当前位置:壹学网>作文>写作素材>名人故事>数学家的小故事

数学家的小故事

时间:2024-11-09 11:47:53 名人故事 我要投稿

数学家的小故事15篇【优】

数学家的小故事1

  1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的.妇女,她的名字叫。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。

数学家的小故事15篇【优】

  工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比要多得多。

  这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

数学家的小故事2

  陈景润

  陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,因此有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

  1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。

  一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个搞笑的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都能够表示为两个奇数之和。正因这个结论没有得到证明,因此还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。

  它像一个美丽的光环,在咱们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。

  从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时刻他最爱到图书馆,不仅仅读了中学辅导书,这些大学的.数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

  兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

数学家的小故事3

  夜幕降临,父亲给我找了一道题让我解决:10间教室,每间装6盏灯,关闭5间教室的灯,剩多少盏?我一听暗自欣喜,对我来说那是易如反掌。毫不犹豫地回答:"简单!用6*10-6*5=30盏灯。"然而,父亲却摇头微笑,我有些不满地质问:"难道答案不是30盏吗?"

  父亲耐心地说:"你理解错了,问题是求总共有多少盏灯,而非亮着的灯数。怎能相减呢?"我顿时茅塞顿开,重新计算:"正确解答应该是6*10=60盏灯!"这时,我想到了另一道智力题,决定考考父亲:"一位渔夫钓鱼,钓到6条无头,9条无尾,8条半个身子的'鱼,请问他钓了多少条鱼?"父亲听后苦思冥想,却始终无法得出答案。我自信满满地揭晓谜底:"6条无头即'0',9条无尾即'0',8条半截也是'0',所以渔夫一条鱼也没钓到!"父亲听后捧腹大笑,称赞不已。

  这次的数学小故事,真是既生动有趣又富有挑战性啊!

数学家的小故事4

  王元,是著名数学家华罗庚的学生,现任中国科学院学部委员,数学研究所研究员,主要从事数论研究。几十年来,他的研究成果累累,得到了国际数学界的高度赞扬。他是怎样从一个学习成绩中等的学生成为一位著名的数学家的呢?

  王元出生在一个知识分子的家庭,很早就受到启蒙教育。他不特别聪明,更不是神童,但是他同大多数有成就的人一样是通过苦学才获得成功的。王元的小学、初中时代,是在战乱与艰难中度过的。4岁上学,那时他还是个天真活泼的小孩,一心只想玩,结果连续留级了两年。上中学时学习成绩只是中等水平。

  这样一个成绩中等的学生,却有一个十分突出的特点:兴趣广泛,求知欲强。凡是他兴趣所及,都肯花费时间刻苦钻研。开始,他喜欢看小说,不管多厚的本本,他都要想方设法看完它。他看别人拉二胡,自己也动了心,成为二胡的爱好者。由于他抓紧时间苦练,又肯动脑筋琢磨演奏技巧,不久就成为出色的二胡演奏者。后来,他又喜欢画画和游泳。他经常带着画板出去写生。画累了,就脱下衣服跳到湖里痛痛快快地游泳。广泛的兴趣,养成他不怕困难和一种强烈进取的精神。只要他感兴趣的项目,他总比别人学得好。

  1948年,王元高中毕业考入浙江英士大学数学系。浙大是我国老一辈数学家陈建功、苏步青多年执教的地方,数学教育卓有传统。二位教授自30年代起就坚持办高年级学生读书讨论班,对于培养学生独立科学研究的能力极有帮助。浙大的教学环境激发了王元对数学真正的兴趣。大学四年级时他在读书讨论班上报告了A·E·英哈姆的《素数分布论》。1952年,王元从浙江大学毕业,因成绩名列前茅,被推荐到中国科学院数学研究所,一年后又被分配到该所数论组。

