当前位置:壹学网>教案>数学教案>高一数学教案

高一数学教案

时间:2024-05-25 12:40:52 数学教案 我要投稿

【通用】高一数学教案15篇

  作为一名教学工作者,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?下面是小编为大家收集的高一数学教案,希望能够帮助到大家。

【通用】高一数学教案15篇

高一数学教案1

  教学目标

  (1)掌握一元二次不等式的解法;

  (2)知道一元二次不等式可以转化为一元一次不等式组;

  (3)了解简单的分式不等式的解法;

  (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

  (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

  (6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

  (7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

  教学重点:一元二次不等式的解法;

  教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

  教与学过程设计

  第一课时

  Ⅰ.设置情境

  问题:

  ①解方程

  ②作函数 的图像

  ③解不等式

  【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

  【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

  通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

  在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

  Ⅱ.探索与研究

  我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

  【答】方程 的解集为

  不等式 的解集为

  【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答)

  【答】不等式 的解集为

  我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

  下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

  如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

  【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

  现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

  【答】 的解集依次是

  的解集依次是

  它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

  课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

  (教师巡视,重点关注程度稍差的同学。)

  Ⅲ.演练反馈

  1.解下列不等式:

  (1) (2)

  (3) (4)

  2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

  3.解不等式

  (1) (2)

  参考答案:

  1.(1) ;(2) ;(3) ;(4)R

  2.

  3.(1)

  (2)当 或 时, ,当 时,当 或 时, 。

  Ⅳ.总结提炼

  这节课我们学习了二次项系数 的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的`结论给出所求一元二次不等式的解集。

  (五)、课时作业

  (P20.练习等3、4两题)

  (六)、板书设计

  第二课时

  Ⅰ.设置情境

  (通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

  上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

  Ⅱ.探索研究

  (学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

  生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

  生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

  师:首先,这两种见解都是合乎逻辑和可行的不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

  (待学生阅读完毕,教师再简要讲解一遍.)

  [知识运用与解题研究]

  由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

  解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

  (1) (2)

  (分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

  训练二 可化为一元一次不等式组来求解的不等式.

  目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

  【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

  这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

  (1) [P20练习中第1大题]

  (2) [P20练习中第1大题]

  (3) [P20练习中第2大题]

  (老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

  例5 解不等式

  因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

  解:(略)

  现在请同学们完成课本P21练习中第3、4两大题。

  (等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

  [训练三]用“符号法则”解不等式的复式训练。

  (通过多媒体或其他载体给出下列各题)

  1.不等式 与 的解集相同此说法对吗?为什么[补充]

  2.解下列不等式:

  (1) [课本P22第8大题(2)小题]

  (2)   [补充]

  (3) [课本P43第4大题(1)小题]

  (4) [课本P43第5大题(1)小题]

  (5) [补充]

  (每题均先由学生说出解题思路,教师扼要板书求解过程)

  参考答案:

  1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

  2.(1)

  (2)原不等式可化为: ,即

  解集为 。

  (3)原不等式可化为

  解集为

  (4)原不等式可化为 或

  解集为

  (5)原不等式可化为: 或 解集为

  Ⅲ.总结提炼

  这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。

  (五)布置作业

  (P22.2(2)、(4);4;5;6。)

  (六)板书设计

高一数学教案2

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

  (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

  (2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

  高一数学对数函数教案:教材分析

  (1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

  (2) 本节的教学重点是理解对数函数的'定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

  (3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

  高一数学对数函数教案:教法建议

  (1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  (2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高一数学教案3

  一、指导思想与理论依据

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二、教材分析

  三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

  三、学情分析

  本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

  四、教学目标

  (1)。基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

  (2)。能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

  (3)。创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

  (4)。个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

  五、教学重点和难点

  1。教学重点

  理解并掌握诱导公式。

  2。教学难点

  正确运用诱导公式,求三角函数值,化简三角函数式。

  六、教法学法以及预期效果分析

  “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

  1。教法

  数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

  在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

  2。学法

  “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。

  在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

  3。预期效果

  本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

  七、教学流程设计

  (一)创设情景

  1。复习锐角300,450,600的三角函数值;

  2。复习任意角的三角函数定义;

  3。问题:由,你能否知道sin2100的值吗?引如新课。

  设计意图

  自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

  (二)新知探究

  1。让学生发现300角的终边与2100角的终边之间有什么关系;

  2。让学生发现300角的`终边和2100角的终边与单位圆的交点的坐标有什么关系;

  3。Sin2100与sin300之间有什么关系。

  设计意图

  由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。

  (三)问题一般化

  探究一

  1。探究发现任意角的终边与的终边关于原点对称;

