高中物理教案15篇[集合]
作为一名教职工,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?下面是小编为大家收集的高中物理教案,欢迎大家分享。
高中物理教案1
【学习目标】
l. 知道曲线运动中速度的方向,理解曲线运动是一种变速运动.
2.知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上.
【学习重点】
1.什么是曲线运动.
2.物体做曲线运动的方向的确定.
3.物体做曲线运动的条件.
【学习难点】
物体做曲线运动的条件.
【学习过程】
1.什么是曲线的切线? 阅读教材33页有关内容,明确切线的
概念。
如图1,A、B为曲线上两点,当B无限接近A时,直线AB叫做
曲线在A点的__________ A B 图
2.速度是矢量,既有大小,又有方向,那么速度的变化包含哪几层含义?
3.质点做曲线运动时,质点在某一点的速度,沿曲线在这一点的____________。
4.曲线运动中,_________时刻在变化,所以曲线运动是__________运动,做曲线运动的物体运动状态不断发生变化。
5.如果物体所受的合外力跟其速度方向____________,物体就做直线运动。如果物体所受的合外力跟其速度方向__________________,物体就做曲线运动。
【同步导学】
1.曲线运动的特点
⑴ 轨迹是一条曲线
⑵ 曲线运动速度的方向
① 质点在某一点(或某一时刻)的速度方向是沿曲线的这一点的切线方向。
② 曲线运动的速度方向时刻改变。
⑶ 是变速运动,必有加速度
⑷ 合外力一定不为零(必受到外力作用)
例1 在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向?
2.物体作曲线运动的条件
当物体所受的合力的`方向与它的速度方向在同一直线时,物体做直线运动;当物体所
1 专心 爱心 用心
受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动.
例2 关于曲线运动,下面说法正确的是( )
A.物体运动状态改变着,它一定做曲线运动
B.物体做曲线运动,它的运动状态一定在改变
C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致
D.物体做曲线运动时,它的加速度方向始终和所受到的合外力方向一致
3.关于物体做直线和曲线运动条件的进一步分析
① 物体不受力或合外力为零时,则物体静止或做匀速直线运动
② 合外力不为零,但合外力方向与速度方向在同一直线上,则物体做直线运动,当合外力为恒力时,物体将做匀变速直线运动(匀加速或匀减速直线运动),当合外力为变力时,物体做变加速直线运动。
③ 合外力不为零,且方向与速度方向不在同一直线上时,则物体做曲线运动;当合外力变化时,物体做变加速曲线运动,当合外力恒定时,物体做匀变速曲线运动。
例3.一质量为m的物体在一组共点恒力F1、F2、F3作用下而处于平衡状态,如撤去F1,试讨论物体运动情况怎样?
【巩固练习】
1.关于曲线运动速度的方向,下列说法中正确的是 ( )
A.在曲线运动中速度的方向总是沿着曲线并保持不变
B.质点做曲线运动时,速度方向是时刻改变的,它在某一点的瞬时速度的方向与这—点运动的轨迹垂直
C.曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向就是在曲线上的这—点的切线方向
D.曲线运动中速度方向是不断改变的,但速度的大小保持不变
2.如图所示的曲线为运动员抛出的铅球运动轨迹(铅球视为质点),A、B、C为曲线上的三点,关于铅球在B点的速度方向,说法正确的是 ( )
A.为AB的方向 B.为BC的方向
C.为BD的方向 D.为BE的方向
3.物体做曲线运动的条件为 ( )
A.物体运动的初速度不为零 B.物体所受的合外力为变力
C.物体所受的合外力的方向上与速度的方向不在同一条直线上
D.物体所受的合外力的方向与加速度的方向不在同—条直线上 (第2题)
专心 爱心 用心 2
A.变速运动—定是曲线运动 B.曲线运动—定是变速运动
C.速率不变的曲线运动是匀速运动 D.曲线运动也可以是速度不变的运动
5.做曲线运动的物体,在其轨迹上某一点的加速度方向 ( )
A.为通过该点的曲线的切线方向 B.与物体在这一点时所受的合外力方向垂直
C.与物体在这一点速度方向一致 D.与物体在这一点速度方向的夹角一定不为零
6.下面说法中正确的是( )
A.做曲线运动的物体的速度方向必变化 B.速度变化的运动必是曲线运动
C.加速度恒定的运动不可能是曲线运动 D.加速度变化的运动必定是曲线运动
7.一质点在某段时间内做曲线运动,则在这段时间内( )
A.速度一定不断改变,加速度也一定不断改变; B.速度一定不断改变,加速度可以不变;
C.速度可以不变,加速度一定不断改变; D.速度可以不变,加速度也可以不变。
8.下列说法中正确的是( )
A.物体在恒力作用下不可能做曲线运动 B.物体在变力作用下一定做曲线运动
C.物体在恒力或变力作用下都可能做曲线运动
D.做曲线运动的物体,其速度方向与加速度方向一定不在同一直线上
9.如图所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受的力方向改变而大小不变(即由F变为-F),在此力作用下物体以后的运动情况,下列说法正确的是( )
A.物体不可能沿曲线Ba运动;
B.物体不可能沿曲线Bb运动;
C.物体不可能沿曲线Bc运动;
D.物体可能沿原曲线由B返回A。 b 10.一个做匀速直线运动的物体,突然受到一个与运动方向不在同一直线上的恒力作用时,物体运动为 ( )
A.继续做直线运动 B.一定做曲线运动
C.可能做直线运动,也可能做曲线运动 D.运动的形式不能确定
高中物理教案2
研究性实验:(1) 研究匀变速运动练习使用打点计时器:
1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4
正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。
3.重点:纸带的分析 0 1 2 3 4
a.判断物体运动情况:
在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。
如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。
b.测定加速度:
公式法: 先求?S,再由?S= aT2求加速度。
图象法: 作v-t图,求a=直线的斜率
c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T
测定匀变速直线运动的加速度:
1.原理::?S=aT2
2.实验条件:
a.合力恒定,细线与木板是平行的。
b.接50HZ,4-6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的.长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:
选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。
5. 数据处理: 0 1 2 3 4 5 6
根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。
用逐差法处理数据求出加速度:
S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2
a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2
测匀变速运动的即时速度:(同上)
(2) 研究平抛运动
1.实验原理:
用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:
木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:
a. 固定白纸的木板要竖直。
b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
(3) 研究弹力与形变关系
方法归纳:
(1)用悬挂砝码的方法给弹簧施加压力
(2)用列表法来记录和分析数据(如何设计实验记录表格)
(3)用图象法来分析实验数据关系
步骤:
1以力为纵坐标、弹簧伸长为横坐标建立坐标系
2根据所测数据在坐标纸上描点
3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)
4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。
5解释函数表达式中常数的意义。
2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度
高中物理教案3
教学目标
知识目标
1、认识匀速圆周运动的概念。
2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算。
能力目标
培养学生建立模型的能力及分析综合能力。
情感目标
激发学生学习兴趣,培养学生积极参与的意识。
教材分析
教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫。
教法建议
关于线速度、角速度、周期等概念的教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述。学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长与时间比值保持不变的特点,进而引出线速度的大小与方向。同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度。学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的。即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间t比值来描述,由此引入角速度的概念。又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念。讲述角速度的概念时,不要求向学生强调角速度的矢量性。在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动。
关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的,并引导学生从如下思路理解它们之间的关系:
教学重点:线速度、角速度、周期的概念
教学难点:各量之间的关系及其应用
主要设计:
一、描述匀速圆周运动的有关物理量。
(一)让学生举一些物体做圆周运动的实例。
(二)展示课件1、齿轮传动装置
课件2、皮带传动装置
为引入概念提供感性认识,引起思考和讨论
(三)展示课件3:质点做匀速圆周运动
可暂停。可读出运行的时间,对应的弧长,转过的圆心角,进而给出线速度、角速度、周期、频率、转速等概念。
二、线速度、角速度、周期间的关系:
(一)重新展示课件
1、齿轮传动装置。让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系
圆周运动是一种特殊的曲线运动,也是牛顿定律在曲线运动中的综合应用。描述圆周运动的物理量多,且许多物理量(力、加速度、线速度)在时刻变化,因此,本单元是必修教材中的重点、难点、和学生的学困点。教师如何根据自己的学生把握教材的难易,设计好教案,对顺利完成好本单元教学就显得非常重要。
1、向心力:一本参考资料给向心力下了如下定义:做圆周运动的物体所受到指向圆心的合外力,叫向心力。我认为这个定义是不确切的,其一是容易给学生产生误导,认为做圆周运动的物体要受到一个向心力的作用,其二、向心力是按力的作用效果命名的`,它可以是某一个力、或几个力的合力、还可以是某种力的分力。鲁科版在本知识点教材处理比较好,先通过细绳栓一小球在光滑水平面做圆周运动的演示实验,分析其受力,得出:做圆周运动的物体一定要受到一个始终指向圆心等效力的作用,这个力叫做向心力。这个定义也比较科学,学生容易接受,且给等效力留了拓展空间,教师在后面的教学中,再通过圆周运动的实例引导学生逐渐认知向心力。在新课教学中,对有些复杂问题应循序渐进,不可一步到位。人教版教材是先学习向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到了指向圆心的合力,这个合力叫向心力。这样给出向心力显得有点抽象,学生不容易接受。
2、向心加速度:人教版教材是通过质点做匀速圆周运动,找出△t时间内的速度变化量△v,△v△t求出平均加速度,当△t趋近零时,△v垂直于速度v,且指向圆心,既为质点在该位置的加速度,称向心加速度向心力向心加速度,然后给出加速度的公式。按此教学方案,逻辑性强,学生能知道向心加速度的来龙去脉,但由于用到了速度的失量差和极限概念,大部分学生感到学习困难,从课堂效果上看并不好,因此本教学方案适宜优秀学生。鲁科版教教材是通过圆周运动物体的受力分析,总结出做圆周运动的物体受到向心力的作用,那么它必然存在一个由向心力产生的加速度,这个加速度叫向心加速,方向与向心力方向一致,始终指向圆心,然后直接给出向心加速度的数学表达式,省去了复杂的数学推导,使教学难度大大降低,从课堂教学效果看:学生感觉容易接受,师生互动较为活跃。
高中物理教案4
热力学第一定律 能量守恒定律
教学 目标
(1)知道热力学第一定律 ,理解能量守恒定律
(2)对热力学第一定律的数学表达式有简单认识
(3)知道永动机是不可能的
教学 建议
教材分析
分析一:本节由改变物体内能的两种方式引出热力学第一定律及其数学表达式,在此基础上结合以往的知识总结出能量守恒定律,最后通过能量守恒定律阐述永动机是不可能的.