  王元有幸能在华罗庚教授的直接指引下开始其科研生涯。他到数论组是华罗庚亲自挑选的。王元在华罗庚领导的研究集体里边学习,边工作。为了攀登世界数学高峰,华罗庚举办了一个数论讨论班,王元参加了这个班的学习。华罗庚在讨论班指导,总是先把讲稿发给大家,然后叫大家报告、讨论。还有一个规矩,报告人讲完以后,必须回答别人提出的'问题。如果答不出来,就要你把问题写在黑板上,站在台上思考,学生们把这种情况叫做“挂黑板”。

  华罗庚在当时已经预测到赛尔伯格筛法和列尼克方法在数论中可能发展,可能是解决哥德巴赫猜想问题的一个有效办法。讨论班也就这一方面的问题开展探讨。有一天,轮到王元报告了,题目是赛尔伯格筛法。这实际上是一个二次型求极小值问题,它要联系到凑平方。王元在黑板上凑平方的时候,忽然紧张起来,左凑右凑也整不出来。他的问题在黑板上被整整挂了一个小时才解决。

  王元被“挂黑板”以后,牢牢记住华罗庚的话,当前世界上从事这方面工作的人很多,掌握并钻研筛法意义很大。王元前进的目标明确了,他大胆地选择跟筛法有关的哥德巴赫猜想问题作为自己的主攻方向。他放弃一切休息日和文娱活动,更加专心致志地攻读。不久,他和一个外国科学家一起,写了两篇有关筛法研究的论文,在数学研究中初露头角。以后,王元又就同一个问题写了几篇论文,华罗庚看后狠狠地批评了王元一顿,他语重心长地说:“你有了速度很好,但还要有加速度,只在原水平的基础上工作,永远也不会有更好的成绩。”

  王元很快就明白了华罗庚这番话的道理。他知道,物体要做加速运动,需要外力;科学研究要有加速度,需要勇于开拓。王元关于筛法与哥德巴赫猜想的研究,确立了他作为著名数论家的地位,王元主编的《哥德巴赫猜想》,全面总结了哥德巴赫猜想研究的发展与现状,其中包括他本人的工作。以后与华罗庚开始了长达20年的师生合作,取得了辉煌的成果。他的代表性著作有《数论在近似分析中的应用》、《哥德巴赫猜想》及《在中华人民共和国普及数学法》(以上与华罗庚合作)。王元对哥德巴赫猜想有精深研究,他首先证明了每个充分大的偶数为一个素因子不超过2与一个素因子个数不超过3的整数之和。这一成果在1984年获得国家自然科学一等奖;他又与华罗庚一起提出了计算多重积分的新方法,国际上称为“华—王方法”。

  王元是在新中国成立以后,华罗庚教授亲自培养下成长起来的一代数学家,也是国际上公认的以华罗庚为首的“中国数论学派”的重要成员。“勤奋出天才”是王元的座右铭。他认为科学研究特别是基础研究在很大程度上靠积累,王元所做的读书笔记就达3400页,他从事科学研究而付出的辛劳由此可见一斑。王元又是一位谦逊的学者,研究哥德巴赫猜想的经历使他深深体会到,科学研究如同攀登无限的梯级,一个人无论达到多高,也总是在前人的基础上前进。因此他说:“恰如其分地估计自己不要过分陶醉于自己已经做了些什么,始终有个危机感,这样就永远不存在自满的可能性。”他认为,这种态度来源于对整个数学知识海洋的客观认识。

  王元成为国际数学界享有声誉的数学家,他的成才之路是与勤奋、刻苦、谦逊的态度及不停顿地向科学高峰进击的精神分不开的。

数学家的小故事5

  念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

  1+2+3+ ..... +97+98+99+100 = ?

  老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 叫住了!! 原来呀,已经算出来了,小朋友你可知道他是如何算的吗?

