- 相关推荐
初中数学因式分解教案
作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编精心整理的初中数学因式分解教案,欢迎阅读与收藏。
初中数学因式分解教案1
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的.关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
初中数学因式分解教案2
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的.彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
初中数学因式分解教案3
单元要点分析
教材内容
1.本单元教学的主要内容。
一元二次方程概念;解一元二次方程的方法;一元二次方程应用题。
2.本单元在教材中的地位与作用。
一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程。应该说,一元二次方程是本书的重点内容。
教学目标
1.知识与技能
了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。
2.过程与方法
(1)通过丰富的`实例,让学生合作探讨,老师点评分析,建立数学模型。根据数学模型恰如其分地给出一元二次方程的概念。
(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。
(4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0.
(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它。
(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题。
初中数学因式分解教案4
一、案例背景
现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习积极性,使之主动地探索、研究,让学生都参与到课堂活动中,通过学生自我感受,培养学生观察、分析、归纳的能力,逐步提高自学能力,独立思考的能力,发现问题和解决问题的能力,逐渐养成良好的个性品质。
因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
二、案例分析
教学过程设计
(一)『情境引入』
情境一:如何计算375×2.8+375×4.9+375×2.3 ?你是怎么想的?
问题:为什么375×2.8+375×4.9+375×2.3可以写成375×(2.4+4.9+2.3)?依据是什么?
【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。
(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课内容的学习创设了良好的情绪和氛围。
情境二:分析比较
把单项式乘多项式的乘法法则
a(b+c+d)=ab+ac+ad ①
反过来,就得到
ab+ac+ad =a(b+c+d)②
思考(1)你是怎样认识①式和②式之间的关系的?
(2)②式左边的多项式的每一项有相同的因式吗?你能说出这个因式吗?
【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
(2)、本题注重培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法。
(二)『探究因式分解』
1、认识公因式
(1)、【概念1】:多项式ab+ac+ad各项ab、ac、ad都含有相同的.因式a,称为多项式各项的公因式。
(2)、议一议
下列多项式的各项是否有公因式?如果有,试找出公因式。
①多项式a2b+ab2的公因式是ab,…… 公因式是字母;
②多项式3x2-3y的公因式是3,…… 公因式是数字系数;
③多项式3x2-6x3的公因式是3x2,……公因式是数学系数与字母的乘积。
分析并猜想
确定一个多项式的公因式时,要从 和 两方面,分别进行考虑。
①如何确定公因式的数字系数?
②如何确定公因式的字母?字母的指数怎么定?
练一练:写出下列多项式各项的公因式
(1)8x-16 (2)2a2b-ab2
(3)4x2-2x (4)6m2n-4m3n3-2mn
【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能通过相互间的交流来纠正解题中的常见错误。
(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,特别是多次方及系数的公因式,要让学生注意。
(3)、找公因式的一般步骤可归纳为:一看系数 二看字母 三看指数。
2、认识因式分解
【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解。
(课本)P71练一练第1题
(1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是?
①。 ab+ac+d=a(b+c)+d
②。 a2-1=(a+1)(a-1)
③。(a+1)(a-1)= a2-1
(2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系?从中你得到什么启发?
【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。
(2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维能力和表达、交流能力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。
(三)『例题研究』
例1:把下列各式分解因式
(1)6a3b-9a2b2c (2)-2m3+8m2-12m
解:(1)6a3b-9a2b2c
=3a2b·2a-3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)
=3a2b(2a-3bc)(提取公因式)
(2)-2m3+8m2-12m
=-(2m·m2-2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)
=-2m(m2-4m+6)(提取公因式)
【评析】:(1)、因式分解的概念和意义需要学生多层次的感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再通过不同形式的练习增强对概念的理解例。
(2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生通过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。
(3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达能力。
本题的易错点:
(1)、漏项:提公因式后括号中的项数应与原多项式的项数一样,这样可检查是否漏项。
(2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都要变号。
(四)『巩固练习』
练一练:辨别下列因式分解的正误
(1)8a3b2-12ab4+4ab=4ab(2a2b-3b3)
(2)4x2-12x3=2x2(2-6x)
(3)a3-a2=a2(a-1)= a3-a2
解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。
(2)错误,分解因式后,括号内的多项式中仍有公因式。
(3)错误, 分解因式后,又返回到了整式的乘法。
【评析】:(1)、这些多是学生易错的,本题设置的目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。
(2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1.1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。
(3)、进行多项式分解因式时,必须把每一个因式都分解到不能分解为止。
(4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。
(五)『想一想』:
如何把多项式3a(x+y)-2b(x+y)分解因式?