  2。探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

  3。探究发现任意角与的三角函数值的关系。

  设计意图

  首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

  (四)练习

  利用诱导公式(二),口答下列三角函数值。

  (1)。;(2)。;(3)。。

  喜悦之后让我们重新启航,接受新的挑战,引入新的问题。

  (五)问题变形

  由sin3000=—sin600出发,用三角的定义引导学生求出sin(—3000),Sin1500值,让学生联想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。学生自主探究

高一数学教案4

  一、课标要求:

  理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

  二、知识与方法回顾:

  1、充分条件、必要条件与充要条件的概念:

  2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

  3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

  4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

  5、化归思想:

  表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

  这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

  6、数形结合思想:

  利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

  三、基础训练:

  1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 若 是实数,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  四、例题讲解

  例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

  (1) 是这个方程有实根的充分不必要条件

  (2) 是这个方程有实根的必要不充分条件

  (3) 是这个方程有实根的充要条件

  (4) 是这个方程有实根的充分不必要条件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

  (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  变式:a = 0是直线 与 平行的 条件;

  例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

  的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

  例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

  例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

  五、课堂练习

  1、设命题p: ,命题q: ,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

  ④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

  3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由.

  六、课堂小结:

  七、教学后记:

  高三 班 学号 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 2x2-5x-30的一个必要不充分条件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分又不必要条件

  6、若命题A: ,命题B: ,则命题A是B的 条件;

  7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

  8、方程mx2+2x+1=0至少有一个负根的.充要条件是 ;

  9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

  10、已知 ,求证: 的充要条件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

  12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有两个正根的充要条件;

  (2)方程至少有一正根的充要条件.

高一数学教案5

  一、教学目标

  1.知识与技能:(1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法:

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观:

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪。

  四、教学过程

  (一)创设情景,揭示课题

  1、由六根火柴最多可搭成几个三角形?(空间:4个)

  2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

  3、展示具有柱、锥、台、球结构特征的空间物体。

  问题:请根据某种标准对以上空间物体进行分类。

  (二)、研探新知

  空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

  旋转体(轴):圆柱、圆锥、圆台、球。

  1、棱柱的结构特征:

  (1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?

  (学生讨论)

  (2)棱柱的主要结构特征(棱柱的概念):

  ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

  (3)棱柱的表示法及分类:

  (4)相关概念:底面(底)、侧面、侧棱、顶点。

  2、棱锥、棱台的结构特征:

  (1)实物模型演示,投影图片;

  (2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

  棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

  棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

  3、圆柱的结构特征:

  (1)实物模型演示,投影图片——如何得到圆柱?

  (2)根据圆柱的概念、相关概念及圆柱的表示。

  4、圆锥、圆台、球的结构特征:

  (1)实物模型演示,投影图片

  ——如何得到圆锥、圆台、球?

  (2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

  5、柱体、锥体、台体的概念及关系:

  探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

  圆柱、圆锥、圆台呢?

  6、简单组合体的结构特征:

  (1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

  (2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

  (3)列举身边物体,说出它们是由哪些基本几何体组成的。

  (三)排难解惑,发展思维

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (四)巩固深化

  练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题

  (五)归纳整理:由学生整理学习了哪些内容

  高一数学必修2教案:空间几何体的三视图

  一、教学目标

  1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

  二、教学重点:画出简单几何体、简单组合体的三视图;

  难点:识别三视图所表示的空间几何体。

  三、学法指导:观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的'投影图。

  三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15练习1、2;P20习题1.2 [A组] 2。

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1.2 [A组] 1。

高一数学教案6

  案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

 三.拓展练习

  练习:若 ,求 的'取值范围.

四.小结及作业

  案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高一数学教案7

  一、目的要求

  1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。

  2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。

  3.从集合及其元素的概念出发,初步了解属于关系的意义。

  二、内容分析

  1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  2.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。

  4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。

  三、教学过程

  提出问题:

  教科书引言所给的问题。

  组织讨论:

  为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。

  归纳总结:

  1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.

  2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。

  提出问题:

  1.在初中,我们学过哪些集合?

  2.在初中,我们用集合描述过什么?

  组织讨论:

  什么是集合?