分析二:根据热力学第一定律知,物体内能的改变量 ,运用此公式时,需要注意各物理量的符号:物体内能增加时, 为正,物体内能减少时, 为负;外界对物体做功时, 为正,物体对外界做功时, 为负;物体吸收热量时, 为正,物体放出热量.
分析三:各种形式的能量在转化和转移过程中保持总量不变,无任何附加条件,而某种或几种能的守恒是要有条件的(例如机械能守恒需要对于系统只有重力或弹力做功).
教法建议
建议一:在讲完热力学第一定律后,给出其表达式,为增进学生对其理解,最好能举出实际例子,应用热力学第一定律计算或解释.
建议二:在讲能量守恒定律后,最好能用它对以往所学知识进行一个简单的总结.要使学生认识到能量守恒定律是一个普遍的规律,热力学第一定律是其一个具体表达形式.另外,为激发学生学习兴趣,阐述能量守恒定律的重要意义,可以简单介绍一下19世纪自然科学的三大发现.
教学 设计示例
教学 重点:热力学第一定律和能量守恒定律
教学 难点:永动机
一、热力学第一定律
改变物体内能的方式有两种:做功和热传递.
运用此公式时,需要注意各物理量的符号:物体内能增加时, 为正,物体内能减少时, 为负;外界对物体做功时, 为正,物体对外界做功时, 为负;物体吸收热量时, 为正,物体放出热量时, 为负.
例1:下列说法中正确的.是:
A、物体吸收热量,其内能必增加
B、外界对物体做功,物体内能必增加
C、物体吸收热量,同时对外做功,其内能可能减少
D、物体温度不变,其内能也一定不变
答案:C
评析:在分析问题时,要求考虑比较周全,既要考虑到内能包括分子动能和分子势能,又要考虑到改变内能也有两种方式:做功和热传递.
例题2:空气压缩机在一次压缩中,空气向外界传递的热量2.0 ×10 5 J,同时空气的内能增加了1.5 ×10 5 J. 这时空气对外做了多少功?
解:根据热力学第一定律 知
1.5 ×10 5 J - 2.0 ×10 5 J = -0.5 ×10 5 J
所以此过程中空气对外做了0.5 ×10 5 J的功.
二、能量守恒定律
1、复习各种能量的相互转化和转移
2、能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变.(学生看书学习能量守恒定律内容).
3、能量守恒定律的历史意义.
三、永动机
永动机的原理违背了能量守恒定律,所以是不可能的.
举例说明几种永动机模型
四、作业
探究活动
题目:永动机
组织:分组
方案:收集有关永动机的材料,并运用所学知识说明永动机是不可能的
评价:材料的丰富性
高中物理教案5
1、知识与技能
(1)知道波面和波线,以及波传播到两种介质的界面时同时发生反射和折射
(2)知道波发 生反射现 象时 ,反射角等于入射角,知道反射波的频率,波速和波长与入射波相同
(3)知道折射波与入射波的频率相同,波速与波长不同,理解波发生折射的原因是波在不同介质中速度不同,掌握入射角与折射角的 关系
2、过程与方法:
3、情感、态度与价值观:
教学重点:惠更斯原理,波的反射和折射规律
教学难点:惠更斯原理
教学方法:课堂演示,flash课件
一.引入新课
1.蝙蝠的“眼睛”:18世纪,意大利教士兼生物学家斯帕兰扎尼研究蝙蝠在夜间活动时,发现蝙蝠是靠高频率的尖叫来确定障碍物的位置的。这种尖叫声在每秒2万到10万赫兹之间,我们的耳 朵对这样频率范围内的声波是听不到的。这样的声波称为超声波。蝙蝠发出超声波,然后借助物体反射回来的回声,就能判断出所接近的物体的大小、形状和运动方式。
2.隐形飞机F—117:雷达是利用无线电 波发现目标,并测定其位置的设备。由于无线电波具有恒速、定向传播的规 律,因此,当雷达波碰到飞行目 标(飞机、导弹)等时,一部分雷达波便会反射回来,根据反射雷达波的时间和方位便可以计算出飞行目标的'位置。
雷达确定目标示意图
由于一般飞机的外形比较复杂,总有许多部分能够强烈反射雷达波,因此整个飞机表面涂以黑色的吸收雷达波的涂料。
一.波面和波线
波面:同一时刻,介质中处于波峰或波谷的质点所构成的面叫做波面.
波线:用来表示波的传播方向的跟各个波面垂直的线叫做波线.
二.惠更斯原理
荷兰物理 学家 惠 更 斯
1.惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。
2.根据惠更斯原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。
二.波的反射
1.波遇到障碍物会返回来继续传播,这种现象叫做波的反射.
2.反射规律
反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。
入射角(i)和反射角(i’):入射波的波线与平面法线的夹角i叫做入射角.反射波的波线与平面法线的夹角i’ 叫做反射角.
反射波的波长、频率、波速都跟入射波相同.
波遇到两种介质界面时,总存在反射
三.波的折射
1.波的折射:波从一种介质进入另一种介质时,波的 传播方向发 生了改变的现象叫做波的折射.
2.折射规律:
(1).折射角(r):折射波的波线与两介质界面法线的夹角r叫做折射角.
2.折射定律:入射线、法线、折射线在同一平面内,入射线 与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:
当入射速度大于折射速度时,折射角折向法线.
当入射速度小于折射速度时,折射角折离法线.
当垂直界面入射时,传播方向不改变,属折射中的特例.
在波的折射中,波的频率不改变,波 速和波长都发生改变.
波发生折射的原因:是波在不同介质中的速度不同.
由惠更斯原理,A、B为同一波面上的两点,A、B点会发射子波,经⊿t后, B点发射的子波到达界面处D点, A点的到达C点,
高中物理教案6
教学目标
一、知识目标
1、知道变压器的构造.知道变压器是用来改变交流电压的装置.
2、理解互感现象,理解变压器的工作原理.
3、掌握理想变压器工作规律并能运用解决实际问题.
4、理解理想变压器的原、副线圈中电压、电流与匝数的关系,能应用它分析解决基本问题.
5、理解变压器的输入功率等于输出功率.能用变压器的功率关系解决简单的变压器的电流关系问题.
6、理解在远距离输电时,利用变压器可以大大降低传输线路的电能消耗的原因.
7、知道课本中介绍的几种常见的变压器.
二、能力目标
1、通过观察演示实验,培养学生物理观察能力和正确读数的习惯.
2、从变压器工作规律得出过程中培养学生处理实验数据及总结概括能力.
3、从理想变压器概念引入使学生了解物理模型建立的基础和建立的意义.
三、情感目标
1、通过原副线圈的匝数与绕线线径关系中体会物理学中的xx、统一美.
