[热]数学家的故事
数学家的故事1
李冶(1192-1279)是中国古代数学家,原名李治,字仁卿,号敬斋,金代真定府栾城县(今河北省栾城县)人。
李冶生于大兴(今北京市大兴县),父亲李通为大兴府推官。李冶自幼聪敏,喜爱读书,曾在元氏县(今河北省元氏县)求学,对数学和文学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”1230年,李冶在洛阳考中词赋科进士,任钧州(今河南禹县)知事,为官清廉、正直。1232年,钧州城被蒙古军队攻破。李冶不愿投降,只好换上平民服装,北渡黄河避难。
经过一段时间的颠沛流离之后,李冶定居于崞山(今山西崞县)之桐川。1234年初,金朝终于为蒙古所灭。金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。他的工作条件是十分艰苦的,不仅居室狭小,而且常常不得温饱,要为衣食而奔波。但他却以着书为乐,从不间断自己的写作。据《真定府志》记载,李冶“聚书环堵,人所不堪”,但却“处之裕如也”。他的学生焦养直说他:“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”。经过多年的艰苦奋斗,李冶的《测圆海镜》终于在l248年完搞。它是我国现存最早的一部系统讲述天元术的著作。
1251年,李冶的经济情况有所好转,他结束了在山西的避难生活,回元氏县封龙山定居,并收徒讲学。1257年在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些进步的政治建议。l259年在封龙山写成另一部数学著作-一《益古演段》。1265年应忽必烈之聘,去燕京(今北京)担任翰林学士知制洁同修国史官职,因感到在翰林院思想不自由,第二年辞耿还乡。李冶是一位多才多艺的学者,除数学外,在文史等方面也深有造诣。他晚年完成的《敬斋古今注》与《泛说》是两部内容丰富的著作,是他积多年笔记而成的。《泛说》一书已失传,仅存数条于《敬斋古今注》附录。他还着有《文集》四十卷与《壁书丛制》十二卷,已佚。1279年,李冶病逝于元氏。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。
所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的'一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题基本解决了。随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。例如李冶在东平(今山东省东平县)得到的一本讲天元术的算书中,还不懂得用统一符号表示未知数的不同次幂,它“以十九字识其上下层,曰仙、明、霄、汉、垒、层、高、上、天、人、地、下、低、减、落、逝、泉、暗、鬼。”这就是说,以“人”字表示常数,人以上九字表示未知数的各正数次幂(最高为九次),入以下九字表示未知数的各负数次幂(最低也是九次),其运算之繁可见一斑。从稍早于《测圆海镜》的《铃经》等书来看,天元术的作用还十分有限。李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的“识别杂记”阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式),这部分内容是对中国古代关于勾股容圆问题的总结。后面各卷的习题,都可以在“识别杂记”的基础上以天元术为工具推导出来。李冶总结出一套简明实用的天元术程序,并给出化分式方程为整式方程的方法。他发明了负号和一套先进的小数记法,采用了从零到九的完整数码。除O以外的数码古已有之,是筹式的反映。但筹式中遇O空位,没有符号O。从现存古算书来看,李冶的《测圆海镜》和秦九韶《数书九章》是较早使用O的两本书,它们成书的时间相差不过一年。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。
《测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学著作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。李冶清楚地看到这一点,他坚信天元术是解决数学问题的一个有力工具,同时深刻认识到普及天元术的必要性。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,促使他写一本深入浅出、便于教学的书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。李冶大概认识到,天元术是从几何中产生的。因此,为了使人们理解天元术,就需回顾它与几何的关系,给代数以几何解释,而对二次方程进行几何解释是最方便的,于是便选择了以二次方程为主要内容的《益古集》(11世纪蒋周撰)。正如《四库全书·益古演段提要》所说:“此法(指天元术)虽为诸法之根,然神明变化,不可端倪,学者骤欲通之,茫无门径之可入。惟因方圆幂积以明之,其理尤届易见。”李冶是很乐于作这种普及工作的,他在序言中说:“使粗知十百者,便得入室啖其文,顾不快哉!”
