分数应用题教案(15篇)
作为一名教学工作者,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?以下是小编为大家收集的分数应用题教案,欢迎阅读,希望大家能够喜欢。
分数应用题教案1
课 型
新授课
要点提示
备课人
严正祥
备课时间
9月3日
教学内容:教材第三15—17页例1、例2和“练一练”、练习三第1—6题
教学目标:
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系,分数应用题。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点:初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程:
一、复习引新
1、 每句话里把哪个量看作单位“1”?其中分数表示的具体意义是什么?
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
问:从图上看用4/5,是用去谁的?就是把20米平均分成几份,用去其中的几份?
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路,小学数学教案《分数应用题》。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
根据“一只小鸡的重量是小鸭的2/3”,要先画出表示哪一个量的线段?看着线段图,
(2)按例1想的过程讨论一下,题里把哪个数量看作单位“1”,求小鸡的重量就是求什么?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的'几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
想一想,这里有哪两种重量,可以画几条线段来表示题意?据哪个条件确定单位“1”的量,接着怎样想,用什么方法解答?
你从上面几题的解答里,发现在分数应用题里,怎样求单位“1”这个数量的几分之几是多少?
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业:
练习三的1、2、3、4。
板书设计:
分数应用题
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
要点提示
分数应用题
分数应用题教案2
教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。
教学目标:
1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。
2、培养学生的分析、比较、迁移等能力。
3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。
教学重难点:
1、理解数量关系,掌握分析方法。
2、正确分析数量关系并解答。
教学过程:
一、复习准备。
1、下面这些句子中,哪两个量进行比较,谁为单位“1”?
⑴一桶水用去3/4。 ⑵书的.价钱是钢笔价钱的1/3。
师:第一题是部分与总数的比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。
[点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]
2、出示准备题。说出关系式,再列式计算。
爸爸体重75kg,小明的体重是爸爸的7/15。
⑴小明的体重是多少千克?
爸爸的体重×7/15=小明的体重 75×7/15=35(kg)
⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?
小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)
二、探究新知。
1、激趣引入。
师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?
[点评: 通过创设情境, 调动学生积极参与的情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]
2、出示:
根据测定,成人体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。
[点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]
问题一:小明的体重是多少千克?
出示思考问题,学生先分小组进行讨论。
①小明的体重与什么数量有关系?有什么关系?
②应该把哪个量看做单位“1”, 为什么?
③单位“1”所表示的数已知吗?
④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。
方法一:
分数应用题教案3
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的`2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
分数应用题教案4
教学内容:
课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。
教学重点:
学会找单位1
教学难点:
依题意画出线段图
教学目的:
1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2.培养学生分析能力,发展学生思维。
教学过程:
一、复习
1.先说下列各算式表示的意义,再口算出得数。
2.列式计算。
(1)20的是多少?
(2)6的是多少?
让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。
二、新授。
1.教学例1。
出示例1:学校买来100千克白菜,吃了,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示100千克白菜。
吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?
教师边说边画出下图:
(3)分析数量关系,启发解题思路。
引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。
(4)学生列式计算:=100(20)?=80
(5)再让学生分析一下数量关系。
(6)练一练:完成第18页做一做第1题。
评讲订正时,让学生分析一下数量关系。
2.教学例2。
出示例2:小林身高米,小强身高是小林的,
小强身高多少米?
(1)明确题意,指名读题,说出条件和问题。
(2)让学生画出线段图并标明条件和问题。
①要画几条线段表示题里的数量关系?
②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。
③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。
启发学生:根据小强身高是小林的.,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。
教师边启发边画出如下线段图:
(3)分析数量关系,启发解题思路。
启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。
(4)让学生列式计算。
(5)如果把上题改成下面的题:
小强身高米,小林身高是小强的倍,小林身高多少米?
问:哪条线段画得长一些?怎样画?
把谁看作单位1为什么?
怎样列式?