2、让学生充分体会能量守恒定律的'普遍xx及辩xx统一思想.
3、培养学生尊重事实,实事求是的科学精神和科学态度.
教学建议
教材分析及相应的教法建议
1、在学习本章之前,首先应明确的是,变压器是用来改变交变电流电压的变压器不能改变恒定电流的电压.互感现象是变压器工作的基础.让学生在学习电磁感应的基础上理解互感现象.这里的关键是明白原线圈和副线圈有共同的铁芯,穿过它们的磁通量和磁通量的变化时刻都是相同的因而,其中的感应电动势之比只与匝数有关.这样原、副线圈的匝数不同,就可以改变电压了.
2、在分析变压器的原理时,课本中提到了次级线圈对于负载来讲,相当于一个交流电源一般情况下,忽略变压器的磁漏,认为穿过原线圈每一匝的磁通量与穿过副线圈的磁通量总是相等的这两个条件,都是理想变压器的工作原理的内容.利用课本中的这些内容,教师在课堂上,首先可以帮助学生分析变压器原理,原线圈上加上交变流电后,铁心中产生交变磁通量;在副线圈中产生交变电动势,则副线圈相当于交流电源对外供电.在这个过程中,如果从能量角度分析,可以看成是电能(原线圈中的交变电流)转换成磁场能(铁心中的变化磁场),磁场能又转换成电能(副线圈对外输出电流).所以,变压器是一个传递能量的装置.如果不计它的损失,则变压器在工作中只传递能量不消耗能量。要使学生明白,理想变压器是忽略了变压器中的能量损耗,它的输出功率与输入功率相等,这样才得出原、副线圈的电压、电流与匝数的关系式.在解决有两个副线圈的变压器的问题时,这一点尤其重要.当然,在初学时,有两个副线圈的变压器的问题,不做统一要求,不必急于去分析这类问题.对于学有余力的学生,可引导他们进行分析讨论。
3、学生对变压器原理和变压器中原、副线圈的电压、电流的关系常有一些似是而非的模糊认识,引导学生认真讨论章后习题,对学生澄清认识会有所帮助。
4、变压器的电压公式是直接给出的课本中利用原、副线圈的匝数关系,说明了什么是升压变压器和什么是降压变压器,这也是为了帮助学生能记住电压关系公式.利用变压器的输出功率和输人功率相等的关系,得到了i1i2=u1u2.建议教师做好用输出负载调节输入功率的演示实验.引导学生注意观察,当负载端接入的灯泡逐渐增多时,原、副线圈上的电压基本上不发生变化,原线圈中的电流逐渐增大,副线圈中的电流也逐渐增大。
5、介绍几种常见的变压器,是让学生能见到真实的变压器的外型和了解变压器的实际构造.教师应当尽可能多地找一些变压器的给学生看一看.变压器在生产和生活中有十分广泛的应用.课本中介绍了一些,教学中可根据实际情况向学生进行介绍,或看挂图、照片、实物,或参观,以开阔学生眼界,增加实际知识。
6、电能的输送,定xx地说明了在远距离输送电能时,采用变压器进行高压输电可以大大减少输电线路上的电能损失.这里重点描述了输电线上的电流大小与造成的电热损失的关系,教师应帮助学生分析,理解采用高压输电的必要xx.
教学重点、难点、疑点及解决办法
1、重点:
变压器工作原理及工作规律.
2、难点:
(1)理解副线圈两端的电压为交变电压.
(2)推导变压器原副线圈电流与匝数关系.
(3)掌握公式中各物理量所表示对象的含义.
3、疑点:
变压器铁心是否带电即如何将电能从原线圈传输出到副线圈.
4、解决办法:
(1)通过演示实验来研究变压器工作规律使学生能在实验基础上建立规律.
(2)通过理想化模型建立及理论推导得出通过原副线圈电流与匝数间的关系.
(3)通过运用变压器工作规律的公式来解题使学生从实践中理解公式各物理量的含义
高中物理教案7
一、知识与技能
1.粗略了解物理学史上对电荷间相互作用力的认识过程。
2.知道电荷间的相互作用是通过电场发生的,电场是客观存在的一种特殊的形态。
3.理解电场强度的概念及其定义,会根据电场强度的定义进行有关的计算。知道电场强度是矢量,知道电场强度的方向是怎样规定的。
4.能根据库仑定律和电场强度的定义推导点电荷场强的计算式,并能用此公式进行有关的计算。
5.知道场强的叠加原理,并能应用这一原理进行简单的计算。
二、过程与方法
1.经历“探究描述电场强弱的物理量”的过程,获得探究活动的体验。
2.领略通过电荷在电场中所受静电力研究电场、理想模型法、比值法、类比法等物理学研究方法。
三、情感态度与价值观
1.体验探究物理规律的艰辛与喜悦。
2.学习科学家严谨科学的态度。
【教学重点】
1.探究描述电场强弱的物理量。
2.理解电场、电场强度的概念,并会根据电场强度的定义进行有关的计算。
【教学难点】
探究描述电场强弱的物理量。
【教学用具】多媒体课件
【设计思路】
以“电荷间相互作用如何发生”、“如何描述电场的强弱”两大问题为主线展开,具体操作思路是:
1.学生自学电场,培养学生阅读、汲取信息的能力。
2.通过实验模拟和定量分析的方法探究描述电场强弱的物理量。
3.通过练习巩固加深对电场强度概念的理解,探讨点电荷的电场及场强叠加原理。
【教学设计】
一、复习提问、新课导入(5分钟)
教师:上一节课我们学习了库仑定律,请同学们回忆一下:库仑定律的内容是什么?
学生回答:略
教师:我们不免会产生这样的疑问:
投影展示问题1:真空中?它们之间相隔一定的距离这种相互作用是如何产生的呢?难道能够不需介质超越空间?
投影展示“探究影响电荷间相互作用力的因素”图片(1.2-1)。
教师:这幅图大家不陌生,那么相同的小球在不同的位置所受作用力不一样,说明了什么?
学生回答:库仑力的大小与距离有关。
教师:其本质原因又是什么呢?(投影展示问题2)
教师:带着这两个疑问,本节课我们一齐来学习第三节电场强度。(板书课题)
二、新课教学(35分钟)
(一)电场
教师:请同学们带着以下问题自学“电场”内容。
(1)电荷间的相互作用是如何发生的?这一观点是谁提出来的?
(2)请用自己的语言描述一下什么是电场?
(3)电场有什么本领?
学生自学,师板书“一、电场”。
学生回答:(1)略;
教师:法拉第同学们曾记否?
学生(集体)回答:电磁感应现象。
教师:法拉第是英国物理学家、化学家,对事物的本质有着非常敏锐的洞察力,在电学上有着突出的贡献。依据法拉第的观点,我们如何描述电荷A、B之间的作用力。
师生共析。
(2)略;
教师启发引导:场是“物质”──它和分子、原子组成的实物一样具有能量、质量和动量,电视机、收音机信号的发射与接受就是电磁场在空间的传播;“特殊”──看不见、摸不着;“存在于电荷周围”并板书。
(电场是)存在于电荷周围的一种特殊的物质。
教师:场与实物是物质存在的两种不同形式。
(3)学生回答:对放入其中的电荷有静电力的作用。
(二)科学探究描述电场强弱的方法
教师:下面我们再来探讨第二个问题。
依次投影问题:①相同的小球在不同的位置所受作用力不一样,其本质原因是什么呢?(对照“探究影响电荷间相互作用力的.因素”图片说明)
学生回答:电场强弱不同。
②那么如何来描述电场的强弱呢?
教师启发:像速度、密度等寻找一个物理量来表示。
③如何来研究电场?
(学生思考)
教师启发引导:电场的本领是对场中的其他电荷具有作用力,这也是电场的最明显、最基本的特征之一。因此在研究电场的性质时,我们可以从静电力入手。(板书研究方法)
教师:对于像电场这样,看不见,摸不到,但又客观存在的物质,可以根据它表现出来的性质来研究它,这是物理学中常用的研究方法。
教师:还需要什么?