解:3a(x+y)-2b(x+y)= (x+y)(3a-2b)
评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2-a)=-(a-2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。
【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
初中数学因式分解教案5
一、案例背景
现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习积极性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。
因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
二、案例分析
教学过程设计
(一)『情境引入』
情境一:如何计算375×2.8+375×4.9+375×2.3你是怎样想的
问题:为什么375×2.8+375×4.9+375×2.3能够写成375×(2.4+4.9+2.3)依据是什么
【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。
(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。
情境二:分析比较
把单项式乘多项式的乘法法则
a(b+c+d)=ab+ac+ad①
反过来,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎样认识①式和②式之间的关系的
(2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗
【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
(2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。
(二)『探究因式分解』
1、认识公因式
(1)、【概念1】:多项式ab+ac+ad各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。
(2)、议一议
下列多项式的各项是否有公因式如果有,试找出公因式。
①多项式a2b+ab2的公因式是ab,……公因式是字母;
②多项式3x2—3y的公因式是3,……公因式是数字系数;
③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。
分析并猜想
确定一个多项式的公因式时,要从和两方面,分别进行思考。
①如何确定公因式的数字系数
②如何确定公因式的字母字母的指数怎样定
练一练:写出下列多项式各项的公因式
(1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。
(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。
(3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。
2、认识因式分解
【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解。
(课本)P71练一练第1题
(1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是
①。ab+ac+d=a(b+c)+d
②。a2—1=(a+1)(a—1)
③。(a+1)(a—1)=a2—1
(2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系从中你得到什么启发
【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。
(2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维潜力和表达、交流潜力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。
(三)『例题研究』
例1:把下列各式分解因式
(1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)
=3a2b(2a—3bc)(提取公因式)
(2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)
=—2m(m2—4m+6)(提取公因式)
【评析】:(1)、因式分解的概念和好处需要学生多层次的感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再透过不同形式的练习增强对概念的理解例。
(2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生透过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。
(3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达潜力。
本题的易错点:
(1)、漏项:提公因式后括号中的项数应与原多项式的项数一样,这样可检查是否漏项。
(2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“—”号,括到括号里的各项都要变号。
(四)『巩固练习』
练一练:辨别下列因式分解的正误
(1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
(3)a3—a2=a2(a—1)=a3—a2
解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。
(2)错误,分解因式后,括号内的多项式中仍有公因式。
(3)错误,分解因式后,又回到到了整式的乘法。
【评析】:(1)、这些多是学生易错的,本题设置的'目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。
(2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1.1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。
(3)、进行多项式分解因式时,务必把每一个因式都分解到不能分解为止。
(4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。
(五)『想一想』:
如何把多项式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2—a)=—(a—2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。
【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
初中因式分解教学反思
1、本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习、课堂小结—布置作业六部分,这一流程体现了知识发生、构成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等潜力,发展有条理思考及语言表达潜力;
2、分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生带给丰富搞笑的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程;
3、在提公因式方面,学生对公因式的认识不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:
(1)公因式找错;
(2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中内含多项式时,漏掉系数或字母因数),导致因式分解不彻底;
4、由于在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;
因式分解是一个重点,也是一个难点,以上存在问题在以后的教学中有待进一步加强。
初中数学因式分解教案6
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的`综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
初中数学因式分解教案7
学习目标
1、了解因式分解的意义以及它与正式乘法的关系。
2、能确定多项式各项的公因式,会用提公因式法分解因式。
学习重点:
能用提公因式法分解因式。
学习难点:
确定因式的公因式。
学习关键:
在确定多项式各项公因式时,应抓住各项的公因式来提公因式。
学习过程
一.知识回顾
1、计算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主学习
1、阅读课文P72-73的内容,并回答问题:
(1)知识点一:把一个多项式化为几个整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把这个多项式xxxxxxxxxx。
(2)、知识点二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的xxxxxxxxx。如果把这个xxxxxxxxx提到括号外面,这样
ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种xxxxxxxx的方法叫做xxxxxxxx。
2、练一练。P73练习第1题。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是xxxxxxxxxxxxx,右边是xxxxxxxxxxxxx。
3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:
(1)确定公因式的'数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。
例如:8a2b-72abc公因式的数字因数为8。
(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(xxxxxxxx)
(2)-4a2b+8ab-4b分解因式为xxxxxxxxxxxxxxxxxx
(3)分解因式4x2+12x3+4x=xxxxxxxxxxxxxxxxxx
(4)xxxxxxxxxxxxxxxxxx=-2a(a-2b+3c)
2、P73练习第2题和第3题
五、达标测试。
1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.课本P77习题8.5第1题
学习反思
一、知识点
二、易错题
三、你的困惑
【初中数学因式分解教案】相关文章:
初中数学教案01-10
初中数学几何教案07-02
初中数学优秀教案06-22
初中数学教学教案06-23
初中数学设计教案06-29
初中数学教案05-28
人教版初中数学教案05-26
(优选)初中数学教案07-06
初中数学教案(荐)07-19
初中数学教案优秀06-18