教师边启发边画出如下线段图:
(6)教师说明:
一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的
指出:在这种情况下乘得的积大于原来的被乘数。
(7)做一做。
完成课本14页做一做的第3题。
三、巩固练习
1.完成课本第14页做一做的第3题。
学习列式计算后,指名让学生分析数量关系。
2.完成练习四的第5题。
说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。
订正时指名分析。
四、全课小结。
今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。
五.作业。
练习四的第1~4题。
分数应用题教案5
教学目标
使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。
进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点
分数除法应用题的特点及解题思路和解题方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习引新
二、教学新课
三、巩固练习
四、课堂小结
五、作业
1、先说出单位1,再说出数量关系式
(见课件)
2、做43页复习题
问:这道题怎样想?
3、引入新课
解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例1
(1)出示例1,学生读题,说明条件和问题。
问:关键句是哪一句?谁占果树总棵数的2/5?
单位1是谁?
(2)让学生画出线段图
(3)学生独立列式解答。
(4)讨论:哪种方法比较简单?
指出:求单位1的应用题一般来说用方程解。
2、比较解法
请同学们比较例1和复习题。
问:在条件、问题上有什么相同点和不同点?
在解法上有什么相同点和不同点?
小结:解答分数应用题,要先确定单位1,再找出题目的'数量关系再解答。
1、做练一练
让学生先写出数量关系式再解答。
2、做练习十第4题
问:要怎样想?根据什么来列方程?
今天学了什么?解答此类应用题要怎样思考、分析?
练习十第2、3题
课后感受
本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!
分数应用题教案6
教学内容:
教科书15页,例2及做一做 ,练习四8─10题。
教学目的:
(1)、会画线段图分析分数乘法两步应用题的数量关系。
(2)、掌握分数两步连乘应用题解答方法,并能正确解答。
(3)、进一步培养学生初步的逻辑思维能力。
教学重点:分析分数乘法两步应用题的数量关系。
教学难点:抓住知识关键,正确、灵活判断单位1。
教学过程:
(一)、复习引入:
1、先说说各式的意义,再口算出得数。
╳ ╳
2、指出下面含有分数的句子中,把谁看作单位1。
(1)乙数是甲数的 。(甲数)
(2)乙数的 相当于甲数。(乙数)
(3)大鸡只数的 等于小鸡的只数。(大鸡)
(4)大鸡的只数相当于小鸡的 。(小鸡)
(二)、探究新知:
1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
(1)审题:
全体默读,再指名读,说出已知条件和问题。
师生边讨论边画出线段图。
先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?
(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)
然后画一条线段表示谁储蓄的钱数?画多长?根据什么?
(又根据:小新的钱数是小华的' ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。
小亮
18元
?元
?元
小华
小新
(2)分析数量关系:
引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?
也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?
(3)确定每一步的算法,列出算式。
怎么求小华的钱数?
根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。
板书:18╳ =15(元)
怎么求小华的钱数?
根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。
板书:15╳ =10(元)
把上面的分步算式列成综合算式:
板书:18╳ ╳ =10(元)
(4)检验写答:
答:小新储蓄了10元。
2、做一做。
学生独立画出线段图,教师巡视指导。
3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。
(三)、课堂练习:
独立完成练习四的第8、9、10题。
板书设计:
例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
小亮
18元
?元
?元
小华
小新
18╳ =15(元)
15╳ =10(元)
18╳ ╳ =10(元)
答:小新储蓄了10元。
分数应用题教案7
教学目标
1、理解、掌握连续求一个数的几分之几是多少的连乘应用题的数量关系和解题思路,掌握这类应用题的解题方法,能正确进行解答。
2、进一步培养学生分析、推理等思维能力
教学重难点
理解、掌握连续求一个数的几分之几是多少的连乘应用题的数量关系和解题思路,掌握这类应用题的解题方法,能正确进行解答。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习
二、新课教学
三、巩固练习
四、课堂小结
五、作业
1、做练习四第一题
让学生自己读题后独立完成。
问:要求四年级去的人数要先求什么?求每个问题是怎样想的?