学生回答:电场及放入其中的电荷。
多媒体依次展示,教师简述:①“探究影响电荷间相互作用力的因素”中的试探电荷;②场源电荷。
师生共析对试探电荷的要求。
教师:下面请同学们仔细观察模拟实验的动画演示,并描述你看到的现象说明了什么。多媒体动画模拟:①不同位置偏角不同;②增加试探电荷带电量偏角均增加。
学生回答:不同位置受力不同;同一位置试探电荷带电量增加,受力增大,但不同位置受力大小关系不变。
教师:下面我们再通过表格定量地来看一看:
将表格填完整,并分析、比较表格中的数据有什么特点和规律,看你能否得出如何来描述电场的强弱。多媒体展示表格,学生回答后依次填入:①F1、F2、F3及F1<F2<F3;②2F1、3F1、4F1、nF1等。
表一:(P1位置)
试探电荷 q 2q 3q 4q nq
静电力 F1 2F1 3F1 4F1 nF1
表二:(P2位置)
试探电荷 q 2q 3q 4q nq
静电力 F2 2F2 3F2 4F2 nF2
表三:(P3位置)
试探电荷 q 2q 3q 4q nq
静电力 F3 2F3 3F3 4F3 nF3
(学生思考并交流讨论)
学生回答:
(1)不同的电荷,即使在电场中的同一点,所受静电力也不同,因而不能直接用试探电荷所受的静电力来表示电场的强弱;
(2)电场中同一点,比值F/q是恒定的,与试探电荷的电荷量无关;(同一张表格)
(3)在电场中不同位置比值F/q不同。(三张表格比较)
师生共同小结:比值由电荷q在电场中的位置决定,与电荷q的电荷量大小无关,它才是反映电场性质的物理量。
教师:在物理学中我们定义放入电场中某点的电荷所受的静电力F跟它的电荷量q的比值,叫做该点的电场强度。并板书。
(三)电场强度
1.定义:
教师:以前我们还学过哪些物理量是用比值法来定义的?
学生回答:略。
教师:从它的定义,电场强度的单位是什么?
学生回答:N/C
教师介绍另一种单位并板书。
2.单位:N/C或V/m,1N/C=1V/m
教师结合板画:在电场中不同位置,同种电荷受力方向不同,说明场强是矢量还是标量?
学生(集体)回答:矢量
教师结合板画:电场中同一点放入正电荷和负电荷受力方向不同,如何确定场强的方向呢?
教师:在物理学中作出了这样的规定。(板书)
3.方向:电场中某点电场强度的方向跟正电荷在该点所受静电力的方向相同。
教师:按照这个规定,如果放入电场中的是负电荷呢?
学生回答:与负电荷在电场中某点所受静电力的方向相反。
投影练习:
练习1(加深对场强的理解,探讨点电荷的场强大小与方向)
点电荷是最简单的场源电荷。设一个点电荷的电荷量为+Q,与之相距为r的A点放一试探电荷,所带电荷量为+q。
(1)试用所学的知识推导A点的场强的大小,并确定场强的方向;
(2)若所放试探电荷为-2q,结果如何?
(3)如果移走所放的试探电荷呢?
(请两位同学板演前两问后,共同完成第三问)
师生共同归纳总结:
1.点电荷电场的场强大小与方向。(多媒体动画演示方向的确定方法)
2.电场强度是描述电场(力的)性质的物理量,在静电场中,它不随时间改变。电场中某点的场强完全由电场本身决定,与是否放入电荷,放入电荷的电荷量、电性无关!
辨析 和 的关系,强调 的适用条件。
练习2(探讨场强的叠加,巩固对场强的理解及公式的灵活运用,加强计算能力培养)
如图所示,真空中有两个点电荷Q1=+3.0×10-8C和Q2=-3.0×10-8C,它们相距0.1m,A点与两个点电荷的距离r相等,r=0.1m。求:
(1)电场中A点的场强;
(2)在A点放入电量q=-1×10-6C,求它受的电场力。
教师:题中场源电荷不止一个,如何来确定电场中某点的场强?
学生:平行四边形定则
(请两位同学板演)
教师:根据场强的叠加原理对于一个比较大的不能看成点电荷的带电物体产生电场的场强如何确定?
学生思考后回答:无限等分成若干个点电荷。
教师:根据以上方法,同学们设想一下一个半径为R的均匀带电球体(或球壳)外部产生电场的场强,如何求解?
学生思考后回答:等效成电荷量集中于球心的点电荷。
三、小结(多媒体依次投影,并简述)
通过本节课的学习,我们知道电荷间的相互作用是通过电场发生的,电场是存在于电荷周围的一种特殊的物质,它最基本的特征是对放入其中的电荷具有力的作用。正是利用电场的这一特性,我们通过研究试探电荷的所受静电力特点,引入了描述电场强弱的物理量──电场强度。电场强度是用比值法定义的,它是矢量,有方向。
电场、电场强度的概念是电学中最重要的概念之一,它的研究方法和定义方法也是物理学中比较常见的方法。
四、板书设计
一、电场
客观存在的一种特殊的物质形态
二、电场强度
1.定义:E=F/q
2.单位:
3.方向:跟正电荷在该点所受静电力的方向相同
三、点电荷的电场
1.推导:
2.大小:
3.方向:
四、电场强度的叠加
五、布置作业
教材P16-171、2、7
思考题:
完成课本P173,比较电场强度E=F/q与重力加速度g=G/m有什么相同点和不同点
六、教学反思
探究描述电场强弱的物理量是本节课的重难点内容之一,应给学生充分的思考时间,并让学生相互交流讨论,教师还可进行适当启发引导。另外,探究时间很难控制,在内容处理上应做到详略得当,发挥学生的主动性,如对电场及练习题的处理,尽可能由学生完成。
高中物理教案8
本节教材分析
这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量.
在讲课时,应用万有引力定律有两条思路要交待清楚.
1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题.
2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题.
一、教学目标
1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动的向心力。
2.使学生对人造地球卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景。
二、重点、难点分析
1.天体运动的向心力是由万有引力提供的,这一思路是本节课的重点。
2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度,它们的统一是本节课的难点。
三、教具
自制同步卫星模型。
四、教学过程
(一)引入新课
1.复习提问:
(1)物体做圆周运动的向心力公式是什么?分别写出向心力与线速
(2)万有引力定律的内容是什么?如何用公式表示?(对学生的回答予以纠正或肯定。)
(3)万有引力和重力的关系是什么?重力加速度的决定式是什么?(学生回答:地球表面物体受到的重力是物体受到地球万有引力的一个分力,但这个分力的大小基本等于物体受到地球的万有引力。如不全面,教师予以补充。)
2.引课提问:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?(可由学生讨论,教师归纳总结。)
因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。(教师边讲解,边画板图。)
可见万有引力与天体的运动密切联系,我们这节课就要研究万有引力定律在天文学上的应用。
板书:万有引力定律在天文学上的应用人造卫星
(二)教学过程
1.研究天体运动的基本方法
刚才我们分析了行星的运动,发现行星绕恒星做圆周运动,此时,恒星对行星的万有引力是行星做圆周运动的向心力。其实,所有行星绕恒星或卫星绕行星的运动都可以基本上看成是匀速圆周运动。这时运动的行星或卫星的受力情况也非常简单:它不可能受到弹力或摩擦力,所受到的力只有一种——万有引力。万有引力作为其做圆周运动的向心力。
板书:F万=F向
下面我们根据这一基本方法,研究几个天文学的问题。
(1)天体质量的计算
如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?根据研究天体运动的基本方法:万有引力做向心力,F万=F向
(指副板书)此时知道卫星的圆周运动周期,其向心力公式用哪个好呢?