  归纳总结:

  1.代数:实数集合,不等式的解集等;

  几何:点的集合等。

  2.在初中几何中,圆的概念是用集合描述的。

  新课讲解:

  1.集合的概念:(具体举例后,进行描述性定义)

  (1)某种指定的对象集在一起就成为一个集合,简称集。

  (2)元素:集合中的每个对象叫做这个集合的元素。

  (3)集合中的元素与集合的关系:

  a是集合A的元素,称a属于集合A,记作a∈A;

  a不是集合A的元素,称a不属于集合A,记作。

  例如,设B={1,2,3,4,5},那么5∈B,

  注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的`确切含义。

  ①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。

  ②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。

  此外,集合还有无序性,即集合中的元素无顺序。

  例如,集合{1,2},与集合{2,1}表示同一集合。

  2.常用的数集及其记法:

  全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或;

  全体整数的集合通常简称整数集,记作Z;

  全体有理数的集合通常简称有理数集,记作Q;

  全体实数的集合通常简称实数集,记作R。

  注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;

  ②非负整数集内排除0的集,也就是正整数集,表示成或。其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成或。负整数集、正有理数集、正实数集等,没有专门的记法。

  课堂练习:

  教科书1.1节第一个练习第1题。

  归纳总结:

  1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。

  2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。

  四、布置作业

  教科书1.1节第一个练习第2题(直接填在教科书上)。

高一数学教案8

  一、目的要求

  结合集合的图形表示,理解交集与并集的概念。

  二、内容分析

  1.这小节继续研究集合的运算,即集合的交、并及其性质。

  2.本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系。

  三、教学过程

  复习提问:

  1.说出A的'意义。

  2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,

  a=,B=。

  (A={0,2,4},B={0,2,3,5})

  新课讲解:

  1.观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?

  2.定义:

  (1)交集:A∩B={x∈A,且x∈B}。

  (2)并集:A∪B={x∈A,且x∈B}。

  3.讲解教科书1.3节例1-例5。

  组织讨论:

  观察下面表示两个集合A与B之间关系的5个图,根据这些图分别讨论A∩B与A∪B。

  (2)中A∩B=φ。

  (3)中A∩B=B,A∪B=A。

  (4)中A∩B=A,A∪B=B。

  (5)中A∩B=A∪B=A=B。

  课堂练习:

  教科书1.3节第一个练习第1~5题。

  拓广引申:

  在教科书的例3中,由A={3,5,6,8},B={4,5,7,8},得

  a∪B={3,5,6,8}∪{4,5,7,8}

  ={3,4,5,6,7,8}

  我们研究一下上面三个集合中的元素的个数问题。我们把有限集合A的元素个数记作card(A)=4,card(B)=4,card(A∪B)=6.

  显然,

  Card(A∪B)≠card(A)+card(B)

  这是因为集合中的元素是没有重复现象的,在两个集合的公共元素只能出现一次。那么,怎样求card(A∪B)呢?不难看出,要扣除两个集合的公共元素的个数,即card(A∩B)。在上例中,card(A∩B)=2。

  一般地,对任意两个有限集合A,B,有

  Card(A∪B)=card(A)+card(B)-card(A∩B)。

  四、布置作业

  1.教科书习题1.3第1~5题。

  2.选作:设集合A={x|-4≤x<2},B={-1

  求A∩B∩C,A∪B∩C。

  (A∩B∩C={-1

高一数学教案9

  教学目标

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题.

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

  教学建议

  教材分析

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

  ③对等差数列、等比数列的'综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

  教学设计示例

  课题:等比数列的概念

  教学目标

  1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

  2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

  3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导.

  教学用具

  投影仪,多媒体软件,电脑.

  教学方法

  讨论、谈话法.

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

  ①-2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1.等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

  2.对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即 ;

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0.

  用数学式子表示等比数列的定义.

  是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?

  式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

  3.等比数列的通项公式(板书)

  问题:用 和 表示第 项 .

  ①不完全归纳法

  ②叠乘法

  ,… , ,这 个式子相乘得 ,所以 .

  (板书)(1)等比数列的通项公式

  得出通项公式后,让学生思考如何认识通项公式.

  (板书)(2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

  这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

  三、小结

  1.本节课研究了等比数列的概念,得到了通项公式;

  2.注意在研究内容与方法上要与等差数列相类比;

  3.用方程的思想认识通项公式,并加以应用.

高一数学教案10

  一、知识结构

  本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.

  二、重点难点分析

  这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法.

  1.关于牵头图和引言分析

  章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明集合和简易逻辑知识是高中数学重要的基础.

  2.关于集合的概念分析

  点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.

  初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.

  我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.

  3.关于自然数集的分析

  教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.

  新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算仍属于自然数,其中.因此要注意几下几点:

  (1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;

  (2)自然数集内排除0的集,表示成或,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示,,;

  (3)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用.

  4.关于集合中的元素的三个特性分析

  集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。

  集合中的元素常用小写的拉丁字母,…表示.如果 a 是集合A的元素,就说 a 属于集合A,记作;否则,就说 a 不属于A,记作

  要正确认识集合中元素的特性:

  (l)确定性:和,二者必居其一.