2、引入新课
继续学习分数应用题
1、教学例4
(1)出示例4,学生读题
让学生画出相应的线段图,并说明线段图的含义。
(2)让学生看着自己画的线段图讨论一下,这道题可以怎样想?
(3)让学生根据分析思路,分步列出科技组的人数。
(4)让学生用综合算式求出科技组的人数。
2、小结
连续求一个数的几分之几的分数连乘应用题,先用乘法求出一个数量的几分之几是多少,再把这个求出的对应数量作为单位1,按求一个数的几分之几是多少继续用乘法求出问题的.结果。
1、做练一练
2、做练习四第2题
指名学生说明每一步求什么,是怎样想的?
这节课学习了什么内容?今天学习的分数应用题在解题方面与前面有什么不同?解题时要怎样想?
练习四第3、4题
指出:这道题先把六年级去的人数看作单位1,求出五年级去的人数;再把五年级去的人数看作单位1,去求四年级去的人数。
想:先把合唱组的人数看作单位1求出美术组的人数;再把美术组的人数看作单位1求出科技组的人数。
课后感受
在弄清2个单位1的前提下学习比较顺利。
分数应用题教案8
教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的'运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
分数应用题教案9
教学内容:九年义务教育六年制小学数学第十二册课本第111~112页例4。
教学目标:
1、知识与技能:理解和掌握求比一个数多(或少)几分之几的分数、百分数应用题基本数量关系与解题方法,比较熟练解答这类应用题,把它们的有关知识系统化。
2、过程与方法:使学生经历整理信息、利用信息的过程,发展学生的初步逻辑思维能力,能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。
3、情感态度与价值观:培养学生认真审题和学会联系实际的良好学习习惯。让学生感受到学习数学的快乐。
教学重点:综合运用所学知识解答分数、百分数应用题。
教学准备:多媒体课件
教学过程:
一、课前预习
1、阅读课本十二册111页~112页的内容。再看看其他册课本有关分数、百分数的内容。
2、在课本中,用自己喜欢的符号标出预习中不懂的地方。
3、提出预习中自己存在的问题,在课本相应的地方写出来。
4、课前试练:111页“做一做”。
5、复习十一册中“分数、百分数应用题”相关的知识。
二、学生提出预习中问题
三、对学生预习中普遍存在的问题,教师给予讲解。
四、变式训练
教师精点111页“做一做”。
五、教师引讲
1、创设情境。
多媒体出示:学校举办的美术展览中,水彩画50幅;蜡笔画80幅。
2、学生提出问题
3、解决问题。
(1)蜡笔画比水彩画多几分之几?
(80—50)÷50=3/5
(2)水彩画比蜡笔画少几分之几?
(80—50)÷80=3/5
为什么用80作除数?而不是用50?呢?
4、归纳小结:
这是两道求一个数比另一个数多(或少)几分之几的应用题。它们都是用相差量去跟单位“1”的量相比。相同点是这两个要比较的数量是已知的,不同点是两个问题中的哪个数量看作单位“1”不同,因此,在算式中用哪个数量作除数就不同。
所以,求一个数比另一个数多(或少)几分之几,用相差量除以单位“1”的量。
板书:找出单位“1”
5、改编练习题。
屏幕出示如下信息:
(1)根据“蜡笔画比水彩画多”这个条件,
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
(2)根据“水彩画比蜡笔画少”这个条件,
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
编出4道不同的分数应用题,并解答。
①蜡笔画比水彩画多,水彩画有50幅,蜡笔画有多少幅?
蜡笔画:50×(1+3/5)=80(幅)
②蜡笔画比水彩画多,蜡笔画有80幅,水彩画有多少幅?
水彩画:80÷(1+3/5)=50(幅)
③水彩画比蜡笔画少,水彩画有50幅,蜡笔画有多少幅?
蜡笔画:50÷(1+3/8)=80(幅)
④水彩画比蜡笔画少,蜡笔画有80幅,蜡笔画有多少幅?
水彩画:80×(1—3/8)=50(幅)
思考:两个问题一样吗?解答的'方法它们有什么相同的地方和有不同地方?