等式两边都有m,可以约去,说明与卫星质量无关。我们就可以得
(2)卫星运行速度的比较
下面我们再来看一个问题:某行星有两颗卫星,这两颗卫星的质量和轨道半径都不相同,哪颗卫星运动的速度快呢?我们仍然利用研究天体运动的基本方法:以万有引力做向心力
F万=F向
设行星质量为M,某颗卫星运动的轨道半径为r,此卫星质量为m,它受到行星对它的万有引力为
(指副板书)于是我们得到
等式两边都有m,可以约去,说明与卫星质量无关。于是我们得到
从公式可以看出,卫星的运行速度与其本身质量无关,与其轨道半径的平方根成反比。轨道半径越大,运行速度越小;轨道半径越小,运行速度越大。换句话说,离行星越近的卫星运动速度越大。这是一个非常有用的结论,希望同学能够给予重视。
(3)海王星、冥王星的发现
刚才我们研究的问题只是实际问题的一种近似,实际问题要复杂一些。比如,行星绕太阳的运动轨道并不是正圆,而是椭圆;每颗行星受到的引力也不仅由太阳提供,除太阳的引力最大外,还要受到其他行星的引力。这就需要更复杂一些的运算,而这种运算,导致了海王星、冥王星的发现。
200年前,人们认识的太阳系有7大行星:水星、金星、地球、火星、土星、木星和天王星,后来,人们发现最外面的行星——天王星的运行轨道与用万有引力定律计算出的有较大的偏差。于是,有人推测,在天王星的轨道外侧可能还有一颗行星,它对天王星的引力使天王星的轨道发生偏离。而且人们计算出这颗行星的可能轨道,并且在计算出的位置终于观测到了这颗新的行星,将它命名为海王星。再后,又发现海王星的轨道也与计算值有偏差,人们进一步推测,海王星轨道外侧还有一颗行星,于是用同样的方法发现了冥王星。可见万有引力定律在天文学中的应用价值。
2.人造地球卫星
下面我们再来研究一下人造地球卫星的发射及运行情况。
(1)卫星的发射与运行
最早研究人造卫星问题的是牛顿,他设想了这样一个问题:在地面某一高处平抛一个物体,物体将走一条抛物线落回地面。物体初速度越大,飞行距离越远。考虑到地球是圆形的,应该是这样的图景:(板图)
当抛出物体沿曲线轨道下落时,地面也沿球面向下弯曲,物体所受重力的方向也改变了。当物体初速度足够大时,物体总要落向地面,总也落不到地面,就成为地球的`卫星了。
从刚才的分析我们知道,要想使物体成为地球的卫星,物体需要一个最小的发射速度,物体以这个速度发射时,能够刚好贴着地面绕地球飞行,此时其重力提供了向心力。
其中,g为地球表面的重力加速度,约9.8m/s2。R为地球的半径,约为6.4×106m。代入数据我们可以算出速度为7.9×103m/s,也就是7.9km/s。这个速度称为第一宇宙速度。
板书:第一宇宙速度v=7.9km/s
第一宇宙速度是发射一个物体,使其成为地球卫星的最小速度。若以第一宇宙速度发射一个物体,物体将在贴着地球表面的轨道上做匀速圆周运动。若发射速度大于第一宇宙速度,物体将在离地面远些的轨道上做圆周运动。
现在同学思考一个问题:刚才我们分析卫星绕行星运行时得到一个结论:卫星轨道离行星越远,其运动速度越小。现在我们又得到一个结论:卫星的发射速度越大,其运行轨道离地面越远。这两者是否矛盾呢?
其实,它们并不矛盾,关键是我们要分清发射速度和运行速度是两个不同的速度:比如我们以10km/s的速度发射一颗卫星,由于发射速度大于7.9km/s,卫星不可能在地球表面飞行,将会远离地球表面。而卫星远离地球表面的过程中,其在垂直地面方向的运动,相当于竖直上抛运动,卫星速度将变小。当卫星速度减小到7.9km/s时,由于此时卫星离地球的距离比刚才大,根据万有引力定律,此时受到的引力比刚才小,仍不能使卫星在此高度绕地球运动,卫星还会继续远离地球。卫星离地面更远了,速度也进一步减小,当速度减小到某一数值时,比如说5km/s时,卫星在这个位置受到的地球引力刚好满足卫星在这个轨道以这个速度运动所需向心力,卫星将在这个轨道上运动。而此时的运行速度小于第一宇宙速度。所以,第一宇宙速度是发射地球卫星的最小速度,是卫星地球运行的最大速度。
板书:第一宇宙速度是发射地球卫星的最小速度,是卫星绕地球运行的最大速度。
如果物体发射的速度更大,达到或超过11.2km/s时,物体将能够摆脱地球引力的束缚,成为绕太阳运动的行星或飞到其他行星上去。11.2km/s这个速度称为第二宇宙速度。
板书:第二宇宙速度v=11.2km/s
如果物体的发射速度再大,达到或超过16.7km/s时,物体将能够摆脱太阳引力的束缚,飞到太阳系外。16.7km/s这个速度称为第三宇宙速度。
板书:第三宇宙速度v=16.7km/s
(2)同步通讯卫星
下面我们再来研究一种卫星——同步通信卫星。这种卫星绕地球运动的角速度与地球自转的速度相同,所以从地面上看,它总在某地的正上方,因此叫同步卫星。这种卫星一般用于通讯,又叫同步通讯卫星。我们平时看电视实况转播时总听到解说员讲:正在通过太平洋上空或印度洋上空的通讯卫星转播电视实况,为什么北京上空没有同步卫星呢?大家来看一下模型(出示模型):
若在北纬或南纬某地上空真有一颗同步卫星,那么这颗卫星轨道平面的中心应是地轴上的某点,而不是地心,其需要的向心力也指向这一点。而地球所能够提供的引力只能指向地心,所以北纬或南纬某地上空是不可能有同步卫星的。另外由于同步卫星的周期与地球自转周期相同,所以此卫星离地球的距离只能是一个定值。换句话说,所有地球的同步卫星只能分布在赤道正上方的一条圆弧上,而为了卫星之间不相互干扰,大约3度角左右才能放置一颗卫星,地球的同步通讯卫星只能有120颗。可见,空间位置也是一种资源。(可视时间让学生推导同步卫星的高度)
五、课堂小结
本节课我们学习了如何用万有引力定律来研究天体运动的问题;掌握了万有引力是向心力这一研究天体运动的基本方法;了解了卫星的发射与运行的一些情况;知道了第一宇宙速度是卫星发射的最小速度,是卫星绕地球运行的最大速度。最后我们还了解了通讯卫星的有关情况,本节课我们学习的内容较多,希望及时复习。
六、说明
1.设计思路:本节课是一节知识应用与扩展的课程,所以设计时注意加大知识含量,引起学生兴趣。同时注意方法的培养,让学生养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯,避免套公式的不良习惯。围绕第一宇宙速度的讨论,让学生形成较正确的卫星运动图景。
2.同步卫星模型是用一地球仪改制而成,用一个小球当卫星,小球与地球仪用细线相连,细线的一端可在地球仪的不同纬度处固定。
第六章万有引力定律(四、万有引力定律在天文学上的应用)
第六章万有引力定律(四、万有引力定律在天文学上的应用)
教材分析
这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量。
在讲课时,应用万有引力定律有两条思路要交待清楚。
1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题。
2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题。
这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。
教学目标
一知识目标
1.了解行星绕恒星运动及卫星绕行星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力。
2.了解万有引力定律在天文学上有重要应用。
3.会用万有引力定律计算天体的质量。
二能力目标
通过万有引力定律在实际中的应用,培养学生理论联系实际的能力。
教学重点
1.人造卫星、月球绕地球的运动;行星绕太阳的运动的向心力是由万有引力提供的。
2.会用已知条件求中心天体的质量。
教学难点
根据已有条件求中心天体的质量。
教学步骤
一导入新课
复习旧课:
1.卡文迪许实验测万有引力常量的原理是什么?
答:利用引力矩与金属丝的扭转力矩的平衡来求得。
2.万有引力常量的测出的物理意义。
答:使万有引力定律有了其实际意义,可以求得地球的质量等。
对了,万有引力常量一经测出,万有引力定律对天文学的发展起了很大的推动作用,这节课我们来学习万有引力定律在天文学上的应用。
二新课教学
(一)天体质量的计算
提出问题引导学生思考:在天文学上,天体的质量无法直接测量,能否利用万有引力定律和前面学过的知识找到计算天体质量的方法呢?
1.基本思路:在研究天体的运动问题中,我们近似地把一个天体绕另一个天体的运动看作匀速圆周运动,万有引力提供天体作圆周运动的向心力。
2.计算表达式:
例如:已知某一行星到太阳的距离为r,公转周期为T,太阳质量为多少?
分析:设太阳质量为M,行星质量为m,由万有引力提供行星公转的向心力得:
,∴
提出问题引导学生思考:如何计算地球的质量?
分析:应选定一颗绕地球转动的卫星,测定卫星的轨道半径和周期,利用上式求出地球质量。因此上式是用测定环绕天体的轨道半径和周期方法测被环绕天体的质量,不能测定环绕天体自身质量。
对于一个天体,M是一个定值.所以,绕太阳做圆周运动的行星都有。即开普勒第三定律。
老师总结:应用万有引力定律计算天体质量的基本思路是:根据行星(或卫星)运动的情况,求出行星(或卫星)的向心力,而F向=F万有引力。根据这个关系列方程即可。
例如:已知月球到地球的球心距离为r=4×108m,月亮绕地球运行的周期为30天,求地球的质量。
解:月球绕地球运行的向心力即月地间的万有引力即有:
F向=F引=
得:
求某星体表面的重力加速度
例:一个半径比地球大2倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的
A.6倍B.18倍C.4倍D.13.5倍
分析:在星体表面处,F引≈mg.所以,在地球表面处:
在某星球表面处:
∴
即正确选项为C
学生自己总结:求某星球表面的重力加速度,一般采用某物体在星体表面受到的重力等于其万有引力.一般采用比例计算法。
练习:金星的半径是地球的0.95倍,质量是地球的0.82倍,金星表面的重力加速度是多大?