《益古演段》的价值不仅在于普及天元术,理论上也有创新首先,李冶善于用传统的出入相补原理及各种等量关系来减少题目中的未知数个数,化多元问题为一元问题。其次,李冶在解方程时采用了设辅助未知数的新方法,以简化运算。
数学家的故事2
8、陶泽轩:8岁上中学,12岁IMO金牌
陶哲轩是澳大利亚的华裔数学家,20xx年菲尔兹奖得主。兴趣广泛,对调和分析、偏微分方程、组合数学、解析数论等领域都要重要贡献,被誉为“数学界莫扎特”。
陶哲轩的.爸爸妈妈都是在香港大学毕业的。母亲还是数学和物理专业的高材生。
陶哲轩实在太聪明了,很长时间找不到合适的学校。于是,陶哲轩的妈妈承担了在家里为小陶哲轩做启蒙教育的任务。
于是陶哲轩7岁自学微积分,8岁半上中学,10岁参加国际奥林匹克数学竞赛(IMO)并得到奖牌。第三次参加IMO时获得金牌,当时陶哲轩12岁。迄今为止,这依旧是IMO金牌得主的最年轻记录。
传奇指数:★★★★☆
逆天指数:★★★★★
数学家的故事3
英军船队在大西洋里航行时,经常受到德军潜艇的攻击。
而英国空军的轰炸对潜艇几乎构不成成胁。英军请来一些数学家专门研究这一问题,结果发现,渗艇从发现英军飞机开始下潜到深水炸弹爆炸时止,只下潜了7.6米,而炸弹却已下沉到21来处爆炸。经过科学论证,英军果断调整了深水炸弹的.引信,使爆炸深度从水下21米减为水下9.1米,结果轰炸效果较过去提高了4倍。
德军还误以为英军发明了新式炸弹。
数学家的故事4
毕达哥拉斯(约公元前580年-500年),古希腊哲学家、数学家、天文学家。他在意大利南部的克罗托内建立了一个政治、宗教、数学合一的秘密团体--毕达哥拉斯学派,他们很重视数学,企图用数学来解释一切,毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)而著名,其实这一定理早已为巴比伦人和中国人所知,但最早的证明可归功于毕达哥拉斯学派。
该学派还发现,若是奇数,则 构成直角三角形的'三边,其实我们所称的勾股数。该学派将自然数分为若干类:奇数、偶数、完全数(即等于它的包括1而不包括它本身的所有因数之和的数)亲和数、三角数(1、3、6、10……)、平方数(1、4、9、16……)、五角数(1、5、12、22……)等,又发现从1起连续奇数的和必为平方数。
他们还发现了五种正多面体,在天文学和音乐理论上还有不少贡献,他的思想和学说对希腊文化有巨大影响。
数学家的故事5
看完《数学家的故事》后,我最敬佩数学家是华罗庚。他聪明、好学、勤奋、爱国,是我国杰出的数学家。
华罗庚很聪明、好学年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。
华罗庚很勤奋。他上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的.理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。
华罗庚很爱国年夏天,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。
我一定要好好学习。像华罗庚那样,成为一个伟大的数学家;像华罗庚那样,为国争光。
数学家的故事6
以往常认为祖冲之是中国古代最伟大的数学家,但他的数学著作《缀术》由于隋唐算学馆的学官“莫能究其深奥,是故废而不理”,早已失传,而我们所知道的他的两项数学贡献——将圆周率精确到8位有效数字以及与儿子祖暅共同完成的球体的体积公式推导,却都由刘徽为其提供了方法上的解说。
魏景元四年(263)刘徽撰《九章筭术注》,至今恰好1750周年。
《九章筭术》是中国古代最重要的数学著作,它系统总结了中国先秦至西汉的数学成就,奠定了中国传统数学的基本框架及其以算法为主的特点。其分数四则运算、方程(多元一次线性方程组)解法和对面积与体积的计算等长期领先于世界水平。刘徽的注十分难读,长期未得到理解,学术界因此把他看成是依附于《九章筭术》的二流数学家,这是极不公正的。
刘徽是中国数学史上批评《九章筭术》最多的数学家
《九章筭术注》原十卷,第十卷“重差”系自撰自注,后以《海岛算经》为名单行,与《九章筭术》并列于《算经十书》。刘徽还撰《九章重差图》一卷,已失传。刘徽生平不详,根据有关史料,其籍贯是淄乡,属今山东省邹平县。他大约生于3世纪20年代后期或稍后,完成《九章筭术注》时,年仅30岁上下。