6、总结。
单位“1”的量已知用乘法
单位“1”的量未知用除法
“多”用1+分率
“少”用1—分率
7、迁移深化。
教师:如果把以上几道应用题中的分数改为百分数,你会做吗?
小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的单位“1”,再分析数量间的关系,然后根据实际情况,选择适当方法进行解答。
把以上几道应用题中的分数改为百分数,数量关系一样,只是题里两个数量之间的关系是用百分数表示。解题的思路与方法不变。
六、巩固练习
1、基本练习:练习二十二第2、3题。
2、深化练习:练习二十二第5题。
七、作业
练习二十二第1、4题。
板书:复习稍复杂的分数、百分数应用题
单位“1”的量已知用乘法
单位“1”的量未知用除法
“多”用1+分率
“少”用1—分率
分数应用题教案10
教学目标
1.使学生了解一些有关保险的简单知识,知道保险金额、保险费率和保险费的含义,会根据保险费的计算公式进行简单的计算。
2.介绍一些有关税收的知识,向学生进行公民应依法纳税的教育。
3.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
教学重点和难点
理解保险金额、保险费率和保险费三者之间的关系。
教学过程设计
(一)复习准备
1.甲数是12,乙数是15。甲数是乙数的百分之几?乙数是甲数的百分之几?
2.甲数是120,它的75%是多少?
3.( )与( )的比率叫做利率。
4.利息=( )×( )×( )
师述:前几天我们学习了有关储蓄的知识,今天我们来学习有关保险和税收的知识。
板书:百分数应用题
(二)学习新课
1.导入。
师述:为了减少企业、个人财产和生命遇到灾害时所受的损失,中国人民保险公司开办了各种保险业务。在一定时期内,参加保险的企业或个人向保险公司交纳一定数量的保险费,如果财产或人身受到自然灾害(如洪水,干旱等)或意外事故,造成损失,保险公司就负责按照预先的规定给予赔偿。
板书:交到保险公司的钱叫保险费。
师述:参加保险的财产价值称为保险金额。
板书:保险金额
师述:保险费是由保险金额乘以保险费率得到的。保险费率和银行利率一样,是由保险公司确定。
板书:保险费率
板书:保险费=保险金额×保险费率
2.出示例3。
例3 林海家参加了中国人民保险公司的家庭财产保险,参加保险的财产价值是9800元。如果每年的保险费率是0.3%,林海家每年应付保险费多少元?
(1)学生读题。
(2)问:这道题求什么?
(3)问:怎样计算保险费?
板书:9800×0.3%=9800×0.003=29.4(元)
答:林海家每年应付保险费29.4元。
追问:为什么用9800×0.3%,而不是用9800÷0.3%?
3.练习。
赵华家今年参加家庭财产保险,保险金额是8000元,保险费率是0.3%。需交保险费多少元?
4.税收的意义。
师述:税收是国家财政收入的主要来源,税收取之于民,用之于民。根据《中华人民共和国个人所得税法》规定,我国公民有依法纳税的义务。
在税法中规定:每月收入不高于800元的,免缴个人所得税;月收入超过800元的,每月收入扣除800元后的余额部分,分九级按5%~45%的比例缴纳个人所得税(如月收入超过800元而又不高于1300元的,扣除800元后的余额部分应按5%的税率缴纳个人所得税)。
5.出示例4。
例4 张文父亲的月工资是1000元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的'比例缴纳个人所得税。张文的父亲每月应缴纳个人所得税多少元?
(1)学生默读题。
(2)问:每月工资收入扣除800元后的余额部分,指的是什么?
(3)指名说思路。
(4)应怎样列式计算。
板书:(1000-800)×5%
=200×5%
=10(元)
答:张文的父亲每月应缴纳个人所得税10元。
6.练习。
歌舞团演员王华参加一场演出,取得收入3000元。按个人所得税法规定,演出收入扣除800元后的余额部分,按20%的比例缴纳个人所得税。此次演出后,王华应缴纳个人所得税多少元?