3.发现末知天体
用万有引力定律计算天体的质量是天文学上的重要应用之一,一个科学的理论,不但要能说明已知事实,而且要能预言当时不知道的事实,请同学们阅读课本并思考:科学家是如何根据万有引力定律发现海王星的?
请同学们推导:已知中心天体的质量及绕其运动的行星的运动情况,在太阳系中,行星绕太阳运动的半径r为:
根据F万有引力=F向=,而F万有引力=,两式联立得:
在18世纪发现的第七个行星──天王星的运动轨道,总是同根据万有引力定律计算出来的有一定偏离。当时有人预测,肯定在其轨道外还有一颗未发现的新星。后来,亚当斯和勒维列在预言位置的附近找到了这颗新星。后来,科学家利用这一原理还发现了许多行星的卫星,由此可见,万有引力定律在天文学上的应用,有极为重要的意义。
海王星和冥王星的发现,显示了万有引力定律对研究天体运动的重要意义,同时证明了万有引力定律的正确性。
三例题分析
例1.木星的一个卫星运行一周需要时间1.5×104s,其轨道半径为9.2×107m,求木星的质量为多少千克?
解:木星对卫星的万有引力提供卫星公转的向心力:
,例2.地球绕太阳公转,轨道半径为R,周期为T。月球绕地球运行轨道半径为r,周期为t,则太阳与地球质量之比为多少?
解:⑴地球绕太阳公转,太阳对地球的引力提供向心力
则,得:
⑵月球绕地球公转,地球对月球的引力提供向心力
则,得:
⑶太阳与地球的质量之比
例3.一探空箭进入绕太阳的近乎圆形的轨道运行,轨道半径是地球绕太阳公转半径的9倍,则探空火箭使太阳公转周期为多少年?
解:方法一:设火箭质量为m1,轨道半径R,太阳质量为M,地球质量为m2,轨道半径为r。
⑴火箭绕太阳公转,则
得:………………①
⑵地球绕太阳公转,则
得:………………②
∴∴火箭的公转周期为27年。
方法二:要题可直接采用开普勒第三定律求解,更为方便。
四巩固练习
1.将一物体挂在一弹簧秤上,在地球表面某处伸长30mm,而在月球表面某处伸长5mm.如果在地球表面该处的重力加速度为9.84m/s2,那么月球表面测量处相应的重力加速度为
A.1.64m/s2B.3.28m/s2
C.4.92m/s2D.6.56m/s2
2.地球是一个不规则的椭球,它的极半径为6357km,赤道半径为6378km,物体在两极所受的引力与在赤道所受的引力之比为
参考答案:
1.A2.1.0066
五小结(用投影片出示)
这节课我们主要掌握的知识点是:
1.万有引力定律在天文学中的应用,一般有两条思路:
(1)F万有引力=环绕体所需的向心力
(2)地面(或某星球表面)的物体的重力=F万有引力。
2.了解万有引力定律在天文学中具有的重要意义。
五作业
高中物理教案9
名师导航
●重点与剖析
一、自由落体运动
1.定义:物体只在重力作用下从静止开始下落的运动.
思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同?
在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了.
在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同.
2.不同物体的下落快慢与重力大小的关系
(1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体下落得较快.
(2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同.
3.自由落体运动的特点
(1)v0=0
(2)加速度恒定(a=g).
4.自由落体运动的性质:初速度为零的匀加速直线运动.
二、自由落体加速度
1.自由落体加速度又叫重力加速度,通常用g来表示.
2.自由落体加速度的方向总是竖直向下.
3.在同一地点,一切物体的自由落体加速度都相同.
4.在不同地理位置处的自由落体加速度一般不同.
规律:赤道上物体的重力加速度最小,南(北)极处重力加速度最大;物体所处地理位置的纬度越大,重力加速度越大.
三、自由落体运动的运律动规
因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动.
1.速度公式:v=gt
2.位移公式:h= gt2
3.位移速度关系式:v2=2gh
4.平均速度公式: =
5.推论:Δh=gT2
●问题与探究
问题1 物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想?
探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些.
问题2 自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的.运动看成是自由落体运动.
探究思路:回顾第一章质点的概念,谈谈我们在处理物理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法.
问题3 地球上的不同地点,物体做自由落体运动的加速度相同吗?
探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小.
●典题与精析
例1 下列说法错误的是
A.从静止开始下落的物体一定做自由落体运动
B.若空气阻力不能忽略,则一定是重的物体下落得快
C.自由落体加速度的方向总是垂直向下
D.满足速度跟时间成正比的下落运动一定是自由落体运动
精析:此题主要考查自由落体运动概念的理解,自由落体运动是指物体只在重力作用下从静止开始下落的运动.选项A没有说明是什么样的物体,所受空气阻力能否忽略不得而知;选项C中自由落体加速度的方向应为竖直向下,初速度为零的匀加速直线运动的速度都与时间成正比,但不一定是自由落体运动.
答案:ABCD
例2 小明在一次大雨后,对自家屋顶滴下的水滴进行观察,发现基本上每滴水下落的时间为1.5 s,他由此估计出自家房子的大概高度和水滴落地前瞬间的速度.你知道小明是怎样估算的吗?
精析:粗略估计时,将水滴下落看成是自由落体,g取10 m/s2,由落体运动的规律可求得.
答案:设水滴落地时的速度为vt,房子高度为h,则:
vt=gt=10×1.5 m/s=15 m/s
h= gt2= ×10×1.52 m=11.25 m.
绿色通道:学习物理理论是为了指导实践,所以在学习中要注重理论联系实际.分析问题要从实际出发,各种因素是否对结果产生影响都应具体分析.
例3 一自由下落的物体最后1 s下落了25 m,则物体从多高处自由下落?(g取10 m/s2)
精析:本题中的物体做自由落体运动,加速度为g=10 N/kg,并且知道了物体最后1 s的位移为25 m,如果假设物体全程时间为t,全程的位移为s,该物体在前t-1 s的时间内位移就是s-25 m,由等式h= ggt2和h-25= g(t-1)2就可解出h和t.
答案:设物体从h处下落,历经的时间为t.则有:
h= gt2 ①
h-25= g(t-1)2 ②
由①②解得:h=45 m,t=3 s
所以,物体从离地45 m高处落下.
绿色通道:把物体的自由落体过程分成两段,寻找等量
高中物理教案10
教学目标
知识目标
1、了解形变的概念,了解弹力是物体发生弹性形变时产生的.
2、能够正确判断弹力的有无和弹力的方向,正确画出物体受到的弹力.
3、掌握运用胡克定律计算弹簧弹力的方法.
能力目标
1、能够运用二力平衡条件确定弹力的大小.
2、针对实际问题确定弹力的大小方向,提高判断分析能力.
教学建议
一、基本知识技能:
(一)、基本概念:
1、弹力:发生形变的物体,由于要回复原状,对跟它接触的物体会产生力的作用,这种力叫做弹力.
2、弹性限度:如果形变超过一定限度,物体的形状将不能完全恢复,这个限度叫做弹性限度.
3、弹力的大小跟形变的大小有关,形变越大,弹力也越大.
4、形变有拉伸形变、弯曲形变、和扭转形变.
(二)、基本技能:
1、应用胡克定律求解弹簧等的产生弹力的大小.
2、根据不同接触面或点画出弹力的图示.
二、重点难点分析:
1、弹力是物体发生形变后产生的,了解弹力产生的原因、方向的判断和大小的确定是本节的教学重点.
2、弹力的有无和弹力方向的判断是教学中学生比较难掌握的知识点.
教法建议
一、关于讲解弹力的产生原因的教法建议
1、介绍弹力时,一定要把物体在外力作用时发生形状改变的事实演示好,可以演示椭圆形状玻璃瓶在用力握紧时的形状变化,也可以演示其它明显的形变实验,如矿泉水瓶的形变,握力器的形变,钢尺的形变,也可以借助媒体资料演示一些研究观察物体微小形变的方法.通过演示,介绍我们在做科学研究时,通常将微小变化“放大”以利于观察.
二、关于弹力方向讲解的教法建议
1、弹力的方向判断是本节的重点,可以将接触面的关系具体为“点——面(平面、曲面)”接触和“面——面”接触.举一些例子,将问题简单化.往往弹力的方向的判断以“面”或“面上接触点的切面”为准.
如所示的简单图示:
2、注意在分析两物体之间弹力的作用时,可以分别对一个物体进行受力分析,确切说明,是哪一个物体的形变对其产生弹力的作用.配合教材讲解绳子的拉力时,可以用具体的例子,画出示意图加以分析.
第三节 弹力
教学方法:实验法、讲解法
教学用具:演示形变用的钢尺、橡皮泥、弹簧、重物(钩码).
教学过程设计
(一)、复习提问
1、重力是的产生原因是什么?重力的方怎样?
