(推荐)数学家的小故事
数学家的小故事1
数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的.数学家们提出了严峻的挑战。
费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“......
陈景润 1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(AWeil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。
数学家的小故事2
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的.天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说: “你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学,祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
数学家的小故事3
柯尔莫哥洛夫是公认的20世纪最伟大的数学家之一,同时也是成就最广泛的数学家之一,研究领域几乎横跨整个数学,但在数学之外,他还有别样的人生。
柯尔莫哥洛夫从小兴趣广泛,除了数学之外,还喜欢旅行、游泳、艺术、诗歌、历史等等。研究数学的同时,还广泛涉猎古建筑,雕塑和绘画等等,被誉为百科全书般的人物。少年时代的柯尔莫哥洛夫最痴迷的是数学和历史,他曾写过一篇关于地主财产的论文,但他的历史老师告诉他:“你在论文中只提供了一种证明,对数学来说也许够了,但对历史来说还不够,历史学家至少需要五种证明”。听罢此话,柯尔莫哥洛夫当即回应说:“那我还是学只要一种证明的数学吧!”
中学毕业之后,柯尔莫哥洛夫当过一段时间的列车售票员。身体本来就强壮加之战斗民族的天性,他特别喜欢打抱不平,偶尔还会和不讲理的乘客一言不合就大打出手。
尽管在数学上已经做出了非凡的成就,但他还是按捺不住躁动的内心。26岁的时候,他找来了亚历山德罗夫(另一位非常杰出的数学家),一起乘船沿伏尔加河穿越高加索山脉,来到了塞万湖中的小岛上,开始每天游泳爬山晒太阳的惬意生活,在这期间,亚历山德罗夫完成了一本拓扑学传世名著《拓扑学》,而柯尔莫哥洛夫则开了扩散理论研究的先河。
完成概率论公理化的划时代意义工作之后,柯尔莫哥洛夫又怀念起了那种惬意的生活。于是他又找来了亚历山德罗夫,之后两人在科马洛夫卡买了一座房子。他们每周花一整天时间来爬山滑雪或干脆就是只穿短衣短裤在冰天雪地里徒步30公里。在这期间,他又完成了许多重要工作。而且陆续地有许多著名数学家和学生们慕名来访,二人与他们进行了许多亲切而有意义的讨论,内容不仅有数学,还有柯尔莫哥洛夫热爱的艺术文学等等。这些学生中就有后来的数学大师盖尔范德和马尔采夫。
而柯尔莫哥洛夫最著名的一次打架事件发生在一次苏联科学院的的'会议上。刚开始他与卢津(另一位数学家,不是他的导师鲁金)的意见不和,后来就开始激烈的争吵,再后来气不过的柯尔莫哥洛夫干脆直接冲上去暴打了对方一顿。两位大人物在公众场合打架传出去肯定有很大负面影响,但xxx得知后只是会心一笑,反而还喜欢上了柯尔莫哥洛夫的这种性格。
就算年纪大了他也不消停,在莫斯科很冷的时候突发奇想地要游泳,于是脱光衣服跳进了冰冷的河水中,结果后来差点冻死,被送进医院抢救才捡回了一条命。但后来不甘心的柯尔莫哥洛夫又搞了一次同样的危险行为,还美其名曰“相信自己的身体”。70岁的时候他还举办滑雪比赛,结果很高兴地就飞奔了出去,把其他人甩在了身后。
柯尔莫哥洛夫的荣誉和成就实在太多,只能借用费马的一句名言叫“这里的空白太小,写不下”。不仅仅是对他的成就,就连他的这种潇洒快意的人生,我们也只能仰望。
数学家的小故事4
赵爽简介
赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。
据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。该书简明扼要地总结出中国古代勾股算术的'深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。它详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。
数学家的小故事5
罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的'多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
数学家的小故事6
陈景润
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,因此有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个搞笑的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都能够表示为两个奇数之和。正因这个结论没有得到证明,因此还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的`光环,在咱们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时刻他最爱到图书馆,不仅仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
数学家的小故事7
艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。
诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的.严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。
数学家的小故事8
高斯的故事
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10??”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的.。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+?+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
数学家的小故事9
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”,这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的`去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。
华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
数学家的小故事10
1、陈景润:
陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。
他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
2、高斯:
高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。
他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁!