7.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关保险和税收的知识。知道了怎样来计算保险费和应纳个人所得税的方法,还知道了这两种类型题实际上就是求一个数的百分之几是多少。
(三)巩固反馈
1.填空:
保险费=( )×( )
保险费率=( )÷( )
2.八一小学为117名老师投了家庭财产保险,每家保险的金额定为8000元。如果按每年交纳0.3%的保险费率来交保险费,学校一年为老师交纳保险费多少元?
3.一个图书馆对325万元的图书进行了防火保险。如果每年的保险费是1300元,那么防火保险的保险费率是多少?
4.一个事业单位的全体职工去年参加了团体人身意外伤害保险。每年的保险费率是0.2%,每人的保险金额都是5000元,这个单位去年向保险公司交纳了1200元保险费。这个单位共有职工多少人?
5.小霞母亲的月工资是1200元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的比例缴纳个人所得税。小霞的母亲每月应缴纳个人所得税多少元?
6.东路小学600名学生去年都参加了平安保险,每人保险金额是8000元,保险费率是0.1%。结果去年有两名学生意外受伤,每人得到赔款1200元。这些赔款占全校交纳保险费总额的百分之几?
课堂教学设计说明
本节课从概念入手,给学生讲清了有关保险和税收的意义以及计算方法。对学生进行了自我保护和遵守国家法律的教育。由于学生对求一个数的百分之几是多少和求一个数是另一个数的百分之多少已经比较熟练,故在课堂中讲解的较少,着手于对题型的认识和分析解题思路,以便发展学生的思维灵活性和对应用题的分析、比较、解答的能力。
板书设计
分数应用题教案11
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?
就是求一个数的`几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
1. 2.
3. 4.
5. 6.
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
五、板书设计
数学教案-分数乘、除法应用题的对比
分数应用题教案12
[学习目标]
1、掌握分数、百分数应用题的结构特点和解题方法,会解答一至三步计算的分数、百分数应用题,会有条理地说明它们的思路,会按照题目的具体情况选择简便的解答方法,能应用所学的知识解决生活中的一些简单的实际问题,其他教案-分数、百分数应用题。
2、知道百分数在实际中的应用,并会解答有关的实际问题。
[重点、难点]
1、正确判断作为单位“1”的量是学习的重点。
2、百分数的应用是学习的`重点。
3、在发芽率的公式中为什么要乘以100%是学习的难点。
4、在工程问题中,用“1”表示工作总量,用单位时间内完成工作总量的几分之几表示工作效率,是学习的难点。
5、有条理地说明解题思路是学习的难点。
第一课时:10、30
一、复习分数乘法的意义
一个数乘以分数就是求这个数的几分之几。
二、要解决的问题
1、求一个数的几分之几(百分之几)
2、已知一个数的几分之几,求这个数。
如:(1)15的 是多少?
(2)已知一个数的 是12,这个数是多少?
三、应用
例1、一条公路长2400米,已修了全长的 ,还剩下多少米?
分析:根据题意,已修了全长的 ,是把全长(2400米)看作“单位1”,未修的路程是全长的(1- ),要求还剩下多少米就是求2400米的(1- )是多少。
答:还剩下960米。
例2、修路队要修一条公路,已修了1440米,正好占全长的 ,还要修多少米?
分析:已修的正好占全长的 ,是把全长看作“单位1”,已修的1440米是 对应的数量,可以求出全长。已修了占全长的 ,那么未修的占全长的(1- ),要求出还要修多少米才完成任务,就是求全长的(1- )是多少?
答:还要修960米才完成任务。
练习:分课时总复习
P98 Ex1:5、6、7、8
P98 Ex2、Ex4
作业:P99 Ex6:1、2
分数应用题教案13
教学目标
1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。
2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。
3.培养学生分析、解决问题的能力,以及知识迁移的能力。
4.培养学生良好的审题习惯。
教学重点和难点
1.会分析数量关系,掌握解题思路,正确解答。
2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。
教学过程
导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)
(一)复习铺垫
1.说图意填空。(投影)
问:谁是单位1?
