就是这句话,神奇般地把苏步青回日本的打算冲得烟消云散:“好啦,我不走了。”几天后,邵校长亲自为苏步青筹到1200块大洋,解了他的燃眉之急。到放暑假时,有了点积蓄的苏步青便到日本接来了家眷。

  1937年7月7日,日本发动了全面侵华战争。苏步青和米子在中国的生活才刚刚开始,就受到了波动。这年“八·一三”事变后,日本飞机在上海和江浙一带狂轰滥炸,浙大的环境非常危险。校方连夜开会商议,决定搬迁。中午,苏步青正在系里收拾东西,突然一个邮差送来一份特急电报。苏步青打开一看,上写短短几个字:“帝国大学决定再次聘请苏步青回校任数学教授,待遇从优。”苏步青愤愤然道:“你们侵略了我们的国家还想叫我去?” 他气得脸色发白,决定不予任何回复。

  几天后,日本驻杭州领事馆一个官员找到苏步青家里。苏步青刚好不在,那个官员以为米子是日本女子比较好拉拢,就说:“作为日本人,不知夫人是否愿意来领事馆内品尝自己家乡的饭菜?我们竭诚以待。”米子当即拒绝说:“我自嫁给苏君,已过惯了中国人的`生活,吃惯了中国人的饭菜。”来人只得离去。

  过了几天,又有人前来游说苏步青:“你夫人是日本人,你是日本女婿,日本人不会对你不利的。”苏步青当即反问道:“你的意思,就是要我当汉奸?”这话像一把利刃,让对方无言以对。当夫妇俩做好随校搬迁的一切准备后,忽又收到一封来自仙台的特急电报:松本教授病危!苏步青把电报递给米子,他与岳父的关系是很好的,但因牵涉到国家的问题他不能回去探望他老人家;他想让米子独自回仙台看望父亲。米子听了他的话,低下头略略思考了一会儿,说出了让苏步青震惊的话:“我不回去。无论如何,我跟着你!永远跟着你!”

  患难中的世纪绝恋

  艰难的迁徙开始了。苏步青挑着担子,一头装着书籍和教案,一头放着年幼的孩子。米子一手提着简单的衣物,一手牵着年纪稍长的孩子。因为路况不好,为了躲避日机轰炸,加上交通工具匮乏,大部分的时候他们就是这样徒步前进。然而更加难堪的是沿途苛刻的盘查。由于米子是日本人,是敌国的人,每次经过哨卡,值班的军政人员总要反复对米子和苏步青一家进行审查。苏步青百般解释也无济于事,后来是校长竺可桢爱才,讨得战区长官的一纸特别通行证,方才免去此苦。

  浙大师生经过2600多公里的长途跋涉,到达贵州遵义附近的湄潭,建立了临时校舍。当时的生活十分困苦,苏步青出世不久的儿子因营养不良夭折了。手捧着儿子的尸体,米子伤心不已,但日本妇女坚毅的品质让她没有发出一句抱怨。当时苏步青身为数学系主任,但连一件完好的衣服也没有,经常穿着一身满是补丁的衣服上讲台。当他在黑板上画几何图形时,学生们对他指指点点:“看,苏先生衣服上的三角形、梯形、正方形,样样俱全,还有螺旋曲线!”这事让米子知道了,她觉得自己没有尽到一个妻子应尽的职责,于是就把外婆送给自己作结婚纪念的玉坠子当了,给苏步青添了一件新衣服。苏步青惊讶不已:“你怎么能为了我的衣服,当掉那么贵重的东西?快赎回来!”米子却甜甜地笑了:“我不想让我的丈夫受到任何委屈。”学校刚安顿好没多久,就赶上考试、作答辩报告。一天夜里,一个叫熊全治的学生匆匆来到苏步青家,他是怕第二天研讨班的报告过不了关特来请教的。苏步青听了不满地说:“你这么临时抱佛脚,还能有个好?”熊全治脸涨得通红,米子听到声音,赶紧披了件衣服出来解围。经过苏步青指点,熊全治回到宿舍忙了一个通宵,第二天论文总算过了关。熊全治后来到美国成了名教授,40多年后他回国探望苏老,深情地说:“当年多亏先生一顿痛骂。”他也异常感激那时米子的善良解围:“否则我还真不知道怎么迈出那个门呢!”