汉末至魏晋是我国继春秋战国百家争鸣之后第二次思想大解放时期。刘徽深受思想界辩难之风的影响,注《九章筭术》的宗旨是“析理以辞,解体用图”。反对谶纬迷信,是他治学的一大特点,如《世本》有“隶首作数”的说法,但刘徽说“其详未之闻也”。汉代盛行谶纬,如大科学家张衡也未能免俗,刘徽批评张衡“欲协其阴阳奇耦之说而不顾疏密矣”,而他自己的数学知识中,没有任何猜测或神秘的成分。
刘徽也不迷信古人。《九章筭术》最迟在东汉已被官方奉为经典,刘徽为之作注,推崇之余还指出了它的若干不准确甚或错误之处,他是中国数学史上批评《九章筭术》最多的数学家。
刘徽还敢于承认自己的不足,并寄希望于后学。他设计了牟合方盖,指出得到解决球体积公式的正确途径。然而他功亏一篑,没能求出牟合方盖的体积,便老老实实地说:“欲陋形措意,惧失正理,敢不阙疑,以俟能言者。”正反映了科学家本色。
刘徽还善于灵活运用数学方法,反对“胶柱调瑟”,而常常在《九章筭术》的原文之外提出新的方法与思路。甚至有时他明知自己提出的新方法不如原来的简便,但仍如此,用他自己的话说,是为了“广异法也”。
证明割圆术和“刘徽原理”
刘徽除了发展出入相补原理、率的思想和重差术的重大贡献之外,最重要的是他对割圆术和“刘徽原理”的证明。
20世纪70年代末之前半个世纪,刘徽的割圆术和对圆周率的计算是中国数学史界讨论最多的课题。但遗憾的是,所有的`著述都忽视了其主旨——证明《九章筭术》的圆面积公式,且大部分对其求圆周率程序的表述也背离了刘徽注本身。
《九章筭术》提出了圆面积公式:“术曰:半周半径相乘得积步。”刘徽之前的推导方法实际上没有证明这个公式,而他提出了使用极限思想和无穷小分割的证明方法。他首先从圆内接正6边形开始割圆,逐步得到正12、24、48……边形。圆内接正多边形的面积,小于圆面积,但分割至“不可割”之时,上述两者便会完全“合体”。另外,如果以圆半径与圆内接正多边形的边心距之差乘其边长,则得到的圆内接正多边形面积大于圆面积。但此两者合体时,便不会出现这种情况。换言之,刘徽从上界序列与下界序列的极限两个角度,求出了圆面积。刘徽说:“以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂。”他将与圆合体的正无穷多边形再分割成以圆心为顶点,以每边为底的无穷多个小等腰三角形。由于每个小等腰三角形的高与其底的乘积是其面积的2倍,则将它们全部相加,就是2个圆面积。而所有这些小等腰三角形的底边之和是圆周长,那么一个圆的面积就是圆周长的一半乘半径,这便证明了《九章筭术》中的圆面积公式。
接着刘徽说,“此以周、径,谓至然之数”,而此数就是圆周率。刘徽仍从直径为2尺的圆的内接正6边形开始割圆,利用勾股定理,计算出各多边形的边长以及正192边形的面积的整数部分平方寸作为圆面积的近似值,代入刚刚证明了的圆面积公式,反求出圆周长的近似值6尺2寸8分,即“以半径一尺除圆幂,倍所得,六尺二寸八分,即周数”。“令径二尺与周六尺二寸八分相约,周得一百五十七,径得五十”,也就是说圆周率为157/50,相当于3.14。
近代数学大师高斯曾提出一个猜想:多面体体积的解决不借助于无穷小分割是不是可能的?这一猜想构成了希尔伯特1900年的《数学问题》的第3问题的基础。实际上,早在1600多年前,刘徽在证明《九章筭术》中的阳马和鳖腝的体积公式时,就接触了高斯猜想和希尔伯特第3问题。
中国古代在多面体分割中,开始从一个长方体沿相对两棱剖开,得到两个楔形体,叫做堑堵。再将一个堑堵从一个顶点到底面一边剖开,得到一个锥体,其高的垂足在底面的一角上,叫做阳马;剩下的便是四面皆为勾股形的四面体,叫做鳖腝。为了证明《九章筭术》中的体积公式,刘徽提出了一个重要原理:“邪解堑堵,其一为阳马,一为鳖腝。阳马居二,鳖腝居一,不易之率也。”刘徽仍使用极限思想和无穷小分割方法证明了这个原理。
“刘徽原理”是其多面体体积理论的基础。刘徽将此理论建立在无穷小分割的基础上,这与现代数学的体积理论惊人地一致。
刘徽对演绎推理的发展
中国古代数学缺乏演绎推理,一直是学术界的主流看法。事实上,只要读懂刘徽注就会发现,他在数学命题的证明中主要使用了演绎法,涉及了演绎逻辑最重要的推理形式。比如对“盈不足术”刘徽注云:“注云若两设有分者,齐其子,同其母。此问两设俱见零分,故齐其子,同其母。”这个推理完全符合三段论的规则,是其第一格的AAA式。