  集合中的元素必须是确定的.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个集合.如果说“由接近的数组成的集合”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成集合.

  (2)互异性:若,,则

  集合中的元素是互异的.这就是说,集合中的元素是不能重复的,集合中相同的元素只能算是一个.例如方程有两个重根,其解集只能记为{1},而不能记为{1,1}.

  (3)无序性:{ a b }和{ b a }表示同一个集合.

  集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合.

  5.要辩证理解集合和元素这两个概念

  (1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如的写法就是错误的,而的写法就是正确的.

  (2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合,就是指所有不小于0的实数,而不是指“可以在不小于0的实数范围内取值”,不是指“是不小于0的一个实数或某些实数,”也不是指“是不小于0的任一实数值”……

  (3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.

  6.表示集合的方法所依据的国家标准

  本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定.

  符号

  应用

  意义或读法

  备注及示例

  诸元素构成的集

  也可用,这里的I表示指标集

  使命题为真的A中诸元素之集

  例:,如果从前后关系来看,集A已很明确,则可使用来表示,例如

  此外,有时也可写成或

  7.集合的表示方法分析

  集合有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示集合,要具体问题具体分析.

  (l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:

  ①列举法:;

  ②描述法:;

  ③图示法:如图1。

  (2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素?一列举出来,但这个集合可以这样表示:

  ①描述法:;

  ②图示法:如图2.

  (3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:

  ①集合中的元素是,它表示函数中自变量的取值范围,即;

  ②集合中的元素是,它表示函数值。的取值范围,即;

  ③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;

  ④集合中的元素只有一个,就是方程,它是用列举法表示的单元素集合.

  实际上,这是四个完全不同的集合.

  列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素?一列举出来,而没有列举出来的元素往往难以确定.

  8.集合的分类

  含有有限个元素的集合叫做有限集,如图1所示.

  含有无限个元素的集合叫做无限集,如图2所示.

  9.关于空集分析

  不含任何元素的集合叫做空集,记作.空集是个特殊的集合,除了它本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑.

  教学设计方案

  集合

  知识目标:

  (1)使学生初步理解集合的概念,知道常用数集的概念及其记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  能力目标:

  (1)重视基础知识的教学、基本技能的训练和能力的培养;

  (2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

  (3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;

  德育目标:

  激发学生学习 数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法??列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:2课时

  教???具:多媒体、实物投影仪

  教学过程

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的.章头引言;

  3.集合论的创始人??康托尔(德国数学家);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P 4)。

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念(例子见书):

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合。

  (2)元素:集合中每个对象叫做这个集合的元素。

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合。记作N

  (2)正整数集:非负整数集内排除0的集。记作N *或N +

  (3)整数集:全体整数的集合。记作Z

  (4)有理数集:全体有理数的集合。记作Q

  (5)实数集:全体实数的集合。记作R

  注:

  (1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

  (2)非负整数集内排除0的集。记作N *或N + 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A;

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作.

  4、集合中元素的特性

  (1)确定性:

  按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

  (2)互异性:

  集合中的元素没有重复。

  (3)无序性:

  集合中的元素没有一定的顺序(通常用正常的顺序写出)

  注:

  1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  2、“∈”的开口方向,不能把a∈A颠倒过来写。

  练习题

  1、教材P 5练习

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数。(不确定)

  (2)好心的人。??????(不确定)

  (3)1,2,2,3,4,5.(有重复)

  阅读教材第二部分,问题如下:

  1.集合的表示方法有几种?分别是如何定义的?

  2.有限集、无限集、空集的概念是什么?试各举一例。

  (二)集合的表示方法

  1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

  例如,由方程的所有解组成的集合,可以表示为{-1,1}.

  注:(1)有些集合亦可如下表示:

  从51到100的所有整数组成的集合:{51,52,53,…,100}

  所有正奇数组成的集合:{1,3,5,7,…}

  (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。

  描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。

  格式:{x∈A| P(x)}

  含义:在集合A中满足条件P(x)的x的集合。

  例如,不等式的解集可以表示为:或

  所有直角三角形的集合可以表示为:

  注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

  如:{直角三角形};{大于10 4的实数}

  (2)错误表示法:{实数集};{全体实数}

  3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。

  注:何时用列举法?何时用描述法?

  (1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。

  如:集合

  (2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。

  如:集合;集合{1000以内的质数}

  注:集合与集合是同一个集合吗?