  1982年,米子因长年积劳,终于卧床不起了。苏步青每天下午4时30分就赶到医院,随侍左右,精心看护。1986年5月,松本米子静静地离开了人世,享年81岁。她临死前最大的愿望,就是要苏步青不要伤心,要好好地活下去。夫人亡故后,苏步青把夫人的照片时刻带在身边,意味深长地说:“我深深地体味着‘活在心中’这句话。就似我的妻子仍和我一起在庭园里散步,一起在讲坛上讲课,一起出席会议……”20xx年,百岁老人苏步青就是在对亡妻的这种怀念之中,走完了生命的最后一段历程。

数学家的故事12

  1972年12月7日,苏步青的学生、著名数学家张素诚,因《数学学报》复刊之需,拜访各地数学家,到上海理应拜访苏老师,没想到苏老所赐的《射影几何概论》(英文版)一书上,别开生面在扉页题了一首诗:

  三十年前在贵州,

  曾因奇异点生愁,

  如今老去申江日,

  喜见故人争上游。

  这不仅打破常人的题词俗话,把师生之情和盘托出,又足可看出苏老诗艺的高超,文学功底的`深厚了。

  许多人都知道苏步青是数学大师,却不知道他还是位文学大师,写作大家和诗人。

  他从小酷爱古诗文,13岁学写诗。

  读初小时常骑在牛背上诵读《千家诗》等。

  几十年来,他与诗为伴,与诗书同行,每次出差,提包里总放一二本诗集,如《杜甫诗选》等。

  苏步青不仅读诗,更有作诗兴趣,几十年笔耕不辍,写了近千首诗作。

  在他96岁高龄时,北京群言出版社出版了《苏步青业余诗词钞》,共收近体诗444首,词60首,由苏老手写影印,其中1931~1949年早期作品191首,内有词47首。

  从中我们可以领略苏老60年间的学术生涯和诗书技艺折射的光芒,富有时代气息,给人以诸多的启迪。

  回想浙江大学内迁湄潭时期,他和数学大师钱宝琮等创设湄潭吟社,在生活极度困难下,自费出版了《湄潭吟社诗存第一辑》,内收各家诗词约100首。

  在国难当头日子里,诗人们品茶吟诗,或切磋教义,或评论时局,其忧国思乡,愤世嫉俗之情常流露于笔端。

  1944年,苏步青以“游七七亭”为诗题作一诗:

  单衣攀路径,一杖过灯汀。

  护路双双树,临江七七亭。

  客因远游老,山是故乡青。

  北望能无泪,中原战血腥。

  这是苏步表以物寄情,对家乡沦陷和祖国山河破碎的怀念和人民奋起抗战的歌颂,爱国忧世之情自心中汩汩流出。

  苏步青的诗艺高超,令人叹为观止。

  他的诗意境高远,笔调清新,常用典故,富有哲理。

  读了苏步青的许多诗,不仅使人感到苏老常对后学谆谆教导“金字塔”般基础之重要,文理相通之亮点。

  他几十年如一日,巧用自称“零头布”(零碎时间)来学习和研究,这些永留人间的好诗词,不就是苏步青充分利用零碎时间的佐证吗?