刘徽注中还有数学归纳法的雏形。比如在对“刘徽原理”的证明中,刘徽首先通过第一次分割证明了在整个堑堵的3/4中阳马与鳖腝的体积之比为2∶1。他进一步认为第一次分割可以无限递推,说:“按余数具而可知者有一、二分之别,即一、二之为率定矣。其于理也岂虚矣。若为数而穷之,置余广、袤、高之数各半之,则四分之三又可知也。半之弥少,其余弥细。至细曰微,微则无形。由是言之,安取余哉?”
人们常说《九章筭术》建立了中国古代的数学体系。这种提法似是而非。实际上《九章筭术》仅构筑了中国传统数学的基本框架,直到刘徽完成《九章筭术注》,中国传统数学才形成了理论体系。方法的改变,必然导致一个学科内部结构的相应改变。刘徽的注释不是对《九章筭术》数学框架的简单补充,而是对其的根本改造。
数学家的故事7
牛顿(1642~1727)
牛顿英国物理学家、数学家。曾任英国皇家学会会长。
牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的'巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。
牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。
数学家的故事8
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的`提出要比欧洲数学家霍纳的结论早七百多年。
数学家的故事9
生活中,数学无所不在,发挥着重大的作用,而日常生活中的点滴也需要运用到数学。记得在一个周日午后,为庆祝妹妹十岁的生日,我们在酒店设宴款待亲朋好友。她邀请了六位同学、一位大姐姐和一位小弟弟,算上我就共十人聚在一起,在单独的包厢内共享欢乐时光。当美味的蛋糕被端上桌时,妹妹却遇到了棘手的问题:该如何公正地分配呢?她害怕因为分配不均而让大家闹情绪。
于是,我提出了建议:“既然我们共有十人,不妨把蛋糕均匀分为十等份,每人获得的份额就是整个蛋糕的十分之一,这样便确保了公平。”
听后有人担忧地说:“倘若每个人得到的十分之一不足解馋,那又该怎么办?”
我接着提议道:“我们可以按照每个人的食量来切割蛋糕,想吃多少切多少,这样一来就没有争议了。”
接下来,我们就按照这个方案分享起美味的蛋糕,每个人都吃得心满意足。生日派对结束之后,我们都带着愉快的心情回到了各自的家。
这次的`生日聚会让我深深体会到数学的重要性。只有掌握了数学知识,才能在需要时展现出自身的实力。
数学家的故事10
德米特里?克里欧科夫是美国加州大学圣迭戈分校的数学高级研究员,不久前的一天上午,他驾车行驶到一个路口时,恰逢红灯亮起。正当他准备刹车时,不料鼻子突然发痒,接着便响亮地打了个喷嚏。他紧急刹车,车险些越过停车线。就在他为没有闯红灯而庆幸时,距他30米开外的一名执勤交警还是飞快地跑到他跟前,不由分说就开了一张400美元的罚款单。
在加州大学圣迭戈分校,克里欧科夫可是以爱较真出了名的,对于从天而降的400美元罚款,他无论如何不能接受。于是亮出自己的撒手锏,连夜洋洋洒洒撰写了长达4页的辩护状,几天后气宇轩昂地走上法庭进行申诉,以证明自己的“清白”,要求法官无条件撤销对他的“错误罚款”。
法庭上,克里欧科夫“义正词严”地指出:“给我开罚单的那名交警,是在停车标志30米之外看走了眼而错判我闯了红灯。而事实是,我根本就没有闯红灯。我认为,是3个巧合让那个警察误认为我闯了红灯。1.观察者目测的不是汽车沿道路行驶的直线速度,而是汽车行驶时相对警察所在那一点的角速度。这就像我们站在路边观察匀速前进的汽车一样,当车离你很远时,它看上去速度很慢;当它离你很近时,人们却误以为它开得飞快。2.汽车减速,随后又加速。3.短时间内,观察者的视线被外部对象阻碍。例如两辆汽车同时靠近停车线,其中一辆挡住了观察者的视线。而正是上述3个条件,才使那个交警因角度问题目测到的是角速度而非线速度,也就是说,站在垂直于汽车前行轨迹上一定距离的那个交警,才因此产生了‘汽车并未停下’的错觉。也正是那名警察对现实的感知能力没有正确地反映现实,才导致了我被无辜地罚款,所以罚款必须予以无条件撤销。”
同时,克里欧科夫还向法庭展示了大量的图形和方程式,作为自己无罪的有力论据。
近3个小时的论证,主审法官被克里欧科夫滔滔不绝的长篇大论绕晕了,多次要求停下来,让他解释他那一大套理论,但克里欧科夫却坚持要陈述完自己的观点。最终,法官以克里欧科夫“有理有据的清晰陈述”为由,当庭撤销了对他的.罚单。