3、华罗庚:
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的.价格,尖叫道:“怎么这么贵?”。
这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。
那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
4、拉格朗日:
拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
5、祖冲之:
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方. 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。
数学家的小故事11
数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。
数学家鲁道夫的`小故事
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。
数学家雅谷伯努利的小故事
瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。
数学家的小故事12
在当年的金坛,华罗庚最喜欢去的地方,还是灯节、船会、庙会等场所,凡是这些热闹的地方都少不了他的.身影。城东有座青龙山,山上有个庙。每逢庙会,庙中的“菩萨:”便头插羽毛,打扮得花花绿绿,骑着高头大马进城来。一路上,人们见到“菩萨”就磕头行礼,祈求幸福。华罗庚伸直脖子,望着双手合十的“菩萨”,心里暗自琢磨:“‘菩萨’果真万能吗?”当庙会散了,人们也陆续回家,华罗庚却跟着“菩萨”去了青龙山,想探个究竟,看一看“菩萨”的真面目。
数学家的小故事13
泰勒斯(公元前624年至前547年),出生在小亚细亚爱奥尼亚西岸的米利都城的一个奴隶主贵族家庭。他年轻时,曾到很多国家游学。回到家乡米利都后,他创办了希腊最早的哲学学派——爱奥尼亚学派,并继续从事哲学、数学、天文学等学科的研究。恩格斯在他的《自然辩证法》中是这样评述泰斯勒的:他是希腊最古老的哲学家、自然科学家、几何学家,是古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者。
提起埃及这个古老神秘、充满智慧的国度,人们首先想到的金字塔。金字塔是古埃及国王的陵墓,建于公元前20xx多年。古埃及人民仅靠简单的工具,竟能建造出这样雄伟而精致的建筑,真是奇迹!虽历经漫长的岁月,它们如今仍巍峨的送礼者。但是,在金字塔建成的1000多年里,人们都无法测量出金字塔的高度——他们实在太高大了。
约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?
泰勒斯已经观察金字塔很久了:底部是正方形,四个侧面都是相同的等腰三角形(有两条边相等的三角形)。要测量出底部正方形的边长并不困难,但仅仅知道这一点还无法解决问题。他苦苦思索着。
当他看到金字塔在阳光下的影子时,他突然想到办法了。这一天,阳光的角度很合适,他把他底下的所有东西都拖出一条长长的影子。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的`中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去的测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。
当他算出金字塔高度时,围观的人十分惊讶,纷纷问他是怎样算出金字塔的高度的。泰勒斯一边在沙地上画图示意,一边解释说:“当我笔直地站立在沙地上时,我和我的影构成了一个直角三角形。当我的影子和我的身高相等时,就构成了一个等腰直角三角形。二这时金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形。因为这个巨大的等腰直角三角形的两个腰也相等。”他停顿了一下,又说:“刚才金字塔的影子的顶点与我做标记的中心的连线,恰好与这个中点所在的边垂直,这时就很容易计算出金字塔影子的顶点与底面正方形中心的距离了。它等于底面正方形边长的一半加上我刚才测量的距离,算出来的数值也就是金字塔的高度了。”
你能理解泰勒斯的计算方法吗?他利用了相似三角形的性质。要知道泰勒斯身处的年代距离现在有2600多年呢!当时人们所了解的科学知识要比现在少得多。泰勒斯因为善于学习,注意观察,勤于思考,终于解决了困惑人们很多年的难题。其实,你在平时的学习种植要注意了这几点,也可以像泰勒斯一样解决很多难题了。
数学家的小故事14
华罗庚上小学时,一个老师对新上任的老师介绍学校的情况时,说这个学校的学生都是穷人家的孩子,多数是笨蛋……这话深深刺痛了华罗庚的心,他决心要以优异的.成绩回敬那位老师。
一天,数学老师出了一道有趣的难题给大家:今有一物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问为几何?
全班同学面面相觑答不上来,唯有华罗庚站起来说:“老师,我知道,是‘23’。”全班震惊,老师也点头称赞。从此,他便爱上了数学课。
华罗庚的故事都值得我们学习。正当他求学时,父亲店铺生意日见萧条,无力供他继续读书了,他只好辍学看柜台。他利用一本代数、一本几何、一本只剩50页的微积分开始了自学。白天没有时间,晚上守着小油灯一遍遍地演算。父亲说他是个“书呆子”,几次逼他把书烧掉,邻居也劝他好好做买卖,一些上了大学的同学有的对他也有些冷淡。不幸的是,他又患上了可怕的伤寒,医生摇头叹息地叫家人为他准备“后事”。他向死神发起挑战,挣扎着下地干活,左腿又被摔成残废。他还是不气馁,拄着拐杖忍着疼痛进行锻炼。练得能走了,就到一所中学去干杂务,给老师打水、削铅笔,即使这样,他也没有放弃自学。就在中学工作不久,他开始向报刊投寄数学论文,多次退稿也不灰心。后来他发表了《苏家驹之代数的五次方程式解法不能成立的理由》一文,得到了数学泰斗熊庆来的赏识,很快把他介绍到清华园,安置在自己身边。
一年半后,华罗庚攻下了清华大学数学专科的全部课程,并且自修了英语和法语。接着,他的数学论文在国内外刊物上陆续发表。1934年,在熊庆来的推荐下,任命华罗庚为数学系助教。不久,校领导又任命他为数学教授。
一个贫困而又残疾的人,终于以惊人的毅力自学成才,并成为驰名中外的数学家。华罗庚的故事值得我们为之学习。
数学家的小故事15
欧几里得(公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,被广泛的认为是历史上最成功的教科书。
在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的`研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作,成为“几何第一人”。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。
【数学家的小故事】相关文章:
数学家的小故事04-02
【精选】数学家的小故事10-05
数学家的小故事05-25
数学家的小故事【合集】07-27
数学家的小故事【精品】07-28
华罗庚数学家的小故事07-14
数学家的小故事【优秀】08-07
数学家的小故事(合集)08-08
数学家高斯的小故事01-28
数学家的小故事通用01-29