2、复习初中内容:形变;弹性形变.
(二)、新课教学
由复习过渡到新课,并演示说明
1、演示实验1:捏橡皮泥,用力拉压弹簧,用力弯动钢尺,它们的形状都发生了改变,教师总结形变的概念.
形变:物体的形状或体积的变化叫做形变,形变的原因是物体受到了力的作用.针对橡皮泥形变之后形状改变总结出弹性形变的概念:能够恢复原来形状的'形变叫做弹性形变.不能恢复原来形状的形变叫做塑性形变.
2、将钩码悬挂在弹簧上,弹簧另一端固定,弹簧被拉长,提问:
(1)钩码受哪些力?(重力、拉力、这二力平衡)
(2)拉力是谁加给钩码的?(弹簧)
(3)弹簧为什么对钩码产生拉力?(弹簧发生了弹性形变)
由此引出弹力的概念:
3、弹力:发生弹性形变的物体,会对跟它直接接触的物体产生力的作用.这种力就叫弹力.
就上述实验继续提问:
(1)弹力产生的条件:物体直接接触并发生弹性形变.
(2)弹力的方向
提问:课本放在桌子上.书给桌子的压力和桌子对书的支持力属于什么性质的力?其受力物体、施力物体各是什么?方向如何?
与学生讨论,然后总结:
4、压力的方向总是垂直与支持面而指向受力物体(被压物体).
5、支持力的方向总是垂直与支持面而指向受力物体(被支持物体).
继续提问:电灯对电线产生的拉力和电线对电灯产生的拉力又是什么性质的力?
其受力物体、施力物体各是谁?方向如何?
分析讨论,总结.
6、绳的拉力是绳对所拉物体的弹力,方向总是沿着绳而指向绳收缩的方向.
7、胡克定律
弹力的大小与形变有关,同一物体,形变越大,弹力越大.弹簧的弹力,与 形变的关系为:
在弹性限度内,弹力的大小 跟弹簧的伸长(或缩短)的长度 成正比,即:
式中 叫弹簧的倔强系数,单位:N/m.它由弹簧本身所决定.不同弹簧的倔强系数一般不相同.这个规律是英国科学家胡克发现的,叫胡克定律. 胡克定律的适用条件:只适用于伸长或压缩形变.
8、练习使用胡克定律,注意强调 为形变量的大小.
弹力高中物理教学反思
本节课注意了对学生开放性、创新性思维的培养。开放性创新性思维的培养不是一句口号,而应该落到实处,这是基础教育课程改革的要求,也是在教学实际中很难落实的一个问题。
一般情况下,教师在组织学生学习塑性和弹性的时候,往往是通过举出生活中或者学生能够接触的弹性物体和非弹性物体若干实例,通过归纳的方法得出塑性和弹性。在这个问题的处理上并没有按照往常的方法,而是让学生对教师给出的若干物体进行分类,潜移默化的对学生进行了方法教育。分类的标准不同,分类结果也就不同,学生的兴奋点就非常多,都试图依照不同的分类标准进行分类,学生的思维随着分类的翅膀在飞翔。
从学生的生活出发,关注学生的体验。物理不是独立和抽象于生活之外的,尤其在初中阶段来看更是如此。在组织教学的时候没有过分关注基本的知识和概念,而是从学生生活中常见的橡皮筋、海绵、弹簧、减震等学生常见常听的事物出发,学生在对物体的弹性和塑性有充分的感性基础上,总结出什么是塑性和弹性。关注学生自己的体验,让两位同学在拉测力计的活动中体验拉力的不同,认识到弹力的大小与弹性形变的物体的形变大小有关的。学生亲自参与到了物理知识的建构中,认识当然是非常深刻的。师生关系融洽和谐,这也是本节课的一个闪光点。
主要缺点:
学生在进行分类的时候没有充分放开学生的思维。为什么学生的分类答案都是与本节内容是对应的?为什么没有学生按照物质的组成去分?为什么没有按照物质的导电性能或者密度大小去分?这是受到了思维定势的影响,既然本节学习弹性和塑性,当然就是这一种分类方法。在以后的教学中应该让学生在充分分类的基础上,从中挑出一组依照弹性和塑性分类的一组,让学生分析这一种分类的标准是什么,同样回到了环节的主题。
高中物理教案11
教学目标:
一、知识目标
1、掌握匀变速直线运动的速度、位移公式
2、会推出匀变速直线运动的位移和速度的关系式,并会应用它进行计算二、能力目标提高学生灵活应用公式解题的能力三、德育目标本部分矢量较多,在解题中要依据质点的运动情况确定出各量的方向,不要死套公式而不分析实际的客观运动。
教学重点:
匀变速直线运动规律的应用
教学难点:
据速度和位移公式推导得到的速度和位移关系式的正确使用
教学方法:
讲练法、推理法、归纳法
教学用具:投影仪、投影片、CAI课件
课时安排1课时
教学过程:
一、导入新课
上节课我们学习了匀变速直线运动的速度、位移和时间之间的关系,本节课我们来学生上述规律的应用。
二、新课教学
(一)用投影片出示本节课的学生目标1、会推导匀变速直线运动的位移和速度的关系式2、能应用匀变速直线运动的规律求解有关问题。3、提问灵活应用公式解题的能力
(二)学生目标完成过程:1、匀变速直线运动的.规律(1)学生在白纸上书写匀变速直线运动的速度和位移公式:(2)在实物投影仪上进行检查和评析(3)据,消去时间,同学们试着推一下,能得到一个什么关系式。(4)学生推导后,抽查推导过程并在实物投影仪上评析。(5)教师说明:一般在不涉及时间的前提下,我们使用刚才得到的推论求解。(6)在黑板上板书上述三个公式:2、匀变速直线运动规律的应用(1)a.用投影片出示例题1:发射炮弹时,炮弹在枪筒中的运动可以看作是匀加速运动,如果枪弹的加速度是,枪筒长0.64m,枪弹射出枪口时的速度是多大b:用CAI课体模拟题中的物理情景,并出示分析思考题:1)枪筒的长度对应于枪弹做匀加速运动的哪个物理量2)枪弹的初速度是多大3)枪弹出枪口时的速度对应于枪弹做匀加速运动的什么速度4)据上述分析,你准备选用哪个公式求解C:学生写出解题过程,并抽查实物投影仪上评析。(2)用投影片注视巩固练习I:物体做匀加速运动,初速度为v0=2m/s,加速度a=0.1,求A:前4s内通过的位移B:前4s内的平均速度及位移。(3)a.用投影片出示例题2一个滑雪的人,从85米长的山坡上匀变速滑下,初速度是1.8m/s,末速度系5.0m/s,他通过这段山坡需要多长时间b:用CAI课件模拟题中的物理情景。c:据物理情景,同学们思考1)该滑雪人的运动可当做哪一种匀变速运动2)你认为所给的已知条件等效为匀变速直线运动的哪些物理量3)要求得时间t,你准备用什么方法求d:经同学们讨论后,用投影片展示课本上的解题过程:解:滑雪的人做匀加速直线运动,由e:说明:对于匀变速直线运动也就是说:对于变速直线运动,平均速度的求解有两个途径:(1)(2)这两个公式综合使用往往可使问题简化。
三、巩固练习做匀加速直线运动的物体,速度从v增加到2v时结果的位移是s,测它的速度从2v增加到4v经过的位移是多少
四、小结本节课我们主要是应用匀变速直线运动的下述公式解决了一些实际问题:vt=v0+at;s=v0t+at2;=2ass=这些公式共涉及v0、vt、a、s、t五个物理量,对于一段直线运动,只要已知三个物理量,总可以就出另外两个物理量。四、作业课后习题五、板书设计
高中物理教案12
知识目标
1、进一步理解向心力的概念。
2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用。
能力目标
1、培养在实际问题中分析向心力来源的能力。
2、培养运用物理知识解决实际问题的能力。
情感目标
1、激发学生学习兴趣,培养学生关心周围事物的习惯。
教学建议
教材分析
教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题。后面又附有思考与讨论,开拓学生的思维。
教法建议
1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力。
2、培养学生运用物体知识解决实际问题的能力。通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法。即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体。
第二:运用向心力公式计算做圆周运动所需的向心力。
第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解。
3、可多举一些实例让学生分析。向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供。
4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的.瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的。但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力。同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象。