2.说图意回答问题。(投影)
问:①谁和谁比,谁是单位1?
3.准备题:
(做在练习本上,画图列式计算,一个学生到黑板板演。)
教师订正讲评。
提问:①谁是单位1?
③要求用去多少吨就是求什么?
少。)
④根据什么用乘法计算?
(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)
师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)
(二)学习新课
1.学习例4。
(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)
(2)分析数量关系。(同桌互相说。)
提问:单位1变了吗?单位1是谁?
请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。
学生汇报结果,让学生说解题思路,老师一边把图补充完整。
=2500-1500
=1000(吨)
答:还剩1000吨。
生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。
师追问:求用去多少吨你是怎么想的?
答:还剩1000吨。
生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求
(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?
相同点:两种解法都是经过两步计算。
不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。
第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。
(4)练习做一做(1):
昆虫标本有多少件?
(做完让学生说解题思路、投影订正。)
2.学习例5。
六月份捕鱼多少吨?
(1)读题找出条件、问题。
(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)
问:①谁和谁比,谁是单位1?
(3)列式解答。
师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。
学生汇报结果。(老师板书列式)
答:六月份捕鱼3000吨。
师追问:你是怎么想的?
生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。
师再追问:怎样求六月份比五月份多捕的吨数?
捕的吨数。
答:六月份捕鱼3000吨。
师追问:怎么想的?
生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。
师问:这两种解法有什么联系和区别?
(联系:两种解法都利用了分数乘法的'意义求已知数的几分之几。区别:解题思路不同。)
(4)练习做一做(2)。
答。
(三)巩固练习
1.补充问题并列式解答。(复合投影片)
________?
2.选择正确答案的序号填在( )里。
包?列式是
[ ]
[ ]
A.乙队修了多少米?
B.乙队比甲队多修多少米?
C.甲队比乙队多修多少米?
D.乙队比甲队少修多少米?
(3)根据条件和问题列出算式。
已知一袋大米重40千克。
(四)课堂总结
今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?
(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)
课堂教学设计说明
(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。
(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。
分数应用题教案14
[案例]
人教版小学数学第11册第三单元“较复杂分数应用题例7”开放式教学片段。
师:今天我们继续学习分数应用题。(出示例7:某工厂十月份用水480吨,比原计划节约了 。十月份原计划用水多少吨?)
师生共同画出线段示意图(图略)
师:请大家结合线段图,开动脑筋,利用已有知识求出十月份原计划用水的吨数。(学生独立思考。之后,学生各抒己见。)
生1:我用方程解,数量关系是计划用水的吨数-节约的吨数=实际用水的吨数,所以设原计划用水x吨,得方程x- x=480
生2:这样做是对的!而我列出的方程是x=480+ x
生3:从线段图可以看出,实际用水的吨数相当于原计划的(1- )。根据分数乘法的意义,我认为也可以这样列方程:x×(1- )=480
师:这三位同学都是从列方程的角度求出了解,你们还有其他的解法吗?
生4:我用算术方法解。从线段图可以看出把十月份原计划用水的吨数看作9份,实际用水比原计划节约 ,那么实际用水 的吨数就是这样的8份,这正好是480吨。480÷8×9,先求每份的吨数,再乘9,就得实际用水的吨数。
师:对他的解法你们有什么看法吗?
大部分学生点头认同。
生5:我同意生4的解法,当然也可以这样列式:480÷8÷ 。先求出每份是60吨,这60吨相当于原计划用水的 ,所以再除以 就是原计划用水540吨。
此时,学生的思维逐渐活跃起来,他们私下小声地议论着,过了一会儿,生6面带疑惑站起来说:老师,我也列了两个算式,不知对不?
师:你先说出来,让我们一起来讨论讨论。
生6:我的算式是480÷9÷ 和480÷9×8
师:对这两个式子,你们议一议好吗?