  答:不是。

  集合是点集,集合=是数集。

  (三)有限集与无限集

  1、?有限集:含有有限个元素的集合。

  2、?无限集:含有无限个元素的集合。

  3、?空集:不含任何元素的集合。记作Φ,如:

  练习题:

  1、P 6练习

  2、用描述法表示下列集合

  ①{1,4,7,10,13}

  ②{-2,-4,-6,-8,-10}

  3、用列举法表示下列集合

  ①{x∈N|x是15的约数}??????????? {1,3,5,15}

  ②{(x,y)|x∈{1,2},y∈{1,2}}? {(1,1),(1,2),(2,1)(2,2)}

  注:防止把{(1,2)}写成{1,2}或{x=1,y=2}

  ③

  ④ {-1,1}

  ⑤ {(0,8)(2,5),(4,2)}

  ⑥

  {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}

  三、小???结:

  本节课学习了以下内容:

  1.集合的有关概念:(集合、元素、属于、不属于、有限集、无限集、空集)

  2.集合的表示方法:(列举法、描述法、文氏图共3种)

  3.常用数集的定义及记法

  四、课后作业:教材P 7习题1.1

高一数学教案11

  教学目标

  1.使学生掌握指数函数的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

  (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

  (3) 能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

  的图象.

  2. 通过对指数函数的.概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

  教学建议

  教材分析

  (1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

  (2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

  在

  和

  时,函数值变化情况的区分.

  (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

  的样子,不能有一点差异,诸如

  ,等都不是指数函数.

  (2)对底数

  的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一数学教案12

  一、教材分析

  1、 教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二. 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的'概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

  3. f表示对应关系,在不同的函数中f的具体含义不一样。

  4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5. 集合a中的数的任意性,集合b中数的唯一性。

  66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三.讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0*x+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四.课时小结:

  1. 映射的定义。

  2. 函数的近代定义。

  3. 函数的三要素及符号的正确理解和应用。

  4. 函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本p51 习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:

  2.函数近代定义: 例题练习

  二、函数的定义 [注]1—5

  1.函数传统定义

  三、作业:

高一数学教案13

  一、案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。这个熟悉的函数就是指数函数。

  所求反函数为。

  (师):那么我们今天就是研究指数函数的反函数—————对数函数。

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图。

  (师)由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图。

  具体操作时,要求学生做到:

  (1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等)。

  (2)画出直线。

  (3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分。

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  由以上两条可说明图像位于轴的右侧。

  (4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称。

  当时,在上是减函数,即图像是下降的

  之后可以追问学生有没有值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当时,有;当时,有。

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。

  最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用。

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。

  (1)与;(2)与;

  (3)与;(4)与。

  让学生先说出各组数的'特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。

  二、案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣。

高一数学教案14

  (4),(5)。

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象。

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3。归纳性质

  作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

  函数

  1。定义域:

  2。值域:

  3。奇偶性:既不是奇函数也不是偶函数

  4。截距:在轴上没有,在轴上为1。

  对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于轴上方,且与轴不相交。)

  在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少。

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线。

  二。图象与性质(板书)

  1。图象的'画法:性质指导下的列表描点法。

  2。草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例。

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象。

  最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

  填好后,让学生仿照此例再列一个的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

  3。性质。

  (1)无论为何值,都有定义域为,值域为,都过点。

  (2)时,在定义域内为增函数,时,为减函数。

  (3)时,,时,。

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

  三。简单应用(板书)

  1。利用单调性比大小。(板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

  例1。比较下列各组数的大小

  (1)与;(2)与;

  (3)与1 。(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

  解:在上是增函数,且

  < 。(板书)

  教师最后再强调过程必须写清三句话:

  (1)构造函数并指明函数的单调区间及相应的单调性。

  (2)自变量的大小比较。

  (3)函数值的大小比较。

  后两个题的过程略。要求学生仿照第(1)题叙述过程。

  例2。比较下列各组数的大小

  (1)与;(2)与;

  (3)与。(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出>1,<1,>。

  解决后由教师小结比较大小的方法

  (1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)

  (2)搭桥比较法:用特殊的数1或0。

  三。巩固练习

  练习:比较下列各组数的大小(板书)

  (1)与(2)与;

  (3)与;(4)与。解答过程略

  四。小结

  1。的概念

  2。的图象和性质

  3。简单应用

  五。板书设计

高一数学教案15

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的.推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

【高一数学教案】相关文章:

高一数学教案01-07

高一数学教案模板11-24

小学数学教案09-28

小学数学教案【精选】07-06

初中数学教案01-10

幼儿数学教案12-24

小学数学教案(经典)08-13

小学数学教案【经典】07-23

小学数学教案(经典)08-21

小学数学教案[精选]04-16