在赢取上诉后,克里欧科夫又将那篇为辩护写的论文发表在一家科技杂志上,不仅获得了强烈反响,而且还被该杂志评为特殊奖,奖金为400美元,与当时的错误罚款打了个平手。
克里欧科夫谦虚地对媒体说:“我之所以能赢得这场官司,应该归功于那篇有理有据的论文。虽然如此,我还是希望大家能从论文中找出论据的不足,以便我能继续深入完善,使之成为公众今后维护自己正当权益的一种新方式。”
数学家的故事11
这几天,我读了许多数学家的故事,其中,我对数学家高斯的印象最深刻。
高斯从小聪明好学。有一次,老师提出了一个著名的难题,1+2+3一直加到100等于几?很快,高斯算出了正确答案“5050”。老师大吃一惊,他没想到一个7岁的孩子能在一分钟之内写出这么难的题,因为他自己把这道题算了三遍才算对的。
我从中感受到,高斯身上有许多良好的品质。他面对困难不退缩,做事肯动脑。我想,在我们*时的学习中,我们如果做到多思考、多了解、多观察,善于从中发现规律,找出解决问题的'捷径,那我们一定也能学到更多的知识。让我们一起努力吧!
数学家的故事12
八岁的高斯发现了数学定理
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自我学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,此刻电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还就应处罚他们,使自我在这枯燥的'生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在这天捉这些学生处罚了。
“你们这天替我算从1加2加3一向到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小兄弟姐妹们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小兄弟姐妹加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
但是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,但是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,正因他自我以前算过,得到的数也是5050,这个8岁的小鬼怎样这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自我以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自我进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
故事6:
数学家的故事13
伽利略17岁那年,考进了比萨大学医科专业。他喜欢提问题,不问个水落石出决不罢休。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。” 比罗教授不高兴地说:“你提的问题太多了!你是个学生,上课时应该认真听老师讲。
多记笔记,不要胡思乱想,动不动就提问题,影响同学们学习!”“这不是胡思乱想,也不是动不动就提问题。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”伽利略没有被比罗教授吓倒,继续反问。 “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授搬出了理论根据,想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的'吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。这位数学家的故事也成为追求真理的典范。
数学家的故事14
哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的`猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。
数学家的故事15