生7:这两个算式都是错误的。如果这两个算式是正确的,那么刚才列出的480÷8×9或480÷8÷ 就是错误的,而刚才的算式我们已经算过了,是正确的。
生8:我来补充,我也认为这两个算式是错误的。从线段图来看,480吨与9份显然不相对应,所以480除以9是没有意义的。
此时,生6略有所悟地点着头,表示接受。
生9:老师,我从上面的对应关系受到启发,480吨的对应分率是(1- ),直接列式是480÷(1- )。
师:同学们真会动脑筋,利用原有知识想出了这么多的解法。真了不起!你们对刚才的这些解法还有什么意见,或者有什么要补充的吗?
生10:老师,我还有一种解法。
此时其他学生都惊讶地看着生10,老师也为之一怔,但还是追问了一句:你是怎么想的?
生10:我列的算式是480× 。
师:对480× 你们理解吗?
生11:我能理解。这是变换了思考角度,如果反过来把实际用水的480吨看着单位“1”,那么原计划用水的'吨数就是480吨的 。根据分数乘法的意义,原计划用水的吨数就是480× 。
顿时,教室里响起了一阵热烈的掌声。
………………………
[反思]
在题目本身不具备明显的开放性的情况下,教师善于挖掘解题策略的开放性,大胆放手引导鼓励学生进行开放性思考,让学生拥有自由的思考空间,获得最佳的学习效果。综观上面的教学过程,我认为主要体现了:
1、不唯解题模式,允许不同的学生以不同的方式自由地思考的教学理念。
传统的较复杂的分数应用题教学,教师往往给学生一个固定的思维模式:具体数量÷对应分率=单位“1”的量。而上述教学片段,教师一开始就大胆放手让学生思考,没有任何束缚,没有任何限制,有的只是民主的氛围,自由的放飞,唯此学生才会不断闪烁着创新思维的火花。加之教师的相机引导,学生探究的兴致越来越高,思维也越来越活,不同水平的学生都积极参与学习活动,他们用自己的喜欢的方式从不同的角度找到了答案。尽管方式不同,但结果一样,这也正体现了数学课程标准不同的人获得不同的发展的人本主义目标。
2、不唯师不唯本,允许学生自由地评价体验成功,获得自信的教学理念。
传统的课堂教学,学生只有听讲的义务,而无评价的自由,唯师、唯上,这样大大地抑制了学生发表意见的愿望,直接影响学生学习数学的积极性和学习质量。我们认为,只有积极思考的学生,才会提出不同的方案,才会评价别人的方法。上述教学片段中,教师敢于解除对学生的束缚,把评价的权利还给学生。当学生提出不同的想法时,教师总是巧妙地把解答的“包袱”抛还给学生,让学生提出问题,教师只是简要地搭条线然后让学生自己想办法解决,让学生自由地评价,体验成功的快乐,树立学好数学的信心,使学生在获得基本数学知识和技能的同时,情感、态度、价值观等方面也都得到充分的发展。
分数应用题教案15
教学目标
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点
找准单位1,巩固分数除法应用题的解答方法。
教学难点
掌握分数连除应用题的结构及数量关系。
教学过程
(一)复习
(投影)
1.找准单位1,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位1?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?人。)
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)
老师板书:
解 设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)
师小结:对于含有两个已知一个数的几分之几是多少,求这个数这样条件的复合应用题,首先要找准单位1,在两个单位1都是未知的情况下,根据题中条件,准确设定其中一个单位1的`量为x。
(三)巩固练习
(投影)
先讨论以下问题,再动笔做:找出单位1,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了小汽车是大汽车的4倍,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是( )厘米。设( )为x。
果树有多棵?
(四)课堂总结
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)
(五)布置作业
(略)
课堂教学设计说明
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
【分数应用题教案】相关文章:
《分数应用题一》数学教案11-20
分数应用题练习07-31
分数应用题 教学设计02-19
(优选)分数应用题练习08-01
分数应用题练习【热门】08-04
《分数应用题》教学反思12-20
分数应用题的教学设计02-18
分数应用题练习[热]08-06
分数应用题练习经典【15篇】08-04
分数应用题练习15篇(经典)08-05