高中物理教案13
教学目标
一、知识目标
1、知道电磁驱动现象。
2、知道三相交变电流可以产生旋转磁场,知道这就是感应电动机的原理。
3、知道感应电动机的基本构造:定子和转子。
4、知道感应电动机的优点,知道能使用感应电动机是三相交变电流的突出优点。
二、能力目标
1、培养学生对知识进行类比分析的能力。
2、培养学生接受新事物、解决新问题能力。
3、努力培养学生的实际动手操作能力。
三、情感目标
1、通过让学生了解我国在磁悬浮列车方面的研究进展,激发他们的爱国热情和立志学习、报效祖国的情感。
2、在观察电动机的构造的过程中,使学生养成对新知识和新事物的探索热情。
教学建议
1、由于感应电动机的突出优点,使它应用十分广泛、本节对它做了简单的介绍,以开阔学生眼界,增加实际知识。但作为选学内容,对学生没有太高的要求,做些介绍就可以了。
2、可以通过回忆前一章习题中提到的电磁驱动现象,本节的关键是通过演示、讲解使学生明白三相交变电流也可以产生旋转磁场,做到电磁驱动,这就是感应电动机的原理。这有利于新旧知识的联系和加强学生学以致用的意识。有条件的可以看实物或带学生参观,以增加实际知识。
3、课本中的感应电动机的内容,简要地介绍了感应电动机的转动原理,其中的核心内容是旋转磁场概念。建议教师如果可能的话,应找一台电动机,拆开了让学生看一看各个部分的形状。三相感应电动机在工农业生产中的应用很广泛,最好能让学生看一些实际例子。
教学准备:
幻灯片、感应电动机模型、学生电源、旋转磁铁
教学过程:
一、知识回顾
电磁驱动现象说明
二、新课教学:
1、过回忆绍电磁驱动现象:在U形磁铁中间放一个铝框,如果转动磁铁,造成一个旋转磁场。铝框就随着转动。这种电磁驱动现象。告诉学生感应电动机就是应用该原理来工作的。
2、旋转磁场的产生方法:旋转磁铁可以得到旋转磁场,在线圈中通入三相交流电也可以得到旋转磁场。
3、感应电动机的结构介绍
定子:固定的电枢称为定子
转子:中间转动的铁心以及铁心上镶嵌的`铜条叫转子
4、鼠笼式电动机模型介绍:感应电动机的转子是由铁芯和嵌在铁芯上的闭合导体构成的。闭合导体是由嵌在铁芯凹槽中的铜条(或铝条)和两个铜环(或铝环)连在一起制成的,形状像个鼠笼,所以这种电动机也叫鼠笼式感应电动机。
5、感应电动机的转动方向控制:由于感应电动机的构造简单,因此如果要改变转子的转动方向,只需要把定子上的任意两组线圈的电流互换一下就就可以通过改变旋转磁场的旋转方向来改变转子的转动。这种电动机在制造、使用和保养上都比较简单,被广泛应用在工农业生产上。
高中物理教案14
【学习目标】
1、能熟练说出平抛运动的概念、性质、物体做平抛运动的条件
2、理解平抛运动可以分解为水平方向的匀速直线运动和竖直方向自由落体运动
3、用分解的思想处理平抛运动问题,探究平抛运动的基本规律。
【重点难点】
重点:解决平抛运动问题的基本思路
难点:用分解的思想理解平抛运动
预习案
【使用说明及学法指导】
1、通读教材,熟记本节基本概念、规律,然后完成问题导学中问题和预习自测。2、问题导学中 “处理平抛运动问题的基本思路”是本节内容的核心和基础,是解决平抛运动问题的前提和关键,应重点理解和熟练把握。3、如有不能解决的问题,可再次查阅教材或其他参考书。4、记下预习中不能解决的问题,待课堂上与老师同学共同探究。5、限时15分钟。
【问题导学】
1、什么是平抛运动?
2、物体做平抛运动的'条件是什么?
3、什么是匀变速运动?平抛运动是匀变速运动吗?
4、处理平抛运动问题的基本思路:平抛运动可分解为水平方向的
和竖直方向的 。物体从O点开始平抛,t时间后到达P点。在图中画出t时间内位移S、t时刻的速度v如图。把速度、位移沿x、y方向分解如上图,则
水平方向分速度vx= ,水平方向分位移x = 。
竖直方向分速度vy= , 竖直方向分位移y = 。
合速度公式V = ,其方向tanα = (α为v与水平方向夹角);
合位移公式S = ,其方向tanβ = (α为v与水平方向夹角)。
高中物理教案15
学习目标:
1. 理解质点的概念,知道它是一种科学抽象,知道实际物体在什么条件下可看作质点,知道这种科学抽象是一种常用的研究方法。
2. 知道参考系的概念和如何选择参考系。
学习重点:
质点的概念。
主要内容:
一、机械运动
1.定义:物体相对于其他物体的位置变化,叫做机械运动,简称运动。
2.运动的绝对性和静止的相对性:宇宙中的一切物体都在不停地运动,无论是巨大的天体,还是微小的原子、分子,都处在永恒的运动之中。运动是绝对的,静止是相对的。
二、物体和质点
1.定义:用来代替物体的有质量的点。
①质点是用来代替物体的具有质量的点,因而其突出特点是“具有质量”和“占有位置”,但没有大小,它的质量就是它所代替的物体的质量。
②质点没有体积,因而质点是不可能转动的。任何转动的'物体在研究其自转时都不可简化为质点。
③质点不一定是很小的物体,很大的物体也可简化为质点。同一个物体有时可以看作质点,有时又不能看作质点,要具体问题具体分析。
2.物体可以看成质点的条件:如果在研究的问题中,物体的形状、大小及物体上各部分运动的差异是次要或不起作用的因素,就可以把物体看做一个质点。
3.突出主要因素,忽略次要因素,将实际问题简化为物理模型,是研究物理学问题的基本思维方法之一,这种思维方法叫理想化方法。质点就是利用这种思维方法建立的一个理想化物理模型。
问题:
1.能否把物体看作质点,与物体的大小、形状有关吗?
2.研究一辆汽车在平直公路上的运动,能否把汽车看作质点?要研究这辆汽车车轮的转动情况,能否把汽车看作质点?
3.原子核很小,可以把原子核看作质点吗?
【例一】下列情况中的物体,哪些可以看成质点()
A.研究绕地球飞行时的航天飞机。
B.研究汽车后轮上一点的运动情况的车轮。
C.研究从北京开往上海的一列火车。
D.研究在水平推力作用下沿水平地面运动的木箱。
课堂训练:
1.下述情况中的物体,可视为质点的是()
A.研究小孩沿滑梯下滑。
B.研究地球自转运动的规律。
C.研究手榴弹被抛出后的运动轨迹。
D.研究人造地球卫星绕地球做圆周运动。
2.下列各种情况中,可以所研究对象(加点者)看作质点的是( )
A. 研究小木块的翻倒过程。
B.研究从桥上通过的一列队伍。
C.研究在水平推力作用下沿水平面运动的木箱。
D.汽车后轮,在研究牵引力来源的时。
三、参考系
1.定义:宇宙中的一切物体都处在永恒的运动之中,在描述一个物体的运动时,必须选择另外的一个物体作为标准,这个被选来作为标准的物体叫做参考系。一个物体一旦被选做参考系就必须认为它是静止的。
2.选择不同的参考系来观察同一个运动,得到的结果会有不同。
【例二】人坐在运动的火车中,以窗外树木为参考系,人是_______的。以车厢为参考系,人是__________的。
3.参考系的选择:描述一个物体的运动时,参考系可以任意选取,选取参考系时要考虑研究问题的方便,使之对运动的描述尽可能的简单。在不说明参考系的情况下,通常应认为是以地面为参考系的。
4.绝对参考系和相对参考系:
【例三】对于参考系,下列说法正确的是()
A.参考系必须选择地面。
B.研究物体的运动,参考系选择任意物体其运动情况是一样的。
C.选择不同的参考系,物体的运动情况可能不同。
D.研究物体的运动,必须选定参考系。
课堂训练:
1.甲物体以乙物体为参考系是静止的,甲物体以丙物体为参考系是运动的,那么,以乙物体为参考系,丙物体是( )
A. 一定是静止的。 B.一定是运动的。
C.有可能是静止的或运动的 D.无法判断。
2.关于机械运动和参照物,以下说法正确的有()
A. 研究和描述一个物体的运动时,必须选定参照物。
B. 由于运动是绝对的,描述运动时,无需选定参照物。
C. 一定要选固定不动的物体为参照物。
D. 研究地面上物体的运动时,必须选地球为参照物。
【高中物理教案】相关文章:
高中物理教案02-27
【精】高中物理教案02-23
高中物理教案【精】06-13
(集合)高中物理教案06-16
高中物理教案:《弹力》01-11
弹力高中物理教案11-17
高中物理教案设计11-07
高中物理教案精选15篇12-21
高中物理教案(精选15篇)01-08
高中物理教案(15篇)11-08