笛卡儿是法国数学家,哲学家,物理学家,生理学家。1596年3月31日生于图伦省拉埃(今称拉埃―笛卡儿);1650年2月11日卒于瑞典斯德哥尔摩。
1612年从法国最好的学校之一 ——拉费里舍的耶稣会学校毕业,同年去普瓦捷大学攻读法学,1616年获该校博士学位。取得学位之后,他就暗下决心:今后不再仅限于书本里求知识,更要向“世界这本大书”求教,以“获得经验”,而且要靠理性的探索来区别真理和谬误。
主要贡献
毕业后,他背离家庭的传统职业,开始探索人生之路。自1618年起,先在军队里当过几年兵,离开军队之后便到德国,丹麦,荷兰,瑞士,意大利等国游历,所见所闻丰富了他的见识,更重要的是对当时科学的最新成果增强了了解。1628年定居荷兰,在那里生活了 20年,写出了哲学,数学和自然科学一系列著作。他先后出版了《形而上学的沉思》和《哲学原理》两本名著,前者是关于物理学的主要基础,后者主要是阐述他在物理学和生物学方面的研究成果。
他的哲学思想受到很多人的推崇,黑格尔(Hegel)称他是“现代哲学之父”。他是将哲学思想从传统的经院哲学束缚中解放出来的第一个人,是唯理论的创始人。
笛卡儿对数学的最大贡献是创立了解几何学。他认为数学比其他科学更符合理性的要求。他是以下列身份的结合来研究数学的,作为哲学家、作为自然界的探索者、作为一个关心科学用途的人。他的基本思想事要建立起一种普通的数学,使算术,代数和几何统一起来。他曾说:“我决心放弃那些仅仅是抽象的几何,这就是说,不再去考虑那些仅仅是用来练习思维的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”为此他写了《几何学》。笛卡儿在《几何学》所阐发的思想,被弥尔(Mill)称作“精密科学进步中最伟大的一步”。
笛卡儿的.理论以两个观念为基础:坐标观念和利用坐标方法把带有两个未知数的任意代数方程看成平面上的一条曲线。他的《几何学》共分三个部分:第一部分包括对一些代数式作几何的原则解释,在这一部分中,笛卡儿把几何算术化了;第二部分讨论了曲线的分类法以及作曲线的切线的方法;第三部分涉及高于二次方程的解法,指出了,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则。指出了多项式方程: 的正根的最多数目等于系数变化的次数,而负根的最多数目等于两个正号和两个负号连续出现的次数,但他没有给出证明。
在他的《几何学》中第一次出现变量与函数的思想。笛卡儿所谓的变量,是指具有变化长度而不变方向的线段,还指连续经过坐标轴上所有点的数字变量,正是变量的这两种形式使笛卡儿试图创造一种几何与代数互相渗透的科学。笛卡儿的功绩是把数学中两个研究对象“形”与“数”统一起来,并在数学中引入“变量”,完成了数学史上一项划时代的变革。对此恩格斯给予了极高的评价:“数学中转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”
应该指出,笛卡儿的坐标系是不完备的,他未曾引入第二条坐标轴,即y轴。另外笛卡儿也没有考虑横坐标的负值。
笛卡儿对韦达所采用的符号作了改进,他用字母表中开头几个字母 等表示已知数,而用末尾几个字母 等表示未知数,这种表示法一直沿用至今。他还考虑过高次抛物线( ),并且给出了作摆线切线的相当精巧的方法。
笛卡儿认为科学的本质是数学。他说“我尤其对数学推理的确实性与明了性感到高兴。“他强调科学的目的在于“造福人类”,使人成为自然界的“主人和统治者”。
笛卡儿死于肺炎。在教会控制下的学术界,对笛卡儿的逝世十分冷淡,只有几个友人为他送葬。 随着笛卡儿的数学和哲学思想影响的扩大,法国政府在笛卡儿去世后18年,才将其骨灰运回安葬在巴黎名人公墓。在评论笛卡儿的骨灰回归他的故土法国时,德国数学家雅克比幽默地说:“占有伟人的骨灰,通常比他们活着的时候占有他们本人更方便。”1799年又将其骨灰置于历史博物馆,1819年移入圣日耳曼圣心堂中,其墓碑上刻着:笛卡儿,欧洲文艺复兴以来,第一个为争取并保证理性权利的人。
【数学家的故事】相关文章:
[经典]数学家的故事02-27
数学家的故事(精选)07-26
数学家的故事07-30
数学家的故事07-29
有关写数学家的经典故事 数学家的经典故事04-13
[中国史上的数学家故事] 数学家的故事05-23
数学家的故事优秀05-07
(推荐)数学家的故事12-05
数学家的故事【荐】12-07
关于数学家的故事12-08