数学家的故事13

  戴维·希尔伯特(1862~1943),德国著名数学家。希尔伯特是对二十世纪数学有深刻影响的数学家之一,他领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”,他是天才中的天才。

  希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:“只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。”在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题,被认为是20世纪数学的至高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。这23个问题统称“希尔伯特问题”,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的.影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未得到解决。他在讲演中所阐发的相信每个数学问题都可以得到解决的信念,对数学工作者是一种巨大的鼓舞。他说:“在我们中间,常常听到这样的呼声:这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有不可知。”三十年后,1930年,在接受哥尼斯堡荣誉市民称号的讲演中,针对一些人信奉的不可知论观点,他再次满怀信心地宣称:“我们必须知道,我们必将知道。”希尔伯特去世后,这句话就刻在了他的墓碑上。

数学家的故事14

  伟大的韦达

  一元二次方程的根与系数的关系,常常也称作韦达定理,这是因为该定理是16世纪法国最杰出的数学家韦达发现的。

  韦达的小传

  韦达1540年出生在法国东部的普瓦图的韦特奈。他早年学习法律,曾以律师身份在法国议会里工作,韦达不是专职数学爱,但他非常喜欢在政治生涯的间隙和工作余暇研究数学,并做出了很多重要贡献,成为那个时代最伟大的数学家。

  韦达是第一个有意识地和系统地使用字母表示数的人,并且对数学符号进行了很多改进。他在1591年所写的《分析术引论》是最早的符号代数著作。是他确定了符号代数的`原理与方法,使当时的代数学系统化并且把代数学作为解析的方法使用。

  因此,他获得了“代数学之父”之称。他还写下了《数学典则》(1579年)、《应用于三角形的数学定律》(1579年)等不少数学论著。韦达的著作,以独特 形式包含了文艺复兴时期的全部数学内容。只可惜韦达著作的文字比较晦涩难懂,在当时不能得到广泛传播。在他逝世后,才由别人汇集整理并编成《韦达文集》于1646年出版。韦达1603年卒于巴黎,享年63岁。下面是关于韦达的两则趣事:

  与罗门的较量

  比利时的数学家罗门曾提出一个45次方程的问题向各国数学家挑战。法国国王便把该问题交给了韦达,韦达当时就得出一解,回家后一鼓作气,很快又得出了22解。答案公布,震惊了数学界。韦达又回敬了罗门一个问题。罗门苦思冥想数日方才解出,而韦达却轻而易举地作了出来,为祖国争得了荣誉,他的数学造诣由此可见一斑。

  韦达的“魔法”

  在法国和西班牙的战争中,法国人对于西班牙的军事动态总是了如指掌,在军事上总能先发制人,因而不到两年功夫就打败了西班牙。可怜西班牙的国王对法国人在战争中的“未卜先知”十分脑火又无法理解,认为是法国人使用了“魔法”。

  原来,是韦达利用自己精湛的数学方法,成功地破译了西班牙的军事密码,为他的祖国赢得了战争的主动权。另外,韦达还设计并改进了历法。所有这些都体现了韦达作为大数学家的深厚功底。

数学家的故事15

  斐波那契(Leonardo Fibonacci,约1170-约1250)

  意大利数学家,12、13世纪欧洲数学界的代表人物。生于比萨,早年跟随经商的父亲到北非的布日伊(今阿尔及利亚东部的.小港口贝贾亚),在那里受教育。以后到埃及、叙利亚、希腊、西西里、法国等地游历,熟习了不同国度在商业上的算术体系。1200年左右回到比萨,潜心写作。

  他的书保存下来的共有5种。最重要的是《算盘书》(1202年完成,1228年修订),算盘并不单指罗马算盘或沙盘,实际是指一般的计算。

  其中最耐人寻味的是,这本书出现了中国《孙子算经》中的不定方程解法。题目是一个不超过105的数分别被 3、5、7除,余数是2、3、4,求这个数。解法和《孙子算经》一样。另一个「兔子问题」也引起了后人的极大兴趣 。题目假定一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就有生殖能力,问从一对大兔子开始, 一年后能繁殖成多少对兔子?这导致「斐波那契数列」:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。这数列与后来的「优选法」有密切关系。

【数学家的故事】相关文章:

[经典]数学家的故事02-27

数学家的故事07-29

数学家的故事07-30

数学家的故事(精选)07-26

有关写数学家的经典故事 数学家的经典故事04-13

[中国史上的数学家故事] 数学家的故事05-23

【精选】数学家的小故事10-05

数学家的小故事04-02

数学家陈景润的故事02-08

数学家的小故事05-25