数学家的趣味小故事集合[6篇]
数学家的趣味小故事1
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子“咕咕”叫,走路直打晃。
老牛走过来,问:“狐狸,你这是怎么啦?”这是怎么啦?”
狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完老牛干活去了。
“哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐 里有许多玉米,能告诉我一共有多少吗?”
“保密!”野猪没好气地答了一声。
“哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有 多少玉米,连你有多大岁数都能知道。”
“真的`!”野猪觉得不可思议。
狐狸咳嗽了两声,说:“把你筐子里的玉米数乘以2,加上5,把所得的数再乘上50,加上你的年龄,再减去250,把得数告 诉我。”
野猪趴在地上算了半天,最后说:“得1506。”
狐狸立刻说:“你筐里有15个玉米,你今年6岁。”
野猪一摸前脑想,对,筐里的玉米数是15个。野猪一摸后脑勺想,今年自己真是6岁。
“神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
“算的呀!你算得结果是1506。最左边的两位数15,就是玉米数;最右边的一位数6,就是你的年龄。”
“你太伟大啦!”野猪抱着狐狸亲了一下。
“伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说,你上了狐狸的当啦!野猪不信。
小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米数15是你自己写上去的,乘以 100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可以看 清楚。”
“好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米,用每根玉米棒在狐狸头上都狠敲了一下。这下可好, 瘸腿狐狸头上添了4个大包!
数学家的趣味小故事2
泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的'投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.
数学家的趣味小故事3
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
趣味数学小故事:数学天才高斯
高斯念小学的.时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于<5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
数学家的趣味小故事4
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
趣味数学小故事:一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪的2元总共29元。那一元钱到哪去了?
分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的'爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。
小咪的爸爸是怎样做的呢?
数学家的趣味小故事5
每一张纸均有两个面和封闭曲线状的.棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就 可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国 种玩具使得一支数学的分支拓朴学得以蓬勃发展。
数学家的趣味小故事6
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根 火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 规则一:若限制每次所取的火柴数目最少一根,最多 三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲﹑乙 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能 留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的 火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上 之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3 根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为 k+1 之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些 分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取甲,须 使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火 柴数的奇或偶,也是无法依照己意来控柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上 的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的 火 柴数为5之倍数加2时,甲也倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的'倍数加2。 6、韩信点兵 甲先取,则甲每次取时所留火柴 韩信点 兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人 一列余6人……。刘邦茫然而不知其数。 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问 剩三,七七数之,剩二,问物几何?」 答曰:「二十三」书「孙子算经」也有类似的问题 术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩 二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则 置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人 发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数 学中占有一席非常重要的地位。
【数学家的趣味小故事】相关文章:
数学家的趣味小故事11-28
[热]数学家的趣味小故事5篇02-13
数学家的小故事05-25
数学家的小故事04-02
数学家华罗庚的小故事01-27
数学家高斯的小故事01-28
数学家的小故事通用01-29
数学家的小故事简短12-03
高斯数学家的小故事12-09
[精品]数学家的小故事12-13