  高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

  1+2+3+4+ ..... +96+97+98+99+100

  100+99+98+97+96+ ..... +4+3+2+1

  =101+101+101+ ..... +101+101+101+101

  共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于<5050>

  从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的.数学基础,更让他成为——数学天才

数学家的小故事6

  高斯

  7岁那年,小高斯上小学了。教师名字叫布特纳,是当地小有名气的“数学家”。这位来自城市的青年教师,总认为乡下的孩子都是笨蛋,自己的才华无法施展。三年级的一次数学课上,布特纳对孩子们又发了一通脾气,然后,在黑板上写下了一个长长的算式:81297+81495+81693+……+100701+100899=?

  “哇!这是多少个数相加呀?怎么算呀?”学生们害怕极了,越是紧张就越是想不出怎么计算。

  布特纳很得意。他知道,像这样后一个数都比前一个数大198的100个数相加,这些调皮的.学生即使整个上午都乖乖地计算,也不会算出结果。

  不料,不一会儿,小高斯却拿着写有答案的小石板过来了,说:“老师,我算完了。”布特纳连头都没抬,生气地说:“去去,不要胡闹。谁想胡乱写一个数交差,可得小心!”说完,挥动了一下他那铁锤似的拳头。

数学家的小故事7

  一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。

  古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的`圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表浮胆第感郢啡电拾钉浆面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。

  16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

数学家的小故事8

  高斯,那个数学家吗?

  就是一加到一百,然后其他小朋友在积极的一个个加的时候,小高斯就用什么简便的算法(1+99+2+98......)狠狠的打击了其他小朋友,是这个吗?

  数学家高斯小时候的故事

  从一加到一百

  高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

  高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

  高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

  七岁时高斯进了St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的.就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50*101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起

数学家的小故事9

  艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。

  诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的`广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。

数学家的小故事10

  高斯

  印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的.和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

数学家的小故事11

  数学是人类认识世界和改造世界的有力工具,也是一片任有志之士自由飞翔的广阔天地。数学的足迹遍及社会的每一个角落。数学家的故事也像数学本身一样,神秘动人,发人深思。下面给同学们讲一讲著名的女数学家索菲·科瓦列夫斯卡娅的故事。

  著名的女数学家索菲·科瓦列夫斯卡娅索菲·科瓦列夫斯卡娅(1850~1891)是俄国人,她一生获得了很多“第一”:她是历史上第一个获得数学博士学位的女性,是第一个获得科学院院士称号的女数学家,此外,她还是除了意大利外世界上第一个担任数学教授的妇女,她对数学做出了卓越的贡献。

  索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。”

  索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的.方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的方式,这对她日后的数学研究非常重要。

  高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等教育。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。

  在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。

  索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。

数学家的小故事12

  泰勒斯(公元前624年至前547年),出生在小亚细亚爱奥尼亚西岸的米利都城的一个奴隶主贵族家庭。他年轻时,曾到很多国家游学。回到家乡米利都后,他创办了希腊最早的哲学学派——爱奥尼亚学派,并继续从事哲学、数学、天文学等学科的研究。恩格斯在他的《自然辩证法》中是这样评述泰斯勒的:他是希腊最古老的哲学家、自然科学家、几何学家,是古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者。

  提起埃及这个古老神秘、充满智慧的国度,人们首先想到的金字塔。金字塔是古埃及国王的陵墓,建于公元前20xx多年。古埃及人民仅靠简单的工具,竟能建造出这样雄伟而精致的建筑,真是奇迹!虽历经漫长的岁月,它们如今仍巍峨的送礼者。但是,在金字塔建成的1000多年里,人们都无法测量出金字塔的高度——他们实在太高大了。

  约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?

  泰勒斯已经观察金字塔很久了:底部是正方形,四个侧面都是相同的等腰三角形(有两条边相等的三角形)。要测量出底部正方形的边长并不困难,但仅仅知道这一点还无法解决问题。他苦苦思索着。

  当他看到金字塔在阳光下的影子时,他突然想到办法了。这一天,阳光的角度很合适,他把他底下的所有东西都拖出一条长长的影子。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去的测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

  当他算出金字塔高度时,围观的人十分惊讶,纷纷问他是怎样算出金字塔的高度的。泰勒斯一边在沙地上画图示意,一边解释说:“当我笔直地站立在沙地上时,我和我的影构成了一个直角三角形。当我的影子和我的身高相等时,就构成了一个等腰直角三角形。二这时金字塔的'高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形。因为这个巨大的等腰直角三角形的两个腰也相等。”他停顿了一下,又说:“刚才金字塔的影子的顶点与我做标记的中心的连线,恰好与这个中点所在的边垂直,这时就很容易计算出金字塔影子的顶点与底面正方形中心的距离了。它等于底面正方形边长的一半加上我刚才测量的距离,算出来的数值也就是金字塔的高度了。”

  你能理解泰勒斯的计算方法吗?他利用了相似三角形的性质。要知道泰勒斯身处的年代距离现在有2600多年呢!当时人们所了解的科学知识要比现在少得多。泰勒斯因为善于学习,注意观察,勤于思考,终于解决了困惑人们很多年的难题。其实,你在平时的学习种植要注意了这几点,也可以像泰勒斯一样解决很多难题了。

数学家的小故事13

  约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

  人物生平

  家庭背景

  高斯是一对贫穷普鲁士犹太人夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

  当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

  父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持他成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

  在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

  若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  罗捷雅真的希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。

  初显天分

  高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

  一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。

  高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:“你一定是算错了,回去再算算。”高斯非常坚定,说出答案就是5050。高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。

  布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

  得到资助

  1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的教师们和慈母把他推荐给伯伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。

  布伦兹维克公爵卡尔·威廉·斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

  1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的`哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

  17高斯19岁,发现了正十七边形的尺规作图法,[1] 解决了自欧几里德以来悬而未决的一个难题。[1] 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

  1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

  公爵继续慷慨资助高斯的研究,使得他能在18谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。

  公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

  布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

  直面变故

  1806年,卡尔·威廉·斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶拿战役阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷。

  但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”

  慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。

  为了不使德国失去最伟大的天才,德国著名学者洪堡( Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。1807年,高斯赴哥廷根就职,全家迁居于此。

  从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥廷根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

数学家的小故事14

  出入相补原理

  即2ab+(b-a)^2=c^2,化简便得a^2+b^2=c^2。其基本思想是图形经过割补后,其面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。例如√(2(c-a)(c-b))+(c-b)=a,√(2(c-a)(c-b))+(c-a)=b,√(2(c-a)(c-b))+(c-a)+(c-b)=c等等。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的.证明。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。

  赵爽自称负薪余日,研究《周髀》,遂为之作注,可见他是一个未脱离体力劳动的天算学家。一般认为,《周髀算经》成书于公元前100年前后,是一部引用分数运算及勾股定理等数学方法阐述盖天说的天文学著作。而大约同时成书的《九章算术》,则明确提出了勾股定理以及某些解勾股形问题。赵爽《周髀算经注》逐段解释《周髀》经文。

数学家的小故事15

  在当年的金坛,华罗庚最喜欢去的地方,还是灯节、船会、庙会等场所,凡是这些热闹的地方都少不了他的身影。城东有座青龙山,山上有个庙。每逢庙会,庙中的`“菩萨:”便头插羽毛,打扮得花花绿绿,骑着高头大马进城来。一路上,人们见到“菩萨”就磕头行礼,祈求幸福。华罗庚伸直脖子,望着双手合十的“菩萨”,心里暗自琢磨:“‘菩萨’果真万能吗?”当庙会散了,人们也陆续回家,华罗庚却跟着“菩萨”去了青龙山,想探个究竟,看一看“菩萨”的真面目。

【数学家的小故事】相关文章:

数学家的小故事04-02

【精选】数学家的小故事10-05

(经典)数学家的小故事10-26

数学家的小故事05-25

高斯数学家的小故事12-09

数学家的小故事简短12-03

数学家华罗庚的小故事01-27

数学家高斯的小故事01-28

数学家的小故事通用01-29

数学家的小故事(热)09-19